1
mirror of https://code.videolan.org/videolan/vlc synced 2024-09-04 09:11:33 +02:00
vlc/modules/video_chroma/i420_rgb.h
2007-09-10 18:56:52 +00:00

350 lines
24 KiB
C

/*****************************************************************************
* i420_rgb.h : YUV to bitmap RGB conversion module for vlc
*****************************************************************************
* Copyright (C) 2000, 2004 the VideoLAN team
* $Id$
*
* Authors: Samuel Hocevar <sam@zoy.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
*****************************************************************************/
/** Number of entries in RGB palette/colormap */
#define CMAP_RGB2_SIZE 256
/**
* chroma_sys_t: chroma method descriptor
* This structure is part of the chroma transformation descriptor, it
* describes the yuv2rgb specific properties.
*/
struct chroma_sys_t
{
uint8_t *p_buffer;
int *p_offset;
#ifdef MODULE_NAME_IS_i420_rgb
/**< Pre-calculated conversion tables */
void *p_base; /**< base for all conversion tables */
uint8_t *p_rgb8; /**< RGB 8 bits table */
uint16_t *p_rgb16; /**< RGB 16 bits table */
uint32_t *p_rgb32; /**< RGB 32 bits table */
/**< To get RGB value for palette entry i, use (p_rgb_r[i], p_rgb_g[i],
p_rgb_b[i]). Note these are 16 bits per pixel. For 8bpp entries,
shift right 8 bits.
*/
uint16_t p_rgb_r[CMAP_RGB2_SIZE]; /**< Red values of palette */
uint16_t p_rgb_g[CMAP_RGB2_SIZE]; /**< Green values of palette */
uint16_t p_rgb_b[CMAP_RGB2_SIZE]; /**< Blue values of palette */
#endif
};
/*****************************************************************************
* Prototypes
*****************************************************************************/
#ifdef MODULE_NAME_IS_i420_rgb
void E_(I420_RGB8) ( vout_thread_t *, picture_t *, picture_t * );
void E_(I420_RGB16_dither) ( vout_thread_t *, picture_t *, picture_t * );
void E_(I420_RGB16) ( vout_thread_t *, picture_t *, picture_t * );
void E_(I420_RGB32) ( vout_thread_t *, picture_t *, picture_t * );
#else // if defined(MODULE_NAME_IS_i420_rgb_mmx)
void E_(I420_R5G5B5) ( vout_thread_t *, picture_t *, picture_t * );
void E_(I420_R5G6B5) ( vout_thread_t *, picture_t *, picture_t * );
void E_(I420_A8R8G8B8) ( vout_thread_t *, picture_t *, picture_t * );
void E_(I420_R8G8B8A8) ( vout_thread_t *, picture_t *, picture_t * );
void E_(I420_B8G8R8A8) ( vout_thread_t *, picture_t *, picture_t * );
void E_(I420_A8B8G8R8) ( vout_thread_t *, picture_t *, picture_t * );
#endif
/*****************************************************************************
* CONVERT_*_PIXEL: pixel conversion macros
*****************************************************************************
* These conversion routines are used by YUV conversion functions.
* conversion are made from p_y, p_u, p_v, which are modified, to p_buffer,
* which is also modified. CONVERT_4YUV_PIXEL is used for 8bpp dithering,
* CONVERT_4YUV_PIXEL_SCALE does the same but also scales the output.
*****************************************************************************/
#define CONVERT_Y_PIXEL( BPP ) \
/* Only Y sample is present */ \
p_ybase = p_yuv + *p_y++; \
*p_buffer++ = p_ybase[RED_OFFSET-((V_RED_COEF*128)>>SHIFT) + i_red] | \
p_ybase[GREEN_OFFSET-(((U_GREEN_COEF+V_GREEN_COEF)*128)>>SHIFT) \
+ i_green ] | p_ybase[BLUE_OFFSET-((U_BLUE_COEF*128)>>SHIFT) + i_blue];
#define CONVERT_YUV_PIXEL( BPP ) \
/* Y, U and V samples are present */ \
i_uval = *p_u++; \
i_vval = *p_v++; \
i_red = (V_RED_COEF * i_vval) >> SHIFT; \
i_green = (U_GREEN_COEF * i_uval + V_GREEN_COEF * i_vval) >> SHIFT; \
i_blue = (U_BLUE_COEF * i_uval) >> SHIFT; \
CONVERT_Y_PIXEL( BPP ) \
#define CONVERT_Y_PIXEL_DITHER( BPP ) \
/* Only Y sample is present */ \
p_ybase = p_yuv + *p_y++; \
*p_buffer++ = p_ybase[RED_OFFSET-((V_RED_COEF*128+p_dither[i_real_y])>>SHIFT) + i_red] | \
p_ybase[GREEN_OFFSET-(((U_GREEN_COEF+V_GREEN_COEF)*128+p_dither[i_real_y])>>SHIFT) \
+ i_green ] | p_ybase[BLUE_OFFSET-((U_BLUE_COEF*128+p_dither[i_real_y])>>SHIFT) + i_blue];
#define CONVERT_YUV_PIXEL_DITHER( BPP ) \
/* Y, U and V samples are present */ \
i_uval = *p_u++; \
i_vval = *p_v++; \
i_red = (V_RED_COEF * i_vval) >> SHIFT; \
i_green = (U_GREEN_COEF * i_uval + V_GREEN_COEF * i_vval) >> SHIFT; \
i_blue = (U_BLUE_COEF * i_uval) >> SHIFT; \
CONVERT_Y_PIXEL_DITHER( BPP ) \
#define CONVERT_4YUV_PIXEL( CHROMA ) \
*p_pic++ = p_lookup[ \
(((*p_y++ + dither10[i_real_y]) >> 4) << 7) \
+ ((*p_u + dither20[i_real_y]) >> 5) * 9 \
+ ((*p_v + dither20[i_real_y]) >> 5) ]; \
*p_pic++ = p_lookup[ \
(((*p_y++ + dither11[i_real_y]) >> 4) << 7) \
+ ((*p_u++ + dither21[i_real_y]) >> 5) * 9 \
+ ((*p_v++ + dither21[i_real_y]) >> 5) ]; \
*p_pic++ = p_lookup[ \
(((*p_y++ + dither12[i_real_y]) >> 4) << 7) \
+ ((*p_u + dither22[i_real_y]) >> 5) * 9 \
+ ((*p_v + dither22[i_real_y]) >> 5) ]; \
*p_pic++ = p_lookup[ \
(((*p_y++ + dither13[i_real_y]) >> 4) << 7) \
+ ((*p_u++ + dither23[i_real_y]) >> 5) * 9 \
+ ((*p_v++ + dither23[i_real_y]) >> 5) ]; \
#define CONVERT_4YUV_PIXEL_SCALE( CHROMA ) \
*p_pic++ = p_lookup[ \
( ((*p_y + dither10[i_real_y]) >> 4) << 7) \
+ ((*p_u + dither20[i_real_y]) >> 5) * 9 \
+ ((*p_v + dither20[i_real_y]) >> 5) ]; \
p_y += *p_offset++; \
p_u += *p_offset; \
p_v += *p_offset++; \
*p_pic++ = p_lookup[ \
( ((*p_y + dither11[i_real_y]) >> 4) << 7) \
+ ((*p_u + dither21[i_real_y]) >> 5) * 9 \
+ ((*p_v + dither21[i_real_y]) >> 5) ]; \
p_y += *p_offset++; \
p_u += *p_offset; \
p_v += *p_offset++; \
*p_pic++ = p_lookup[ \
( ((*p_y + dither12[i_real_y]) >> 4) << 7) \
+ ((*p_u + dither22[i_real_y]) >> 5) * 9 \
+ ((*p_v + dither22[i_real_y]) >> 5) ]; \
p_y += *p_offset++; \
p_u += *p_offset; \
p_v += *p_offset++; \
*p_pic++ = p_lookup[ \
( ((*p_y + dither13[i_real_y]) >> 4) << 7) \
+ ((*p_u + dither23[i_real_y]) >> 5) * 9 \
+ ((*p_v + dither23[i_real_y]) >> 5) ]; \
p_y += *p_offset++; \
p_u += *p_offset; \
p_v += *p_offset++; \
/*****************************************************************************
* SCALE_WIDTH: scale a line horizontally
*****************************************************************************
* This macro scales a line using rendering buffer and offset array. It works
* for 1, 2 and 4 Bpp.
*****************************************************************************/
#define SCALE_WIDTH \
if( b_hscale ) \
{ \
/* Horizontal scaling, conversion has been done to buffer. \
* Rewind buffer and offset, then copy and scale line */ \
p_buffer = p_buffer_start; \
p_offset = p_offset_start; \
for( i_x = p_vout->output.i_width / 16; i_x--; ) \
{ \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
} \
for( i_x = p_vout->output.i_width & 15; i_x--; ) \
{ \
*p_pic++ = *p_buffer; p_buffer += *p_offset++; \
} \
p_pic = (void*)((uint8_t*)p_pic + i_right_margin ); \
} \
else \
{ \
/* No scaling, conversion has been done directly in picture memory. \
* Increment of picture pointer to end of line is still needed */ \
p_pic = (void*)((uint8_t*)p_pic + p_dest->p->i_pitch ); \
} \
/*****************************************************************************
* SCALE_WIDTH_DITHER: scale a line horizontally for dithered 8 bpp
*****************************************************************************
* This macro scales a line using an offset array.
*****************************************************************************/
#define SCALE_WIDTH_DITHER( CHROMA ) \
if( b_hscale ) \
{ \
/* Horizontal scaling - we can't use a buffer due to dithering */ \
p_offset = p_offset_start; \
for( i_x = p_vout->output.i_width / 16; i_x--; ) \
{ \
CONVERT_4YUV_PIXEL_SCALE( CHROMA ) \
CONVERT_4YUV_PIXEL_SCALE( CHROMA ) \
CONVERT_4YUV_PIXEL_SCALE( CHROMA ) \
CONVERT_4YUV_PIXEL_SCALE( CHROMA ) \
} \
} \
else \
{ \
for( i_x = p_vout->render.i_width / 16; i_x--; ) \
{ \
CONVERT_4YUV_PIXEL( CHROMA ) \
CONVERT_4YUV_PIXEL( CHROMA ) \
CONVERT_4YUV_PIXEL( CHROMA ) \
CONVERT_4YUV_PIXEL( CHROMA ) \
} \
} \
/* Increment of picture pointer to end of line is still needed */ \
p_pic = (void*)((uint8_t*)p_pic + i_right_margin ); \
\
/* Increment the Y coordinate in the matrix, modulo 4 */ \
i_real_y = (i_real_y + 1) & 0x3; \
/*****************************************************************************
* SCALE_HEIGHT: handle vertical scaling
*****************************************************************************
* This macro handle vertical scaling for a picture. CHROMA may be 420, 422 or
* 444 for RGB conversion, or 400 for gray conversion. It works for 1, 2, 3
* and 4 Bpp.
*****************************************************************************/
#define SCALE_HEIGHT( CHROMA, BPP ) \
/* If line is odd, rewind 4:2:0 U and V samples */ \
if( ((CHROMA == 420) || (CHROMA == 422)) && !(i_y & 0x1) ) \
{ \
p_u -= i_chroma_width; \
p_v -= i_chroma_width; \
} \
\
/* \
* Handle vertical scaling. The current line can be copied or next one \
* can be ignored. \
*/ \
switch( i_vscale ) \
{ \
case -1: /* vertical scaling factor is < 1 */ \
while( (i_scale_count -= p_vout->output.i_height) > 0 ) \
{ \
/* Height reduction: skip next source line */ \
p_y += p_vout->render.i_width; \
i_y++; \
if( (CHROMA == 420) || (CHROMA == 422) ) \
{ \
if( i_y & 0x1 ) \
{ \
p_u += i_chroma_width; \
p_v += i_chroma_width; \
} \
} \
else if( CHROMA == 444 ) \
{ \
p_u += p_vout->render.i_width; \
p_v += p_vout->render.i_width; \
} \
} \
i_scale_count += p_vout->render.i_height; \
break; \
case 1: /* vertical scaling factor is > 1 */ \
while( (i_scale_count -= p_vout->render.i_height) > 0 ) \
{ \
/* Height increment: copy previous picture line */ \
p_vout->p_libvlc->pf_memcpy( p_pic, p_pic_start, \
p_vout->output.i_width * BPP ); \
p_pic = (void*)((uint8_t*)p_pic + p_dest->p->i_pitch ); \
} \
i_scale_count += p_vout->output.i_height; \
break; \
} \
/*****************************************************************************
* SCALE_HEIGHT_DITHER: handle vertical scaling for dithered 8 bpp
*****************************************************************************
* This macro handles vertical scaling for a picture. CHROMA may be 420,
* 422 or 444 for RGB conversion, or 400 for gray conversion.
*****************************************************************************/
#define SCALE_HEIGHT_DITHER( CHROMA ) \
\
/* If line is odd, rewind 4:2:0 U and V samples */ \
if( ((CHROMA == 420) || (CHROMA == 422)) && !(i_y & 0x1) ) \
{ \
p_u -= i_chroma_width; \
p_v -= i_chroma_width; \
} \
\
/* \
* Handle vertical scaling. The current line can be copied or next one \
* can be ignored. \
*/ \
\
switch( i_vscale ) \
{ \
case -1: /* vertical scaling factor is < 1 */ \
while( (i_scale_count -= p_vout->output.i_height) > 0 ) \
{ \
/* Height reduction: skip next source line */ \
p_y += p_vout->render.i_width; \
i_y++; \
if( (CHROMA == 420) || (CHROMA == 422) ) \
{ \
if( i_y & 0x1 ) \
{ \
p_u += i_chroma_width; \
p_v += i_chroma_width; \
} \
} \
else if( CHROMA == 444 ) \
{ \
p_u += p_vout->render.i_width; \
p_v += p_vout->render.i_width; \
} \
} \
i_scale_count += p_vout->render.i_height; \
break; \
case 1: /* vertical scaling factor is > 1 */ \
while( (i_scale_count -= p_vout->render.i_height) > 0 ) \
{ \
p_y -= p_vout->render.i_width; \
p_u -= i_chroma_width; \
p_v -= i_chroma_width; \
SCALE_WIDTH_DITHER( CHROMA ); \
} \
i_scale_count += p_vout->output.i_height; \
break; \
} \