The volume controls in mpv now affect the session's volume (the
application's volume in the mixer). Since we do not request a
non-persistent session, the volume and mute status persist across mpv
invocations and system reboots.
In exclusive mode, WASAPI doesn't have access to a mixer so the endpoint
(sound card)'s master volume is modified instead. Since by definition
mpv is the only thing outputting audio in exclusive mode, this causes no
conflict, and ao_wasapi restores the last user-set volume when it's
uninitialized.
Due to the COM Single-Threaded Apartment model, the thread owning the
objects will still do all the actual method calls (in the form of
message dispatches), but at least this will be COM's problem rather than
having to set up several handles and adding extra code to the event
thread.
Since the event thread still needs to own the WASAPI handles to avoid
waiting on another thread to dispatch the messages, the init and uninit
code still has to run in the thread.
This also removes a broken drain implementation and removes unused
headers from each of the files split from the original ao_wasapi.c.
ao_wasapi.c was almost entirely init code mixed with option code and
occasionally actual audio handling code. Split most things to
ao_wasapi_utils.c and keep the audio handling code in ao_wasapi.c.
Gets rid of the internal ring buffer and get_buffer. Corrects an
implementation error in thread_reset.
There is still a possible race condition on reset, and a few refactors
left to do. If feasible, the thread that handles everything
WASAPI-related will be made to only handle feed events.
Assume obtained.samples contains the number of samples the SDL audio
callback will request at once. Then make sure ao.c will set the buffer
size at least to 3 times that value (or more).
Might help with bad SDL audio backends like ESD, which supposedly uses a
500ms buffer.
In general, we don't need to have a large hw audio buffer size anymore,
because we can quickly fill it from the soft buffer.
Note that this probably doesn't change much anyway. On my system (dmix
enabled), the buffer size is only 170ms, and ALSA won't give more. Even
when using a hardware device the buffer size seems to be limited to
341ms.
This AO pretended to support volume operations when in spdif passthrough
mode, but actually did nothing. This is wrong: at least the GET
operations must write their argument. Signal that volume is unsupported
instead.
This was probably a hack to prevent insertion of volume filters or so,
but it didn't work anyway, while recovering after failed volume filter
insertion does work, so this is not needed at all.
Since the addition of the AO feed thread, 200ms of latency (MIN_BUFFER)
was added to all push-based AOs. This is not so nice, because even AOs
with relatively small buffering (e.g. ao_alsa on my system with ~170ms
of buffer size), the additional latency becomes noticable when e.g.
toggling mute with softvol.
Fix this by trying to keep not only 200ms minimum buffer, but also 200ms
maximum buffer. In other words, never buffer beyond 200ms in total. Do
this by estimating the AO's buffer fill status using get_space and the
initially known AO buffer size (the get_space return value on
initialization, before any audio was played). We limit the maximum
amount of data written to the soft buffer so that soft buffer size and
audio buffer size equal to 200ms (MIN_BUFFER).
To avoid weird problems with weird AOs, we buffer beyond MIN_BUFFER if
the AO's get_space requests more data than that, and as long as the soft
buffer is large enough.
Note that this is just a hack to improve the latency. When the audio
chain gains the ability to refilter data, this won't be needed anymore,
and instead we can introduce some sort of buffer replacement function in
order to update data in the soft buffer.
It is possible to have ao->reset() called between ao->pause() and
ao->resume() when seeking during the pause. If the underlying PCM
supports pausing, resuming an already reset PCM will produce an error.
Avoid that by explicitly checking PCM state before calling
snd_pcm_pause().
Signed-off-by: wm4 <wm4@nowhere>
The uint64_t math would cause overflow at long enough system uptimes
(...such as 3 days), and any precision error given by the double math will
be under one milisecond.
One strange issue is that we apparently can't stop the audio API on
audio reset (ao_driver.reset). We could use SDL_PauseAudio, but that
doesn't specify whether remaining audio is dropped. We also could use
SDL_LockAudio, but holding that over a long time will probably be bad,
and it probably doesn't drop audio. This means we simply play silence
after a reset, instead of stopping the callback completely. (The
existing code ran into an underrun in this situation.)
The delay estimation works about the same. We simply assume that the
callback is locked to audio timing (like ao_jack), and that 1 callback
corresponds to 1 period. It seems this (removed) code fragment assumes
there 1 one period size delay:
// delay subcomponent: remaining audio from the next played buffer, as
// provided by the callback
buffer_interval += callback_interval;
so we explicitly do that too.
Until now, this was always conflated with uninit. This was ugly, and
also many AOs emulated this manually (or just ignored it). Make draining
an explicit operation, so AOs which support it can provide it, and for
all others generic code will emulate it.
For ao_wasapi, we keep it simple and basically disable the internal
draining implementation (maybe it should be restored later).
Tested on Linux only.
Same deal as with the previous commit. We don't lose any functionality,
except for waiting "properly" on audio end, instead of waiting using the
delay estimate.
This removes the ringbuffer management from the code, and uses the
generic code added with the previous commit. The result should be
pretty much the same.
The "estimate" sub-option goes away. This estimation is now always
active. The new code for delay estimation is slightly different, and
follows the claim of the jack framework that callbacks are timed
exactly.
This has 2 goals:
- Ensure that AOs have always enough data, even if the device buffers
are very small.
- Reduce complexity in some AOs, which do their own buffering.
One disadvantage is that performance is slightly reduced due to more
copying.
Implementation-wise, we don't change ao.c much, and instead "redirect"
the driver's callback to an API wrapper in push.c.
Additionally, we add code for dealing with AOs that have a pull API.
These AOs usually do their own buffering (jack, coreaudio, portaudio),
and adding a thread is basically a waste. The code in pull.c manages
a ringbuffer, and allows callback-based AOs to read data directly.
Since the AO will run in a thread, and there's lots of shared state with
encoding, we have to add locking.
One case this doesn't handle correctly are the encode_lavc_available()
calls in ao_lavc.c and vo_lavc.c. They don't do much (and usually only
to protect against doing --ao=lavc with normal playback), and changing
it would be a bit messy. So just leave them.
We want to move the AO to its own thread. There's no technical reason
for making the ao struct opaque to do this. But it helps us sleep at
night, because we can control access to shared state better.
This field will be moved out of the ao struct. The encoding code was
basically using an invalid way of accessing this field.
Since the AO will be moved into its own thread too and will do its own
buffering, the AO and the playback core might not even agree which
sample a PTS timestamp belongs to. Add some extrapolation code to handle
this case.
Use QueryPerformanceCounter to improve the accuracy of
IAudioClock::GetPosition.
While this is mainly for "realtime correctness" (usually the delay is a
single sample or less), there are cases where IAudioClock::GetPosition
takes a long time to return from its call (though the documentation doesn't
define what a "long time" is), so correcting its value might be important in
case the documented possible delay happens.
The lack of device latency made get_delay report latencies shorter than
they should; on systems with fast enough drivers, the delay is not
perceptible, but high enough invisible delays would cause desyncs.
I'm not yet completely sure whether this is 100% accurate, there are
some issues involved when repeatedly pausing+unpausing (the delay might
jump around by several dozen miliseconds), but seeking seems to be
working correctly now.
The player didn't quit when the end of a file was reached. The reason
for this is that jack reported a constant audio delay even when all
audio was done playing. Whether that was recognized as EOF by the player
depended whether the exact value was higher or lower than the player's
threshhold for what it considers no more audio.
get_delay() should return amount of time it takes until the last sample
written to the audio buffer reaches the speaker. Therefore, we have to
track the estimated time when the last sample is done, and subtract it
from the calculated latency. Basically, the latency is the only amount
of time left in the delay, and it should go towards 0 as audio reaches
ths speakers.
I'm not sure if this is correct, but at least it solves the problem. One
suspicious thing is that we use system time to estimate the end of the
audio time. Maybe using jack_frame_time() would be more correct. But
apart from this, there doesn't seem to be a better way to handle this.
Windows applications that use LoadLibrary are vulnerable to DLL
preloading attacks if a malicious DLL with the same name as a system DLL
is placed in the current directory. mpv had some code to avoid this in
ao_wasapi.c. This commit just moves it to main.c, since there's no
reason it can't be used process-wide.
This change can affect how plugins are loaded in AviSynth, but it
shouldn't be a problem since MPC-HC also does this and it's a very
popular AviSynth client.
1000ms is a bit insane. It makes behavior on playback speed changes
worse (because the player has to catch up the dropped audio due to
audio-chain reset), and perhaps makes seeking slower.
Note that the problem of playback speed changes misbehaving will be
fixed in the future, but even then we don't want to have a buffer that
large.
Always pass around mp_log contexts in the option parser code. This of
course affects all users of this API as well.
In stream.c, pass a mp_null_log, because we can't do it properly yet.
This will be fixed later.
Remove the nonsensical print_lock too.
Things that are called from the option validator are not converted yet,
because the option parser doesn't provide a log context yet.
This could output additional, potentially useful error messages. But the
callback is global and not library-safe, and would require us to add
additional state. Remove it, because it's obviously too much of a pain.
Also, it seems ALSA prints stuff to stderr anyway.
Since m_option.h and options.h are extremely often included, a lot of
files have to be changed.
Moving path.c/h to options/ is a bit questionable, but since this is
mainly about access to config files (which are also handled in
options/), it's probably ok.