nvdec aka cuvid aka cuda should work much better than vdpau, and support
newer codecs (such as vp9), and more advanced surface formats (like 10
bit).
This requires moving the d3d hwaccels in the autoprobe order, since on
Windows, d3d decoding should be preferred over nvidia proprietary stuff.
Users of older drivers will need to force --hwdec=vdpau, since it could
happen that the vo_gpu cuda hwdec interop loads (so the vdpau interop is
not loaded), but the hwdec itself doesn't work.
I expect this does not break AMD (which still needs vdpau for vo_gpu
interop, until libva is fixed so it can fully support AMD).
All this code used to be required by the old variants of the libavcodec
hw decoding APIs. Almost all of that is gone, although the mediacodec
API unfortunately still pulls in some old stuff (but not all of it).
(mediacodec build/functionality is untested, but should work.)
All of this was dead code and completely unused.
get_buffer2_hwdec() is the biggest chunk. One unfortunate thing about it
is that, while it was active, it could perform a software fallback much
faster, because it didn't have to wait until a full frame is decoded (it
actually decoded a full frame, but the current code has to decode many
more frames due to the codec delay, because the current code waits until
the API returns a decoded frame.) We should probably restore the latter,
although since it's an optional optimization, and the current behavior
doesn't change with the removal of this code, don't actually do anything
about it.
This is where it should be. It only wasn't because of an old libavcodec
bug, that returned the side data only on every IDR. This required some
sort of caching, which is now dropped. (mp_image wouldn't have been able
to do this kind of caching, because this code is stateless.) We don't
support these old libavcodec versions anymore, which is why this is not
needed anymore.
Also move initialization of rotation/stereo stuff to dec_video.c.
This simply didn't work. Unlike cuda-copy, this is a true hwaccel, and
obviously we need to provide it a device.
Implement this in a relatively generic way, which can probably reused
directly by videotoolbox (not doing this yet because it would require
testing on OSX).
Like with cuda-copy, --cuda-decode-device is ignored. We might be able
to provide a more general way to select devices at some later point.
This is just a dumb consequence of HWDEC_ types somehow being part of
both decoder and VO. Obviously, the VO should only care about supporting
specific hardware surface types or providing specific device types, but
until they are separated, stupid unintuitive mismatches will occur.
See manpage additions.
(In ffmpeg-mpv and Libav, this is still called "cuvid". Libav won't work
yet, because it has no frame params support yet, but this could get
fixed soon.)
This removes the need for codec- and API-specific knowledge in the
libavcodec hardware acceleration API user. For mpv, this removes the
need for vd_lavc_hwdec.pixfmt_map and a few other things. (For now, we
still keep the "old" parts for the sake of supporting older Libav, and
FFgarbage.)
Should speed up seeks.
(Unfortunately it's useless for backstepping. Backstepping is like
precise seeking, except we're unable to drop frames, as we can't know
the previous frame if we drop it.)
The new_segment field was used to track the decoder data flow handler of
timeline boundaries, which are used for ordered chapters etc. (anything
that sets demuxer_desc.load_timeline). This broke seeking with the
demuxer cache enabled. The demuxer is expected to set the new_segment
field after every seek or segment boundary switch, so the cached packets
basically contained incorrect values for this, and the decoders were not
initialized correctly.
Fix this by getting rid of the flag completely. Let the decoders instead
compare the segment information by content, which is hopefully enough.
(In theory, two segments with same information could perhaps appear in
broken-ish corner cases, or in an attempt to simulate looping, and such.
I preferred the simple solution over others, such as generating unique
and stable segment IDs.)
We still add a "segmented" field to make it explicit whether segments
are used, instead of doing something silly like testing arbitrary other
segment fields for validity.
Cached seeking with timeline stuff is still slightly broken even with
this commit: the seek logic is not aware of the overlap that segments
can have, and the timestamp clamping that needs to be performed in
theory to account for the fact that a packet might contain a frame that
is always clipped off by segment handling. This can be fixed later.
This commit allows to use the AV_PIX_FMT_DRM_PRIME newly introduced
format in ffmpeg that allows decoders to provide an AVDRMFrameDescriptor
struct.
That struct holds dmabuf fds and information allowing zerocopy rendering
using KMS / DRM Atomic.
This has been tested on RockChip ROCK64 device.
The mechanism introduced in b135af6842 assumed AVHWFramesContext would
be enough. Apparently it's not - the intended use with Rockchip (not
Rokchip btw.) requires accessing actual frame data in order to access
the AVDRMFrameDescriptor struct.
Just pass the entire mp_image to the new function. This is more
flexible, although it slightly worries me that it will be less reusable
for things which require setting up mp_image_params before any real
frames are processed (such as filters).
The same should happen with any other side data that matters to mpv,
otherwise filters will drop it.
(No, don't try to argue that mpv should use AVFrame. That won't work.)
ffmpeg_garbage() is copy&paste from frame_new_side_data() in FFmpeg
(roughly feed201849b8f91), because it's not public API. The name
reflects my opinion about FFmpeg's API.
In mp_image_to_av_frame(), change the too-fragile
*new_ref = (struct mp_image){0};
into explicitly zeroing out the fields that are "transferred" to the
created AVFrame.
It seems this will be useful for Rokchip DRM hwcontext integration.
DRM hwcontexts have additional internal structure which can be different
depending on the decoder, and which is not part of the generic hwcontext
API. Rockchip has 1 layer, which EGL interop happens to translate to a
RGB texture, while VAAPI (mapped as DRM hwcontext) will use multiple
layers. Both will use sw_format=nv12, and thus are indistinguishable on
the mp_image_params level. But this is needed to initialize the EGL
mapping and the vo_gpu video renderer correctly.
We hope that the layer count is enough to tell whether EGL will
translate the data to a RGB texture (vs. 2 texture resembling raw nv12
data). For that we introduce MP_IMAGE_HW_FLAG_OPAQUE.
This commit adds the flag, infrastructure to set it, and an "example"
for D3D11.
The D3D11 addition is quite useless at this point. But later we want to
get rid of d3d11_update_image_attribs() anyway, while we still need a
way to force d3d11vpp filter insertion, so maybe it has some
justification (who knows). In any case it makes testing this easier.
Obviously it also adds some basic support for triggering the opaque
format for decoding, which will use a driver-specific format, but which
is not supported in shaders. The opaque flag is not used to determine
whether d3d11vpp needs to be inserted, though.
Mostly an obscure option for testing. But --videotoolbox-format can be
deprecated, as it becomes redundant.
We rely on the libavutil hwcontext implementation to reject invalid
pixfmts, or not to blow up if they are incompatible.
iive agreed to relicense things that are still in mpv to LGPLv2.1. So
change the licenses of the affected files, and rename the configure
switch for LGPL mode to --enable-preliminary-lgpl2.
(The "preliminary" part will probably be removed from the configure
switch soon as well.)
Also player/main.c hasn't had GPL parts since a few commits ago.
Now you need FFmpeg git, or something.
This also gets rid of the last real use of gpu_memcpy(). libavutil does
that itself. (vaapi.c still used it, but it was essentially unused,
because the code path isn't really in use anymore. It wasn't even
included due to the d3d-hwaccel dependency in wscript.)
See "Copyright" file for caveats.
This changes the remaining "almost LGPL" files to LGPL, because we think
that the conditions the author set for these was finally fulfilled.
This reverts commit 96462040ec.
I guess the autoprobing is still too primitive to handle this well. What
it really should be trying is initializing the wrapper decoder, and if
that doesn't work, try another method. This is complicated by hwaccels
initializing in a delayed way, so there is no easy solution yet.
Probably fixes#4865.
Not resetting hwdec_request_reinit caused it to flush on every packet,
which not only caused it to fail triggering the actual fallback, and let
it never decode a new frame, but also to get stuck on EOF.
This adds handling of spherical video metadata: retrieving it from
demux_lavf and demux_mkv, passing it through filters, and adjusting it
with vf_format. This does not include support for rendering this type of
video.
We don't expect we need/want to support the other projection types like
cube maps, so we don't include that for now. They can be added later as
needed.
Also raise the maximum sizes of stringified image params, since they
can get really long.
Apparently this was broken by the "ctx->hwdec" check in the if condition
guarding the destroy call, and "ctx->hwdec = NULL;" was moved up
earlier, making this always dead code.
This should probably be refcounted or so, although that could make it
worse as well. For now, add a flag whether the device should be
destroyed.
Fixes#4735.
Since these need to be refcounted, we throw them directly into struct
mp_image instead of being part of mp_colorspace. Even though they would
semantically make more sense in mp_colorspace, having them there is
really awkward because mp_colorspace is passed around and stored a lot,
and this way their lifetime is exactly tied to the lifetime of the
mp_image associated with it.
Can be enabled via --vd-lavc-dr=yes. See manpage additions for what it
does.
This reminds of the MPlayer -dr flag, but the implementation is
completely different. It's the same basic concept: letting the decoder
render into a GPU buffer to avoid a copy. Unlike MPlayer, this doesn't
try to go through filters (libavfilter doesn't support this anyway).
Unless a filter can work in-place, DR will be silently disabled. MPlayer
had very complex semantics about buffer types and management (which
apparently nobody ever understood) and weird restrictions that mostly
limited it to mpeg2 style codecs. The mpv code does not do any of this,
and just lets the decoder allocate an arbitrary number of untyped
images. (No MPlayer code was used.)
Parts of the code based on work by atomnuker (starting point for the
generic code) and haasn (some GL definitions, some basic PBO code, and
correct fencing).
Remove this code because it could be argued that it contains GPL-only
code (see commit 642e963c86 for details).
The remaining aspect methods appear to work just as well, are
potentially more compatible to other players, and the code becomes much
simpler.
Commit d5702d3b95 messed up the order of destruction of the elements: it
destroyed the avctx before the hwaccel uninit, even though the hwaccel
uninit could access avctx. This could happen with some old hwaccels
only, such as D3D ones before the new libavcodec hwaccel API.
Fix this by making use of the fact that avcodec_flush_buffers() will
uninit the underlying hwaccel. Thus we can be sure avctx is not using
any hwaccel objects anymore, and it's safe to uninit the hwaccel.
Move the hwdec_dev dstruction code with it, because otherwise we would
in theory potentially create some dangling pointers in avctx.
This sets AV_HWACCEL_FLAG_ALLOW_PROFILE_MISMATCH, which some hwaccels
using the new generic API respect. These do profile selection in
libavcodec, so it can be controlled only with an external flag, instead
of in mpv code like it used to be done.
They have been deprecated for a decade, yet you're forced to explicitly
deal with them at every step, or they will break your shit.
FFmpeg insists on keeping them, because libavfilter is too stupid to
deal with color ranges properly. Ridiculous.
For some braindead reason, Microsoft decided to prevent you from
dynamically loading system libraries. This makes portability harder.
And we're talking about portability between Microsoft OSes!
This partially reverts the change from a longer time ago to always build
DXVA2 and D3D11VA together.
To make it simpler, we change the following:
- building with ANGLE headers is now required to build D3D hwaccels
- if DXVA2 is enabled, D3D11VA is still forcibly built
- the CLI vo_opengl ANGLE backend is now under --egl-angle-win32
This is done to reduce the dependency mess slightly.
MaxCLL is the more authoritative source for the metadata we are
interested in. The use of mastering metadata is sort of a hack anyway,
since there's no clearly-defined relationship between the mastering peak
brightness and the actual content. (Unlike MaxCLL, which is an explicit
relationship)
Also move the parameter fixing to `fix_image_params`
I don't know if the avutil check is strictly necessary but I've included
it anyway to be on the safe side.
List of changes:
1. Kill nom_peak, since it's a pointless non-field that stores nothing
of value and is _always_ derived from ref_white anyway.
2. Kill ref_white/--target-brightness, because the only case it really
existed for (PQ) actually doesn't need to be this general: According
to ITU-R BT.2100, PQ *always* assumes a reference monitor with a
white point of 100 cd/m².
3. Improve documentation and comments surrounding this stuff.
4. Clean up some of the code in general. Move stuff where it belongs.
"Almost" because this might contain copyright by michael, who agreed
with LGPL, but only once the core is LGPL. This is preparation for that
to happen.
Apart from that, the usual remarks apply. In particular, dec_video.c
started out quite chaotic with no modularization, but was later
basically gutted, and in general rewritten a bunch of times. Not going
to give a history lesson.
Special attention needs to be given to 3 patches by cehosos, who did not
agree to the relicensing:
240b743ebd: --field-dominance
e32cbbf7dc: reinit VO if aspect ratio changes
306f6243fd: use container aspect if codec aspect unset (?)
The first patch is pretty clearly still in the current code, and needs
to be disabled for LGPL.
The functionality of the second patch is still active, but implemented
completely different, and as part of general frame parameter changes (at
the time of the patch, MPlayer already reinitialized the VO on frame
size and pixel format changes - all this was merged into a single check
for changing image parameters).
The third patch makes me a bit more uncomfortable. It appears the code
was moved to dec_video.c in de68b8f23c, and further changed in
82f0d373, 0a0bb905, and bf13bd0d. You could claim that cehoyos'
copyright still sticks. Fortunately, we implement alternative aspect
detection, which is simpler and probably preferable, and which arguably
contains none of the original code and logic, and thus should be fully
safe.
While I don't know if cehoyos' copyright actually still applies, I'm
more comfortable with making the code GPL-only for now. Also change the
default to use the (in future) plain LGPL code, and deprecate the one
associated with the GPL code, so we can eventually remove the GPL code.
But it's also possible we decide that the copyright doesn't apply, and
undo the deprecation and GPL guards.
I expect that users won't notice anything. If you ask me, the old aspect
method was probably an accidental bug instead of intentional behavior.
Although, the new aspect method was broken too, so I had to fix it.
iive agreed only to LGPL 3.0+ only. All of his relevant changes are for
XvMC, for which mpv completely dropped support back in mplayer2 times.
But you could claim that the get_format code represents some residual
copyright (everything else added by iive was removed, only get_format
still is around in some form). While I doubt that this is relly
copyright-relevant, consider it is for now.
michael is the original author of vd_lavc.c, so this file can become
LGPL only after the core becomes LGPL.
cehoyos did not agree with the LGPL relicensing, but all of his code is
gone.
Some others could not be reached, but their code is gone as well. In
particular, vdpau support, which was originally done by Nvidia, had
larger impact on vd_lavc.c, but vdpau support was first refactored a few
times (for the purpose of modularization) and moved to different files,
and then decoding was completely moved to libavcodec.
Lastly, assigning the "opaque" field was moved by Gwenole Beauchesne in
commit 8e5edec13e. Agreement is pending (due to copyright apparently
owned by the author's employer). So just undo the change, so we don't
have to think about whether the change is copyrightable.
Unfortunately quite a mess, in particular due to the need to have some
compatibility with the old API. (The old API will be supported only in
short term.)
The new API has literally no advantages (other than that we can drop
mp_vt_download_image and other things later), but it's sort-of uniform
with the other hwaccels.
"--videotoolbox-format=no" is not supported with the new API, because it
doesn't "fit in". Probably could be added later again.
The iOS code change is untested (no way to test).
It's not really guaranteed that other components always set this (e.g.
on subtle errors), so check it explicitly. Although I'm not aware of a
failing case.
If vo_opengl is used, and vo_opengl already created the vdpau interop
(for whatever reasons), and then preemption happens, and then you try to
enable hw decoding, it failed. The reason was that preemption recovery
is not run at any point before libavcodec accesses the vdpau device.
The actual impact was that with libmpv + opengl-cb use, hardware
decoding was permanently broken after display mode switching (something
that caused the display to get preempted at least with older drivers).
With mpv CLI, you can for example enable hw decoding during playback,
then disable it, VT switch to console, switch back to X, and try to
enable hw decoding again.
This is mostly because libav* does not deal with preemption, and NVIDIA
driver preemption behavior being horrible garbage. In addition to being
misdesigned API, the preemption callback is not called before you try to
access vdpau API, and then only with _some_ accesses.
In summary, the preemption callback was never called, neither before nor
after libavcodec tried to init the decoder. So we have to get
mp_vdpau_handle_preemption() called before libavcodec accesses it. This
in turn will do a dummy API access which usually triggers the preemption
callback immediately (with NVIDIA's drivers).
In addition, we have to update the AVHWDeviceContext's device. In theory
it could change (in practice it usually seems to use handle "0").
Creating a new device would cause chaos, as we don't have a concept of
switching the device context on the fly. So we simply update it
directly. I'm fairly sure this violates the libav* API, but it's the
best we can do.
Until now, the texture pointer was stored in plane 1, and the texture
array index was in plane 2. Move this down to plane 0 and plane 1. This
is to align it to the new WIP D3D11 decoding API in Libav, where we
decided that there is no reason to avoid setting plane 0, and that it
would be less weird to start at plane 0.
Sigh...
The functionality is not actually needed for vdpau, but if the vdpau
hwaccel is present, the FFmpeg version is new enough that it includes
the field.
These decoders can select the decoding device with hw_device_ctx, but
don't use hw_frames_ctx (at least not in a meaningful way).
Currently unused, but intended to be used for cuvid, as soon as it hits
ffmpeg git master.
Also make the vdpau and vaapi hwaccel definition structs static, as we
have removed the old code which would have had clashing external
declarations.
This drops support for the old libavcodec APIs. Now FFmpeg 3.3 or FFmpeg
git is required. Libav has no release with the new APIs yet, so for
Libav git as of a few weeks or months ago or so is required if you want
to use Libav.
Not much actually changes in hwdec_vaegl.c - some code is removed, but
the reindentation inflates the diff.
If vaapi was found, but neither the old or new libavcodec vaapi hwaccel
API, then HAVE_VAAPI_HWACCEL will be defined, but not _OLD or _NEW. The
HAVE_VAAPI_HWACCEL define pretty much exists only for acrobatics with
our own waf dependency checker helper code.
The new API works like the new vaapi API, using generic hwaccel support.
One minor detail is the error message that will be printed if using
non-4:2:0 surfaces (which as far as I can tell is completely broken in
the nVidia drivers and thus not supported by mpv). The HEVC warning
(which is completely broken in the nVidia drivers but should work with
Mesa) had to be added to the generic hwaccel code.
This also trashes display preemption recovery. Fuck that. It never
really worked. If someone complains, I might attempt to add it back
somehow.
This is the 4th iteration of the libavcodec vdpau API (after the
separate decoder API, the manual hwaccel API, and the automatic vdpau
hwaccel API). Fortunately, further iterations will be generic, and not
require much vdpau-specific changes (if any at all).
I guess that's the full extent I still care about nVidia's broken
garbage. In theory, we could always force the video mixer (which is the
only method getting the video data that works), but why bother.
FFmpeg could crash with vaapi (new) and --vo=opengl + interpolation.
It seems the actual surface count the old vaapi code uses (and which
usually never exceeded the preallocated amount) was higher than what
was used for the new vaapi code, so just correct that. The d3d helpers
also had weird code that bumped the real pool size, fix them as well.
Why this would result in an assertion failure instead of a proper error,
who knows.
hw_vaapi.c didn't do much interesting anymore. Other than the function
to create a device for decoding with vaapi-copy, everything can be done
by generic code. Other libavcodec hwaccels are planned to provide the
same API as vaapi. It will be possible to drop the other hw_ files in
the future. They will use this generic code instead.
Originally, there was probably some sort of intention to restrict it to
formats supported by the interop, or something. But in the end it was
overcomplicated nonsense.
In the future, we could use mp_hwdec_ctx.supported_formats or other
mechanisms to handle this in a better way.
mp_hwdec_ctx.ctx is not set to a dummy pointer - hwdec_devices_load() is
only used to detect whether to vo_opengl interop is present, and the
common hwdec code expects that the .ctx field is not NULL.
This also changes videotoolbox-copy to use --videotoolbox-format,
instead of the FFmpeg-set default.
The code for copying a videotoolbox surface to mp_image was duplicated
(with some minor differences - I picked the hw_videotoolbox.c version,
because it was "better"). mp_imgfmt_from_cvpixelformat() is somewhat
duplicated with the vt_formats[] table, but this will be fixed in a
later commit, and moving the function to shared code is preparation.
This should allow us to create the device in situations when
Direct3DCreate9 normally fails, for example if no user is logged in.
While the later use-case is not very interesting, I hope it to work in
some other situations as well, for example while certain drivers are in
exclusive full screen mode.
This is available since Windows 7, so I'm removing the old call
completely.
The lock was disabled recently. This commit gets rid of the dummied out
calls. The main reason for removing it is that there is no apparent need
for it anymore, and the new FFmpeg vaapi code does not use or provide
such a lock (there are some places which we cannot control and which do
vaapi API calls, like frame destructors).
Apparently this is the maximum that can be preserved. There is also
something about the decoder being able only to use 3 frames at a time,
and I'm assuming these are part of the 8 frames.
This can be useful in other contexts.
Note that we end up setting AVCodecContext.width/height instead of
coded_width/coded_height now. AVCodecParameters can't set coded_width,
but this is probably more correct anyway.
The FFmpeg versions we support all have the APIs we were checking for.
Only Libav missed them. Simplify this by explicitly checking for FFmpeg
in the code, instead of trying to detect the presence of the API.
Tried to decode a High 4:2:2 file, since libavcodec code seemed to
indicate that it's supported. Well, it decodes to garbage.
I couldn't find out why ffmpeg.c actually appears to reject this
correctly. The API seems to be fine with, just that the output is
garbage.
Add a hack for now.
Successful decoding of a frame resets ctx->hwdec_fail_count to 0 - which
us ok, but prevents fallback if it fails if --vd-lavc-software-fallback
is set to something higher than 1.
Just fail it immediately, since failing here always indicates some real
error (or OOM), not e.g. a video parsing error or such, which we try to
tolerate via the error counter.
Use the libavutil vdpau frame allocation code instead of our own "old"
code. This also uses its code for copying a video surface to normal
memory (used by vdpau-copy).
Since vdpau doesn't really have an internal pixel format, 4:2:0 can be
accessed as both nv12 and yuv420p - and libavutil prefers to report
yuv420p. The OpenGL interop has to be adjusted accordingly.
Preemption is a potential problem, but it doesn't break it more than it
already is.
This requires a bug fix to FFmpeg's vdpau code, or vdpau-copy (as well
as taking screenshots) will fail. Libav has fixed this bug ages ago.
In a way it can be reused. For now, sw_format and initial_pool_size
determination are still vaapi-specific. I'm hoping this can be eventally
moved to libavcodec in some way. Checking the supported_formats array is
not really vaapi-specific, and could be moved to the generic code path
too, but for now it would make things more complex.
hw_cuda.c can't use this, but hw_vdpau.c will in the following commit.
If hardware decoding is enabled (via --hwdec anything), the player was
printing an informational message that software decdoing is used.
Basically, this confuses users, because they think there is a problem or
such. Just disable the message, it's semi-useless anyway.
This was suggested on IRC, after yet another user was asking why this
message was shown (with a follow up discussion which CPUs can decode
what kind of video codecs).
There are going to be users who have a Mesa installation which do not
support 10 bit, but a GPU which can decode to 10 bit. So it's probably
better not to hardcode whether it is supported.
Introduce a more general way to signal supported formats from renderer
to decoder. Obviously this is imperfect, because it still isn't part of
proper format negotation (for example, what if there's a vavpp filter,
which accepts anything). Still slightly better than before.
I don't know any way to probe for vaapi dmabuf/EGL dmabuf support
properly (in particular testing specific formats, not just general
availability). So we stay with the current approach and try to create
and map dummy surfaces on init to probe for support. Overdo it and check
all formats that AVHWFramesConstraints reports, instead of only NV12 and
P010 surfaces.
Since we can support unknown formats now, add explicitly checks to the
EGL/dmabuf mapper code to reject unsupported formats. I also noticed
that libavutil signals support for RGB0/BGR0, but couldn't get it to
work. Remove the DRM formats that are unused/didn't work the way I tried
to use them.
With this, 10 bit decoding + rendering should work, provided you have
a capable CPU and a patched Mesa. The required Mesa patch adds support
for the R16 and GR32 formats. It was sent by a Kodi developer to the
Mesa developer mailing list and was not accepted yet.
For convenience. Since we still have code that works even if creating a
AVHWDeviceContext fails, failure is ignored. (Although currently, it
succeeds creation even with the stale/abandoned vdpau wrapper driver.)
Rendering support in Mesa probably doesn't exist yet. In theory it might
be possible to use VPP to convert the surfaces to 8 bit (like we do it
with dxva2/d3d11va as ANGLE doesn't support rendering 10 bit surface
either), but that too would require explicit mechanisms. This can't be
implemented either until I have a GPU with actual support.
Other hwdecs will also be able to use this (as soon as they are switched
to use AVHWFramesContext).
As an additional feature, failing to copy back the frame counts as
hardware decoding failure and can trigger fallback. This can be done
easily now, because it needs no way to communicate this from the hwaccel
glue code to the common code.
The old code is still required for the old decode API, until we either
drop or rewrite it. vo_vaapi.c's OSD code (fuck...) also uses these
surface functions to a higher degree.
Mostly affects conversion of the colorimetric parameters.
Not changing AV_FRAME_DATA_MASTERING_DISPLAY_METADATA handling - that's
too messy, as decoders typically output it for keyframes only, and would
require weird caching that can't even be done on the level of the frame
rewrapping functions.
This fixes direct rendering with hwdec_vaegl.c.
The code duplication between update_image_params() and
mp_image_copy_fields_from_av_frame() is quite annoying,
bit will have to be resolved in another commit.
AVHWDeviceContext.user_opaque is reserved to libavutil under certain
circumstances, while AVHWFramesContext.user_opaque is truly free for use
by us. It's slightly simpler too.
The old API is deprecated, and libavcodec prints a warning at runtime.
The new API is a bit nicer and does many things for you, such as
managing the underlying hwaccel decoder. libavutil also provides code
for managing surfaces (we use their surface pool).
The new code does not contain any code from the original MPlayer VAAPI
patch (that was used as base for some of the vaapi code in mpv). Thus
the new code is LGPL.
The new API actually does not add any visible symbols, so the only way
to detect it is a version check. Of course, the versions overlap
between FFmpeg and Libav, which requires additional care. The new
API did not get merged into FFmpeg yet, so there's no check for
FFmpeg.
This is simpler and more robust, especially for the hwdec fallback case.
The most annoying issue is that C doesn't support multiple return values
(or sum types), so the decode call gets all awkward.
The hwdec fallback case does not need to try to produce some output
after the fallback anymore. Instead, it can use the normal "replay"
code path.
We invert the "eof" bool that vd_lavc.c used internally. The
receive_frame decoder API returns the inverse of EOF, because
returning "true" from the decode function if EOF was reached
feels awkward.
Usually they happen at the same time, but conflating them is still a bit
unclean and could possibly cause problems in the future. It's also
really unnecessary.
The ffmpeg cuda wrappers need more than 1 packet for determining whether
hw decoding will work. So do something complicated and keep up to 32
packets when trying to do hw decoding, and replay the packets on the
software decoder if it doesn't work.
This code was written in a delirious state, testing for regressions and
determining whether this is worth the trouble will follow later. All mpv
git users are alpha testers as of this moment.
Fixes#3914.
Cover art handling is a disgusting hack that causes a mess in all
components. And this will stay this way. This is the Xth time I've
changed cover art handling, and that will probably also continue.
But change the code such that cover art is injected into the demux
packet stream, instead of having an explicit special case it in the
decoder glue code. (This is somewhat more similar to the cover art hack
in libavformat.)
To avoid that the over art picture is decoded again on each seek, we
need some additional "caching" in player/video.c. Decoding it after each
seek would work as well, but since cover art pictures can be pretty
huge, it's probably ok to invest some lines of code into caching it.
One weird thing is that the cover art packet will remain queued after
seeks, but that is probably not an issue.
In exchange, we can drop the dec_video.c code, which is pretty
convenient for one of the following commits. This code duplicates a
bunch of lower-level decode calls and does icky messing with this weird
state stuff, so I'm glad it goes away.
Conceptually cleaner, although the API claims this is equivalent.
Originally, AVCodecContext fields were used, because not all supported
libavcodec/libavutil versions had the AVFrame fields.
This is not done for chroma_sample_location - it has no AVFrame field.
Helps with gif, probably does unwanted things with other formats.
This doesn't handle --end quite correctly, but this could be added
later.
Fixes#3924.
Needs explicit logic. Fixes a pretty bad regression which prefers
vdpau-copy over native vaapi with direct rendering (with --hwdec=auto)
if libvdpau-va-gl1 is present. The reason is that vdpau-copy is above
vaapi, simply because all vdpau hwdecs are grouped and happened to be
listed before vaapi.
Although this is not that bad for copy-mode (unlike the case described
above), it's still a good idea to use our native vaapi code instead.
The latest 375.xx nvidia drivers add support for P016 output
surfaces. In combination with an ffmpeg change to return those
surfaces, we can display them.
The bulk of the work is related to knowing which format you're
dealing with at the right time. Once you know, it's straight forward.
At least with Nvidia drivers, some thread tries to access D3D11 objects
after ANGLE unloads d3d11.dll. Fix this by holding a reference to
d3d11.dll ourselves.
Might fix the crash in #3348. (I wish I knew why though.)
This is a bit unintuitiv, but it appears hwdec backends have to unset
hwdec_priv manually in their uninit function. Normally with this idiom
you'd expect the common code to do this (and maybe even freeing the priv
struct). Since other hwdec backends do this quite consistently, just fix
vdpau for now.
Also add an assert to detect similar bugs sooner.
Fixes#3788.
Implementation-wise, the values from the demuxer/codec header are merged
with the values from the decoder such that the former are used only
where the latter are unknown (0/auto).
At this point, all other hwaccels provide -copy modes, and vdpau is the
exception with not having one. Although there is vf_vdpaurb, it's less
convenient in certain situations, and exposes some issues with the
filter chain code as well.
Both AVFrame.pts and AVFrame.pkt_pts have existed for a long time. Until
now, decoders always returned the pts via the pkt_pts field, while the
pts field was used for encoding and libavfilter only. Recently, pkt_pts
was deprecated, and pts was switched to always carry the pts.
This means we have to be careful not to accidentally use the wrong
field, depending on the libavcodec version. We have to explicitly check
the version numbers. Of course the version numbers are completely
idiotic, because idiotically the pkg-config and library names are the
same for FFmpeg and Libav, so we have to deal with this explicitly as
well.
When the vaapi decoder is used in copy mode, it creates a dummy
display to render to. In theory, this should support hardware
decoding on on a separate GPU that is not actually connected to
any output (like an iGPU which supports more formats than the
external GPU to which the monitor is connected).
However, before this change, only X11 displays were supported as
dummy displays. This caused some graphics drivers (namely
intel-driver) to core dump when they were not actually used as X11
module.
This change introduces support for drm libav displays, which
allows vaapi-copy to run on such cards which are not actually
rendering the X11 output.
We always want to use __declspec(selectany) to declare GUIDs, but
manually including <initguid.h> in every file that used GUIDs was
error-prone. Since all <initguid.h> does is define INITGUID and include
<guiddef.h>, we can remove all references to <initguid.h> and just
compile with -DINITGUID to get the same effect.
Also, this partially reverts 622bcb0 by re-adding libuuid.a to the
build, since apparently some GUIDs (such as GUID_NULL) are not declared
in the source file, even when INITGUID is set.
This is the actual decoder output, with no overrides applied. (Maybe
video-params shouldn't contain the overrides in the first place, but
damage done.)
This really shouldn't be in vd_lavc.c - move it to dec_video.c, where it
also applies aspect overrides. This makes all overrides in one place.
The previous commit contains some required changes for resetting the
image parameters change detection (i.e. it's not done only on video
aspect override changes).
Use the new mechanism, instead of wrapped properties. As usual, extend
the update handling to some options that were forgotten/neglected
before. Rename video_reset_aspect() to video_reset_params() to make it
more "general" (and we can amazingly include write access to
video-aspect as well in this).
'cuda-gl' isn't right - you can turn this on without any GL and
get some non-zero benefit (with the cuda-copy hwaccel). So
'cuda-hwaccel' seems more consistent with everything else.
The cuvid decoder already knows how to copy back to system memory
if NV12 frames are requested, and this will happen if the decoder
is used without the hwdec.
For convenience, let's add a wrapper hwdec so people don't have
to explicitly pick the cuvid decoder if they want this behaviour.
Nvidia's "NvDecode" API (up until recently called "cuvid" is a cross
platform, but nvidia proprietary API that exposes their hardware
video decoding capabilities. It is analogous to their DXVA or VDPAU
support on Windows or Linux but without using platform specific API
calls.
As a rule, you'd rather use DXVA or VDPAU as these are more mature
and well supported APIs, but on Linux, VDPAU is falling behind the
hardware capabilities, and there's no sign that nvidia are making
the investments to update it.
Most concretely, this means that there is no VP8/9 or HEVC Main10
support in VDPAU. On the other hand, NvDecode does export vp8/9 and
partial support for HEVC Main10 (more on that below).
ffmpeg already has support in the form of the "cuvid" family of
decoders. Due to the design of the API, it is best exposed as a full
decoder rather than an hwaccel. As such, there are decoders like
h264_cuvid, hevc_cuvid, etc.
These decoders support two output paths today - in both cases, NV12
frames are returned, either in CUDA device memory or regular system
memory.
In the case of the system memory path, the decoders can be used
as-is in mpv today with a command line like:
mpv --vd=lavc:h264_cuvid foobar.mp4
Doing this will take advantage of hardware decoding, but the cost
of the memcpy to system memory adds up, especially for high
resolution video (4K etc).
To avoid that, we need an hwdec that takes advantage of CUDA's
OpenGL interop to copy from device memory into OpenGL textures.
That is what this change implements.
The process is relatively simple as only basic device context
aquisition needs to be done by us - the CUDA buffer pool is managed
by the decoder - thankfully.
The hwdec looks a bit like the vdpau interop one - the hwdec
maintains a single set of plane textures and each output frame
is repeatedly mapped into these textures to pass on.
The frames are always in NV12 format, at least until 10bit output
supports emerges.
The only slightly interesting part of the copying process is that
CUDA works by associating PBOs, so we need to define these for
each of the textures.
TODO Items:
* I need to add a download_image function for screenshots. This
would do the same copy to system memory that the decoder's
system memory output does.
* There are items to investigate on the ffmpeg side. There appears
to be a problem with timestamps for some content.
Final note: I mentioned HEVC Main10. While there is no 10bit output
support, NvDecode can return dithered 8bit NV12 so you can take
advantage of the hardware acceleration.
This particular mode requires compiling ffmpeg with a modified
header (or possibly the CUDA 8 RC) and is not upstream in ffmpeg
yet.
Usage:
You will need to specify vo=opengl and hwdec=cuda.
Note that hwdec=auto will probably not work as it will try to use
vdpau first.
mpv --hwdec=cuda --vo=opengl foobar.mp4
If you want to use filters that require frames in system memory,
just use the decoder directly without the hwdec, as documented
above.
These are different AVCodecContext fields. pkt_timebase is the correct
one for identifying the unit of packet/frame timestamps when decoding,
while time_base is for encoding. Some decoders also overwrite the
time_base field with some unrelated codec metadata.
pkt_timebase does not exist in Libav, so an #if is required.