- /proc/$$/cmdline is \0 terminated argument strings except for the last argument which has no terminus, so the last argument was being dropped by `while read` which requires input to be \n terminated
- switch to a for loop, which will use the \n delimiter but also read the last argument; all arguments are still protected by quoting
- clean up potentially breaking recovery env since $OLD_PATH no longer exists
Since SafetyNet CTS is impossible to achieve, leaving MagiskHide on
by default no longer serves a purpose.
For more details regarding the latest SafetyNet changes, please check:
https://twitter.com/topjohnwu/status/1237656703929180160https://twitter.com/topjohnwu/status/1237830555523149824
MagiskHide's functionality will continue to exist within the Magisk
project as it is still extremely effective to hide modifications in
userspace (including SafetyNet's basicIntegrity check).
Future MagiskHide improvements _may_ come, but since the holy grail
has been taken, any form of improvement is now a very low priority.
This made some trouble when creating a module.prop on Windows. The file could not be read properly by magisk manager and my module folder had an \r at the end which made it unremovable through Magisk Manager.
* Lineage Recovery 17.1, like AOSP Q recovery, has '/' as a shared
mount point, causing `mount --move` to fail.
If it fails, directly mount system to /system_root via
/dev/block/ symlinks, like AnyKernel and OpenGapps
Co-authored-by: John Wu <topjohnwu@gmail.com>
- pass addon.d arguments through trampoline or nothing will happen
- exit immediately after handing over from trampoline
- better grep for recovery OUTFD which should work in all cases
- output to logcat when booted and no binaries are found
- use /postinstall/tmp path to call functions from addon.d-v2 in progress
- remove unnecessary check for $MAGISKBIN since we're already executing from within it
- make sure we're not in $TMPDIR again before we delete it
- use $MAGISKBIN wherever possible in case it ever needs to be changed
The updated layout has extended features such as reboot (not implemented yet), more details with not text ellipsis and easy extendability with further parameters, detail or whatever
More improvements to homescreen to come in upcoming commits.
readlinkat() may return random value instead of the number of bytes placed in buf and crashing the system in two ways:
1. segmentation fault (buf[-7633350] = ‘\0’)
2. wrong link of watchdogd, resulting dog timeout
Confirmed working in ZenFone 2 x86 series, may fix#2247 and #2356
Signed-off-by: Shaka Huang <shakalaca@gmail.com>
Vendors are always adding “extra libraries” in /vendor/lib* for their own sake, in this case AS*S loaded with customized `libicuuc.so` for Zenf*ne 5z and led to the failure of dynamic loading libsqlite.so:
<quote>
db: dlopen failed: cannot locate symbol "UCNV_FROM_U_CALLBACK_ESCAPE_63" referenced by "/apex/com.android.runtime/lib64/libandroidicu.so"...
</quote>
Signed-off-by: Shaka Huang <shakalaca@gmail.com>
* Minor optimizations
Co-authored-by: John Wu <topjohnwu@gmail.com>
- adjust mount scripts to support SOS, APP and CAC Tegra partition naming (vendor is still vendor, oddly)
- -Xnodex2oat is removed on Android 10 in AOSP (despite it still erroneously showing in dalvikvm --help); older devices will still run safely without it
- Android 10 dynamically linked binaries need APEX mounts and variables so add this to recovery_actions/cleanup (thanks @Zackptg5)
- clean up known systemless root leftovers because we're helpful
Some Motorola devices (Qualcomm kernel with CONFIG_MMI_DEVICE_DTBS
configuration enabled) need 1k of padding to the DTBs to allow for
environment variables to be runtime added by the bootloader.
Those extra paddings will be removed during the process of dtb patch,
devices won’t be able to boot-up and return to fastboot mode immediately
after flashed the flawed boot.img.
Credits to @shakalaca, close#2273
- Added missing strings.
- Fixed some incorrect translations
- Improved grammar.
Many lines rewritten to keep original (EN) meaning as much as possible.
Note, and the backdrop, has been removed, since users which have chosen device that doesn't receive security updates in, at least 2 months, are getting triggered by their own choices (:
Before this commit, the loader removed messages _after_ it updated the
list. Coincidentally the list updating mechanism is asynchronous to
some extent and so slower devices might've had the message removed
after changes have been dispatched which confused the recyclerview and
caused the crash.
Now, the loader is stripped of the responsibility update the list
holding helper messages. The responsibility is for the user itself to
notify listeners and then clear the helper list. This should hopefully
delay the removal to the point where choreographer had enough time to
traverse through the hierarchy.
Stupid recycler view / layout managers. Literally unnecessary crash.
The aforementioned fragment has fixed issue with layouts being oversized on API21 (maybe a bit lower and higher as well, did not test) which was notable on homepage.
Unfortunately it deprecated most of the logic behind hiding of the top action view. Since it inherited and overridden the functionality from HideBottomViewOnScrollBehavior it no longer called the old methods and so the whole class was rendered _useless_. Fortunately we didn't need the whole backing implementation so the parent class was changed to the bare minimum. Hopefully this incident will not repeat.
Thanks goes to material team for introducing breaking changes in feature update.
Added pinch in to increase list span count / out to decrease
The setting will be remembered across the whole app (every list that uses Staggered Grid)
Updated indication of whether the policy has root access enabled permitted or not
Displays crossed out app logo if not permitted
- spelling fixes
- typographical fixes : thin spaces before exclamation and interrogation marks, true apostrophes instead of single quotes, non-breaking spaces to avoid orphan words, etc.
- rewording for a better French translation
- fix various misinterpretation
- spelling fixes : complête → complète
- typographical fixes : thin spaces before exclamation and interrogation marks
- rewording for a better French translation
- Update backup format as we might be patching multiple partitions
- Update uninstaller to remove files in persist (sepolicy.rule)
- Better handling for dtb/dtbo partition patching
The new module installer script completely changes the way how module
installer zips are structured. More info will come later in docs.
The new installer script also supports installing sepolicy.rule to
persist partitions in order to make the module work on the next boot.
All files (that used styles) were refactored to use styles directly so themes can only actually adjust colors
- Elaborate themes would be super hard to maintain and would certainly break over time
The mechanism was replaced by loading updated directly by id to the initial list. There are two factors why yesterday-me was dumb:
1) By asynchronously loading update state, you have no control over it - hence no search
2) It's incredibly wasteful; running that hardcore search on every query? Not cool
...and from UX stand-point having updates inlined right under installed modules is by far better than nitpicking it from the list or in the search
- some Samsung devices (e.g. Galaxy S5 SMG-900H) use a slightly different AOSP bootimg.h variant with `#define BOOT_NAME_SIZE 20` instead of 16
- since all known examples of these device images do not have anything in the NAME or CMDLINE fields, and the bootloader also accepts standard AOSP images, simply offset the SHA1/SHA256 detection by 4 bytes to avoid false positives from these images, remain an equally effective detection shortcut, and ensure a proper SHA1 checksum on repack
aosp-dtbhdt2-4offhash-seandroid-256sig-samsung_gs5-smg900h-boot.img
UNPACK CHECKSUM [00000000b11580f7d20f70297cdc31e02626def0356c82b90000000000000000]
REPACK CHECKSUM [73b18751202e56c433f89dfd1902c290eaf4eef3e167fcf03b814b59a5e984b6]
AIK CHECKSUM [b11580f7d20f70297cdc31e02626def0356c82b9000000000000000000000000]
This patch should result in a `magiskboot unpack -n boot.img; magiskboot repack boot.img` new-boot.img matching the AIK CHECKSUM above.
- compare against new byte[] array as a quick tell, since when streaming from a partition with an unsigned image "signature" would of course read without issue but then remain filled by zero padding, resulting in the following:
java.io.IOException: unexpected end-of-contents marker
at org.bouncycastle.asn1.ASN1InputStream.readObject(Unknown Source:14)
at com.topjohnwu.signing.SignBoot$BootSignature.<init>(SignBoot.java:235)
at com.topjohnwu.signing.SignBoot.verifySignature(SignBoot.java:144)
at com.topjohnwu.signing.BootSigner.main(BootSigner.java:15)
at a.a.main(a.java:20)
Added "endless" scrolling support
- this is done in order to display everything very swiftly and load as user needs it
- for the most part we'll download only ~10 items and load the rest as scroll progresses, this accomplishes the illusion that whole list is being populated
Added sections and updated repo view
Previously, we use either BroadcastReceivers or Activities to receive
messages from our native daemon, but both have their own downsides.
Some OEMs blocks broadcasts if the app is not running in the background,
regardless of who the caller is. Activities on the other hand, despite
working 100% of the time, will steal the focus of the current foreground
app, even though we are just doing some logging and showing a toast.
In addition, since stubs for hiding Magisk Manager is introduced, our
only communication method is left with the broadcast option, as
only broadcasting allows targeting a specific package name, not a
component name (which will be obfuscated in the case of stubs).
To make sure root requests will work on all devices, Magisk had to do
some experiments every boot to test whether broadcast is deliverable or
not. This makes the whole thing even more complicated then ever.
So lets take a look at another kind of component in Android apps:
ContentProviders. It is a vital part of Android's ecosystem, and as far
as I know no OEMs will block requests to ContentProviders (or else
tons of functionality will break catastrophically). Starting at API 11,
the system supports calling a specific method in ContentProviders,
optionally sending extra data along with the method call. This is
perfect for the native daemon to start a communication with Magisk
Manager. Another cool thing is that we no longer need to know the
component name of the reciever, as ContentProviders identify themselves
with an "authority" name, which in Magisk Manager's case is tied to the
package name. We already have a mechanism to keep track of our current
manager package name, so this works out of the box.
So yay! No more flaky broadcast tests, no more stupid OEMs blocking
broadcasts for some bizzare reasons. This method should in theory
work on almost all devices and situations.
Running broadcast tests from the app does not accurately verifies
whether the broadcasts can be delivered when the app is not running in
the foreground, which is why we are running the test.
The only sane way to verify broadcasts is to trigger the broadcast test
directly from the daemon on boot complete. If it is not deliverable,
then activity mode shall be chosen.
In the meantime, cleanup AndroidManifest.xml
- `!= remain` shouldn't indicate "not signed", it should indicate a read error as with `!= hdr.length`
- attempt to catch unsigned images at signature read, before they make it to `BootSignature bootsig = new BootSignature(signature);` and result in the following:
java.io.IOException: unexpected end-of-contents marker
at org.bouncycastle.asn1.ASN1InputStream.readObject(Unknown Source:14)
at com.topjohnwu.signing.SignBoot$BootSignature.<init>(SignBoot.java:230)
at com.topjohnwu.signing.SignBoot.verifySignature(SignBoot.java:139)
at com.topjohnwu.signing.BootSigner.main(BootSigner.java:15)
at a.a.main(a.java:20)
- change to $TMPDIR in addon.d.sh since recovery addon.d-v1 backup + restore leaves you in /tmp/addon.d which the restore then deletes, which would break $BOOTSIGNER execution with the following:
libc: Fatal signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0x0 in tid 1078 (main), pid 1078 (main)
Segmentation fault
- also move $BOOTSIGNER execution to after `cd $MAGISKBIN` to ensure it's in a working directory in all cases
- addon.d.sh data mount wasn't doing anything since /data has to already be mounted for the script to be running, so move it into /system/addon.d/99-magisk.sh stub script where it might be useful on recoveries that don't mount /data initially
Fixes#2013
- increase SignBoot bootimg header version maximum from 4 to 8 (upstream AOSP is already at 3) and make a variable for future ease
- hdr read size of 1024 bytes was too small as hdr_v1 and hdr_v2 have increased the used header page areas to 1632 and 1648 bytes, respectively, so raise this to the minimum page size of 2048 and also make a variable for future ease
- do not return "not signed" for all caught exceptions, show StackTrace for future debugging then still return false for script purposes
- correct "test keys" boot image signing strings (scripts and app) to "verity keys"
- remove redundant addon.d.sh script bits that were covered elsewhere ($TMPDIR in util_functions.sh, find_dtbo_image in patch_dtbo_image)
- refactor addon.d.sh and flash_script.sh for simplicity and readability, and put common flashing script in util_functions.sh (as patch_boot_image), which should greatly help avoid them getting out of sync going forward and fixes compressing ramdisk support and post-patch cleanup for addon.d
- add check_data to addon.d.sh since moving stock_boot* and stock_dtbo* backups depend on it and so weren't occuring with addon.d
- fix find_manager_apk with working fallback for recovery addon.d execution (where `magisk --sqlite` will not work for hidden Manager), Manager DynAPK hiding, and print a useful log warning if an APK can't be found
- support unpack without decompression to allow easy testing of magiskboot's header, structure and hashing handling by comparing repack checksum versus origbootimg
- make -n first to match repack
According to this comment in #1880:
https://github.com/topjohnwu/Magisk/issues/1880#issuecomment-546657588
If Linux recycled our PPID, and coincidentally the process that reused
the PPID is root, AND init wants to kill the whole process group,
magiskd will get killed as a result.
There is no real way to block a SIGKILL signal, so we simply make sure
our daemon PID is the process group leader by renaming the directory.
Close#1880
Settings are now only on home screen as it directly relates to what user might want to do. It is highly unlikely that they would jump from any other screen to settings.
Log is no longer main destination as it's not used very widely; it's been moved to Superuser screen. This screen now encapsulates all root-related stuff.
Home screen is now strictly info-based, except install buttons, of course.
On API 23+, the platform unifies the way to handle drawable
resources across processes: all drawables can be passed via Icon.
This allows us to send raw bitmap to the system without the need to
specify a resource ID. This means that we are allowed to NOT include
these drawable resources within our stub APK, since our full APK can
draw the images programmatically and send raw bitmaps to the system.
The plural form of the words 'documentation' and 'following' are used very rarely if ever and I don't believe that they should be used in this particular context.
For some reason, Google Play Protect randomly blocks our self-signed
repackaged Magisk Manager APKs. Since we are root, the sky is our
limit, so yeah, disable package verification temporarily when installing
patched APKs, LOLz
Close#1979
Usually, the communication between native and the app is done via
sending intents to either broadcast or activity. These communication
channels are for launching root requests dialogs, sending root request
notifications (the toast you see when an app gained root access), and
root request logging.
Sending intents by am (activity manager) usually requires specifying
the component name in the format of <pkg>/<class name>. This means parts
of Magisk Manager cannot be randomized or else the native daemon is
unable to know where to send data to the app.
On modern Android (not sure which API is it introduced), it is possible
to send broadcasts to a package, not a specific component. Which
component will receive the intent depends on the intent filter declared
in AndroidManifest.xml. Since we already have a mechanism in native code
to keep track of the package name of Magisk Manager, this makes it
perfect to pass intents to Magisk Manager that have components being
randomly obfuscated (stub APKs).
There are a few caveats though. Although this broadcasting method works
perfectly fine on AOSP and most systems, there are OEMs out there
shipping ROMs blocking broadcasts unexpectedly. In order to make sure
Magisk works in all kinds of scenarios, we run actual tests every boot
to determine which communication method should be used.
We have 3 methods in total, ordered in preference:
1. Broadcasting to a package
2. Broadcasting to a specific component
3. Starting a specific activity component
Method 3 will always work on any device, but the downside is anytime
a communication happens, Magisk Manager will steal foreground focus
regardless of whether UI is drawn. Method 1 is the only way to support
obfuscated stub APKs. The communication test will test method 1 and 2,
and if Magisk Manager is able to receive the messages, it will then
update the daemon configuration to use whichever is preferable. If none
of the broadcasts can be delivered, then the fallback method 3 will be
used.
This not only simplifies hiding stub APKs (no resource IDs involved),
but also opens the opportunity to allow users to customize whatever
app name they want after it is hidden.
- Skip 0x7f01XXXX - 0x7f05XXXX resource IDs in the main app; they are
reserved for stub resources
- Support sending additional data from host to guest
- Use resource mapping passed from host when they are being sent
to the system framework (notifications and shortcuts)
In the effort of preventing apps from crawling APK contents across the
whole installed app list to detect Magisk Manager, the solution here
is to NOT install the actual APK into the system, but instead
dynamically load the full app at runtime by a stub app. The full APK
will be stored in the application's private internal data where
non-root processes cannot read or scan.
The basis of this implementation is the class "AppComponentFactory"
that is introduced in API 28. If assigned, the system framework will
delegate app component instantiation to our custom implementation,
which allows us to do all sorts of crazy stuffs, in our case dynamically
load classes and create objects that does not exist in our APK.
There are a few challenges to achieve our goal though. First, Java
ClassLoaders follow the "delegation pattern", which means class loading
resolution will first be delegated to the parent loader before we get
a chance to do anything. This includes DexClassLoader, which is what
we will be using to load DEX files at runtime. This is a problem
because our stub app and full app share quite a lot of class names.
A custom ClassLoader, DynamicClassLoader, is created to overcome this
issue: it will always load classes in its current dex path before
delegating it to the parent.
Second, all app components (with the exception of runtime
BroadcastReceivers) are required to be declared in AndroidManifest.xml.
The full Magisk Manager has quite a lot of components (including
those from WorkManager and Room). The solution is to copy the complete
AndroidManifest.xml from the full app to the stub, and our
AppComponentFactory is responsible to construct the proper objects or
return dummy implementations in case the full APK isn't downloaded yet.
Third, other than classes, all resources required to run the full app
are also not bundled with the stub APK. We have to call an internal API
`AssetManager.addAssetPath(String)` to add our downloaded full APK into
AssetManager in order to access resources within our full app. That
internal API has existed forever, and is whitelisted from restricted
API access on modern Android versions, so it is pretty safe to use.
Fourth, on the subject of resources, some resources are not just being
used by our app at runtime. Resources such as the app icon, app label,
launch theme, basically everything referred in AndroidManifest.xml,
are used by the system to display the app properly. The system get these
resources via resource IDs and direct loading from the installed APK.
This subset of resources would have to be copied into the stub to make
the app work properly.
Fifth, resource IDs are used all over the place in XMLs and Java code.
The resource IDs in the stub and full app cannot missmatch, or
somewhere, either it be the system or AssetManager, will refer to the
incorrect resource. The full app will have to include all resources in
the stub, and all of them have to be assigned to the exact same IDs in
both APKs. To achieve this, we use AAPT2's "--emit-ids" option to dump
the resource ID mapping when building the stub, and "--stable-ids" when
building the full APK to make sure all overlapping resources in full
and stub are always assigned to the same ID.
Finally, both stub and full app have to work properly independently.
On 9.0+, the stub will have to first launch an Activity to download
the full APK before it can relaunch into the full app. On pre-9.0, the
stub should behave as it always did: download and prompt installation
to upgrade itself to full Magisk Manager. In the full app, the goal
is to introduce minimal intrusion to the code base to make sure this
whole thing is maintainable in the future. Fortunately, the solution
ends up pretty slick: all ContextWrappers in the app will be injected
with custom Contexts. The custom Contexts will return our patched
Resources object and the ClassLoader that loads itself, which will be
DynamicClassLoader in the case of running as a delegate app.
By directly patching the base Context of ContextWrappers (which covers
tons of app components) and in the Koin DI, the effect propagates deep
into every aspect of the code, making this change basically fully
transparent to almost every piece of code in full Magisk Manager.
After this commit, the stub app is able to properly download and launch
the full app, with most basic functionalities working just fine.
Do not expect Magisk Manager upgrades and hiding (repackaging) to
work properly, and some other minor issues might pop up.
This feature is still in the early WIP stages.
To overview (when updatable)
- It is very hard to spot a difference in versions so versions are now regarded as commit messages (after dash [-]) when applicable
- This will result in more clear, understandable text
- Bleeding edge (canary) user would see:
ffed229 > ffe02ed or 19.4 > ffe02ed
as opposed to:
19.4-ffed229 (19404)
19.5-ffe02ed (19501)
- Regular beta+ user would see:
19.4 > 19.5
To bottom of the screen
- This change is with respect to regular user. They don't care which version they run as long as they know that "up-to-date" is a gold standard
- It takes tons of real-estate on the screen which takes away the glance-ability from the overview.
This change is made so logic is not placed within the "old" base substrate. Changes made in the redesign could potentially affect the already working part which we obviously do not want.
Magisk is a suite of open source tools for customizing Android, supporting devices higher than Android 4.2 (API 17). It covers the fundamental parts for Android customization: root, boot scripts, SELinux patches, AVB2.0 / dm-verity / forceencrypt removals etc.
Furthermore, Magisk provides a **Systemless Interface** to alter the system (or vendor) arbitrarily while the actual partitions stay completely intact. With its systemless nature along with several other hacks, Magisk can hide modifications from nearly any system integrity verifications used in banking apps, corporation monitoring apps, game cheat detections, and most importantly [Google's SafetyNet API](https://developer.android.com/training/safetynet/index.html).
Furthermore, Magisk provides a **Systemless Interface** to alter the system (or vendor) arbitrarily while the actual partitions stay completely intact. With its systemless nature along with several other hacks, Magisk can almost perfectly hide modifications within userspace. Note that since 2020.3, the CTS check of [Google's SafetyNet API](https://developer.android.com/training/safetynet/index.html) will **NOT** pass.
## Bug Reports
**Make sure to install the latest [Canary Build](https://forum.xda-developers.com/apps/magisk/dev-magisk-canary-channel-bleeding-edge-t3839337) before reporting any bugs!** **DO NOT** report bugs that are already fixed upstream. Follow the instructions in the [Canary Channel XDA Thread](https://forum.xda-developers.com/apps/magisk/dev-magisk-canary-channel-bleeding-edge-t3839337), and report a bug either by [opening an issue on GitHub](https://github.com/topjohnwu/Magisk/issues) or directly in the thread.
**Only reports using debug canary builds will be accepted.** \
Access canary builds by upgrading to either canary Magisk Manager:
For installation issues, upload both boot image and install logs. \
For Magisk issues, upload boot logcat or dmesg. \
For Magisk Manager crashes, record and upload the logcat when the crash occurs.
## Building Environment Requirements
@@ -30,34 +37,12 @@ Furthermore, Magisk provides a **Systemless Interface** to alter the system (or
## Translations
Default string resources for Magisk Manager are scattered throughout
Default string resources for Magisk Manager and its stub APK are located here:
- `app/src/main/res/values/strings.xml`
- `stub/src/main/res/values/strings.xml`
- `shared/src/main/res/values/strings.xml`
Translate each and place them in the respective locations (`<module>/src/main/res/values-<lang>/strings.xml`).
## Signature Verification
Official release zips and APKs are signed with my personal private key. You can verify the key certificate to make sure the binaries you downloaded are not manipulated in anyway.
``` bash
# Use the keytool command from JDK to print certificates
keytool -printcert -jarfile <APK or Magisk zip>
# The output should contain the following signature
Owner: CN=John Wu, L=Taipei, C=TW
Issuer: CN=John Wu, L=Taipei, C=TW
Serial number: 50514879
Valid from: Sun Aug 14 13:23:44 EDT 2016 until: Tue Jul 21 13:23:44 EDT 2116
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.