1
mirror of https://git.videolan.org/git/ffmpeg.git synced 2024-07-18 18:31:46 +02:00
ffmpeg/libavcodec/aacdec.c
Hendrik Leppkes d18341fb11 aacdec: free frame buffer if no audio was decoded
If no decoding error was detected, but still no audio was decoded, the
frame needs to be free'ed, or it will leak.

Fixes part of ticket #2095

Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2013-05-04 13:20:19 +02:00

3065 lines
106 KiB
C

/*
* AAC decoder
* Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
* Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
*
* AAC LATM decoder
* Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
* Copyright (c) 2010 Janne Grunau <janne-libav@jannau.net>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC decoder
* @author Oded Shimon ( ods15 ods15 dyndns org )
* @author Maxim Gavrilov ( maxim.gavrilov gmail com )
*/
/*
* supported tools
*
* Support? Name
* N (code in SoC repo) gain control
* Y block switching
* Y window shapes - standard
* N window shapes - Low Delay
* Y filterbank - standard
* N (code in SoC repo) filterbank - Scalable Sample Rate
* Y Temporal Noise Shaping
* Y Long Term Prediction
* Y intensity stereo
* Y channel coupling
* Y frequency domain prediction
* Y Perceptual Noise Substitution
* Y Mid/Side stereo
* N Scalable Inverse AAC Quantization
* N Frequency Selective Switch
* N upsampling filter
* Y quantization & coding - AAC
* N quantization & coding - TwinVQ
* N quantization & coding - BSAC
* N AAC Error Resilience tools
* N Error Resilience payload syntax
* N Error Protection tool
* N CELP
* N Silence Compression
* N HVXC
* N HVXC 4kbits/s VR
* N Structured Audio tools
* N Structured Audio Sample Bank Format
* N MIDI
* N Harmonic and Individual Lines plus Noise
* N Text-To-Speech Interface
* Y Spectral Band Replication
* Y (not in this code) Layer-1
* Y (not in this code) Layer-2
* Y (not in this code) Layer-3
* N SinuSoidal Coding (Transient, Sinusoid, Noise)
* Y Parametric Stereo
* N Direct Stream Transfer
*
* Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
* - HE AAC v2 comprises LC AAC with Spectral Band Replication and
Parametric Stereo.
*/
#include "libavutil/float_dsp.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "fft.h"
#include "fmtconvert.h"
#include "lpc.h"
#include "kbdwin.h"
#include "sinewin.h"
#include "aac.h"
#include "aactab.h"
#include "aacdectab.h"
#include "cbrt_tablegen.h"
#include "sbr.h"
#include "aacsbr.h"
#include "mpeg4audio.h"
#include "aacadtsdec.h"
#include "libavutil/intfloat.h"
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <string.h>
#if ARCH_ARM
# include "arm/aac.h"
#elif ARCH_MIPS
# include "mips/aacdec_mips.h"
#endif
static VLC vlc_scalefactors;
static VLC vlc_spectral[11];
static int output_configure(AACContext *ac,
uint8_t layout_map[MAX_ELEM_ID*4][3], int tags,
enum OCStatus oc_type, int get_new_frame);
#define overread_err "Input buffer exhausted before END element found\n"
static int count_channels(uint8_t (*layout)[3], int tags)
{
int i, sum = 0;
for (i = 0; i < tags; i++) {
int syn_ele = layout[i][0];
int pos = layout[i][2];
sum += (1 + (syn_ele == TYPE_CPE)) *
(pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC);
}
return sum;
}
/**
* Check for the channel element in the current channel position configuration.
* If it exists, make sure the appropriate element is allocated and map the
* channel order to match the internal FFmpeg channel layout.
*
* @param che_pos current channel position configuration
* @param type channel element type
* @param id channel element id
* @param channels count of the number of channels in the configuration
*
* @return Returns error status. 0 - OK, !0 - error
*/
static av_cold int che_configure(AACContext *ac,
enum ChannelPosition che_pos,
int type, int id, int *channels)
{
if (*channels >= MAX_CHANNELS)
return AVERROR_INVALIDDATA;
if (che_pos) {
if (!ac->che[type][id]) {
if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
return AVERROR(ENOMEM);
ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr);
}
if (type != TYPE_CCE) {
if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) {
av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n");
return AVERROR_INVALIDDATA;
}
ac->output_element[(*channels)++] = &ac->che[type][id]->ch[0];
if (type == TYPE_CPE ||
(type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) {
ac->output_element[(*channels)++] = &ac->che[type][id]->ch[1];
}
}
} else {
if (ac->che[type][id])
ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
av_freep(&ac->che[type][id]);
}
return 0;
}
static int frame_configure_elements(AVCodecContext *avctx)
{
AACContext *ac = avctx->priv_data;
int type, id, ch, ret;
/* set channel pointers to internal buffers by default */
for (type = 0; type < 4; type++) {
for (id = 0; id < MAX_ELEM_ID; id++) {
ChannelElement *che = ac->che[type][id];
if (che) {
che->ch[0].ret = che->ch[0].ret_buf;
che->ch[1].ret = che->ch[1].ret_buf;
}
}
}
/* get output buffer */
av_frame_unref(ac->frame);
ac->frame->nb_samples = 2048;
if ((ret = ff_get_buffer(avctx, ac->frame, 0)) < 0)
return ret;
/* map output channel pointers to AVFrame data */
for (ch = 0; ch < avctx->channels; ch++) {
if (ac->output_element[ch])
ac->output_element[ch]->ret = (float *)ac->frame->extended_data[ch];
}
return 0;
}
struct elem_to_channel {
uint64_t av_position;
uint8_t syn_ele;
uint8_t elem_id;
uint8_t aac_position;
};
static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID],
uint8_t (*layout_map)[3], int offset, uint64_t left,
uint64_t right, int pos)
{
if (layout_map[offset][0] == TYPE_CPE) {
e2c_vec[offset] = (struct elem_to_channel) {
.av_position = left | right, .syn_ele = TYPE_CPE,
.elem_id = layout_map[offset ][1], .aac_position = pos };
return 1;
} else {
e2c_vec[offset] = (struct elem_to_channel) {
.av_position = left, .syn_ele = TYPE_SCE,
.elem_id = layout_map[offset ][1], .aac_position = pos };
e2c_vec[offset + 1] = (struct elem_to_channel) {
.av_position = right, .syn_ele = TYPE_SCE,
.elem_id = layout_map[offset + 1][1], .aac_position = pos };
return 2;
}
}
static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos, int *current) {
int num_pos_channels = 0;
int first_cpe = 0;
int sce_parity = 0;
int i;
for (i = *current; i < tags; i++) {
if (layout_map[i][2] != pos)
break;
if (layout_map[i][0] == TYPE_CPE) {
if (sce_parity) {
if (pos == AAC_CHANNEL_FRONT && !first_cpe) {
sce_parity = 0;
} else {
return -1;
}
}
num_pos_channels += 2;
first_cpe = 1;
} else {
num_pos_channels++;
sce_parity ^= 1;
}
}
if (sce_parity &&
((pos == AAC_CHANNEL_FRONT && first_cpe) || pos == AAC_CHANNEL_SIDE))
return -1;
*current = i;
return num_pos_channels;
}
static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags)
{
int i, n, total_non_cc_elements;
struct elem_to_channel e2c_vec[4*MAX_ELEM_ID] = {{ 0 }};
int num_front_channels, num_side_channels, num_back_channels;
uint64_t layout;
if (FF_ARRAY_ELEMS(e2c_vec) < tags)
return 0;
i = 0;
num_front_channels =
count_paired_channels(layout_map, tags, AAC_CHANNEL_FRONT, &i);
if (num_front_channels < 0)
return 0;
num_side_channels =
count_paired_channels(layout_map, tags, AAC_CHANNEL_SIDE, &i);
if (num_side_channels < 0)
return 0;
num_back_channels =
count_paired_channels(layout_map, tags, AAC_CHANNEL_BACK, &i);
if (num_back_channels < 0)
return 0;
i = 0;
if (num_front_channels & 1) {
e2c_vec[i] = (struct elem_to_channel) {
.av_position = AV_CH_FRONT_CENTER, .syn_ele = TYPE_SCE,
.elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_FRONT };
i++;
num_front_channels--;
}
if (num_front_channels >= 4) {
i += assign_pair(e2c_vec, layout_map, i,
AV_CH_FRONT_LEFT_OF_CENTER,
AV_CH_FRONT_RIGHT_OF_CENTER,
AAC_CHANNEL_FRONT);
num_front_channels -= 2;
}
if (num_front_channels >= 2) {
i += assign_pair(e2c_vec, layout_map, i,
AV_CH_FRONT_LEFT,
AV_CH_FRONT_RIGHT,
AAC_CHANNEL_FRONT);
num_front_channels -= 2;
}
while (num_front_channels >= 2) {
i += assign_pair(e2c_vec, layout_map, i,
UINT64_MAX,
UINT64_MAX,
AAC_CHANNEL_FRONT);
num_front_channels -= 2;
}
if (num_side_channels >= 2) {
i += assign_pair(e2c_vec, layout_map, i,
AV_CH_SIDE_LEFT,
AV_CH_SIDE_RIGHT,
AAC_CHANNEL_FRONT);
num_side_channels -= 2;
}
while (num_side_channels >= 2) {
i += assign_pair(e2c_vec, layout_map, i,
UINT64_MAX,
UINT64_MAX,
AAC_CHANNEL_SIDE);
num_side_channels -= 2;
}
while (num_back_channels >= 4) {
i += assign_pair(e2c_vec, layout_map, i,
UINT64_MAX,
UINT64_MAX,
AAC_CHANNEL_BACK);
num_back_channels -= 2;
}
if (num_back_channels >= 2) {
i += assign_pair(e2c_vec, layout_map, i,
AV_CH_BACK_LEFT,
AV_CH_BACK_RIGHT,
AAC_CHANNEL_BACK);
num_back_channels -= 2;
}
if (num_back_channels) {
e2c_vec[i] = (struct elem_to_channel) {
.av_position = AV_CH_BACK_CENTER, .syn_ele = TYPE_SCE,
.elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_BACK };
i++;
num_back_channels--;
}
if (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) {
e2c_vec[i] = (struct elem_to_channel) {
.av_position = AV_CH_LOW_FREQUENCY, .syn_ele = TYPE_LFE,
.elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE };
i++;
}
while (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) {
e2c_vec[i] = (struct elem_to_channel) {
.av_position = UINT64_MAX, .syn_ele = TYPE_LFE,
.elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE };
i++;
}
// Must choose a stable sort
total_non_cc_elements = n = i;
do {
int next_n = 0;
for (i = 1; i < n; i++) {
if (e2c_vec[i-1].av_position > e2c_vec[i].av_position) {
FFSWAP(struct elem_to_channel, e2c_vec[i-1], e2c_vec[i]);
next_n = i;
}
}
n = next_n;
} while (n > 0);
layout = 0;
for (i = 0; i < total_non_cc_elements; i++) {
layout_map[i][0] = e2c_vec[i].syn_ele;
layout_map[i][1] = e2c_vec[i].elem_id;
layout_map[i][2] = e2c_vec[i].aac_position;
if (e2c_vec[i].av_position != UINT64_MAX) {
layout |= e2c_vec[i].av_position;
}
}
return layout;
}
/**
* Save current output configuration if and only if it has been locked.
*/
static void push_output_configuration(AACContext *ac) {
if (ac->oc[1].status == OC_LOCKED) {
ac->oc[0] = ac->oc[1];
}
ac->oc[1].status = OC_NONE;
}
/**
* Restore the previous output configuration if and only if the current
* configuration is unlocked.
*/
static void pop_output_configuration(AACContext *ac) {
if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) {
ac->oc[1] = ac->oc[0];
ac->avctx->channels = ac->oc[1].channels;
ac->avctx->channel_layout = ac->oc[1].channel_layout;
output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags,
ac->oc[1].status, 0);
}
}
/**
* Configure output channel order based on the current program configuration element.
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int output_configure(AACContext *ac,
uint8_t layout_map[MAX_ELEM_ID*4][3], int tags,
enum OCStatus oc_type, int get_new_frame)
{
AVCodecContext *avctx = ac->avctx;
int i, channels = 0, ret;
uint64_t layout = 0;
if (ac->oc[1].layout_map != layout_map) {
memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0]));
ac->oc[1].layout_map_tags = tags;
}
// Try to sniff a reasonable channel order, otherwise output the
// channels in the order the PCE declared them.
if (avctx->request_channel_layout != AV_CH_LAYOUT_NATIVE)
layout = sniff_channel_order(layout_map, tags);
for (i = 0; i < tags; i++) {
int type = layout_map[i][0];
int id = layout_map[i][1];
int position = layout_map[i][2];
// Allocate or free elements depending on if they are in the
// current program configuration.
ret = che_configure(ac, position, type, id, &channels);
if (ret < 0)
return ret;
}
if (ac->oc[1].m4ac.ps == 1 && channels == 2) {
if (layout == AV_CH_FRONT_CENTER) {
layout = AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT;
} else {
layout = 0;
}
}
memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
if (layout) avctx->channel_layout = layout;
ac->oc[1].channel_layout = layout;
avctx->channels = ac->oc[1].channels = channels;
ac->oc[1].status = oc_type;
if (get_new_frame) {
if ((ret = frame_configure_elements(ac->avctx)) < 0)
return ret;
}
return 0;
}
static void flush(AVCodecContext *avctx)
{
AACContext *ac= avctx->priv_data;
int type, i, j;
for (type = 3; type >= 0; type--) {
for (i = 0; i < MAX_ELEM_ID; i++) {
ChannelElement *che = ac->che[type][i];
if (che) {
for (j = 0; j <= 1; j++) {
memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved));
}
}
}
}
}
/**
* Set up channel positions based on a default channel configuration
* as specified in table 1.17.
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int set_default_channel_config(AVCodecContext *avctx,
uint8_t (*layout_map)[3],
int *tags,
int channel_config)
{
if (channel_config < 1 || channel_config > 7) {
av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
channel_config);
return -1;
}
*tags = tags_per_config[channel_config];
memcpy(layout_map, aac_channel_layout_map[channel_config-1], *tags * sizeof(*layout_map));
return 0;
}
static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
{
// For PCE based channel configurations map the channels solely based on tags.
if (!ac->oc[1].m4ac.chan_config) {
return ac->tag_che_map[type][elem_id];
}
// Allow single CPE stereo files to be signalled with mono configuration.
if (!ac->tags_mapped && type == TYPE_CPE && ac->oc[1].m4ac.chan_config == 1) {
uint8_t layout_map[MAX_ELEM_ID*4][3];
int layout_map_tags;
push_output_configuration(ac);
av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n");
if (set_default_channel_config(ac->avctx, layout_map, &layout_map_tags,
2) < 0)
return NULL;
if (output_configure(ac, layout_map, layout_map_tags,
OC_TRIAL_FRAME, 1) < 0)
return NULL;
ac->oc[1].m4ac.chan_config = 2;
ac->oc[1].m4ac.ps = 0;
}
// And vice-versa
if (!ac->tags_mapped && type == TYPE_SCE && ac->oc[1].m4ac.chan_config == 2) {
uint8_t layout_map[MAX_ELEM_ID*4][3];
int layout_map_tags;
push_output_configuration(ac);
av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n");
if (set_default_channel_config(ac->avctx, layout_map, &layout_map_tags,
1) < 0)
return NULL;
if (output_configure(ac, layout_map, layout_map_tags,
OC_TRIAL_FRAME, 1) < 0)
return NULL;
ac->oc[1].m4ac.chan_config = 1;
if (ac->oc[1].m4ac.sbr)
ac->oc[1].m4ac.ps = -1;
}
// For indexed channel configurations map the channels solely based on position.
switch (ac->oc[1].m4ac.chan_config) {
case 7:
if (ac->tags_mapped == 3 && type == TYPE_CPE) {
ac->tags_mapped++;
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
}
case 6:
/* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
ac->tags_mapped++;
return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
}
case 5:
if (ac->tags_mapped == 2 && type == TYPE_CPE) {
ac->tags_mapped++;
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
}
case 4:
if (ac->tags_mapped == 2 && ac->oc[1].m4ac.chan_config == 4 && type == TYPE_SCE) {
ac->tags_mapped++;
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
}
case 3:
case 2:
if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) && type == TYPE_CPE) {
ac->tags_mapped++;
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
} else if (ac->oc[1].m4ac.chan_config == 2) {
return NULL;
}
case 1:
if (!ac->tags_mapped && type == TYPE_SCE) {
ac->tags_mapped++;
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
}
default:
return NULL;
}
}
/**
* Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
*
* @param type speaker type/position for these channels
*/
static void decode_channel_map(uint8_t layout_map[][3],
enum ChannelPosition type,
GetBitContext *gb, int n)
{
while (n--) {
enum RawDataBlockType syn_ele;
switch (type) {
case AAC_CHANNEL_FRONT:
case AAC_CHANNEL_BACK:
case AAC_CHANNEL_SIDE:
syn_ele = get_bits1(gb);
break;
case AAC_CHANNEL_CC:
skip_bits1(gb);
syn_ele = TYPE_CCE;
break;
case AAC_CHANNEL_LFE:
syn_ele = TYPE_LFE;
break;
default:
av_assert0(0);
}
layout_map[0][0] = syn_ele;
layout_map[0][1] = get_bits(gb, 4);
layout_map[0][2] = type;
layout_map++;
}
}
/**
* Decode program configuration element; reference: table 4.2.
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
uint8_t (*layout_map)[3],
GetBitContext *gb)
{
int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
int comment_len;
int tags;
skip_bits(gb, 2); // object_type
sampling_index = get_bits(gb, 4);
if (m4ac->sampling_index != sampling_index)
av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
num_front = get_bits(gb, 4);
num_side = get_bits(gb, 4);
num_back = get_bits(gb, 4);
num_lfe = get_bits(gb, 2);
num_assoc_data = get_bits(gb, 3);
num_cc = get_bits(gb, 4);
if (get_bits1(gb))
skip_bits(gb, 4); // mono_mixdown_tag
if (get_bits1(gb))
skip_bits(gb, 4); // stereo_mixdown_tag
if (get_bits1(gb))
skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
if (get_bits_left(gb) < 4 * (num_front + num_side + num_back + num_lfe + num_assoc_data + num_cc)) {
av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
return -1;
}
decode_channel_map(layout_map , AAC_CHANNEL_FRONT, gb, num_front);
tags = num_front;
decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE, gb, num_side);
tags += num_side;
decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK, gb, num_back);
tags += num_back;
decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE, gb, num_lfe);
tags += num_lfe;
skip_bits_long(gb, 4 * num_assoc_data);
decode_channel_map(layout_map + tags, AAC_CHANNEL_CC, gb, num_cc);
tags += num_cc;
align_get_bits(gb);
/* comment field, first byte is length */
comment_len = get_bits(gb, 8) * 8;
if (get_bits_left(gb) < comment_len) {
av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err);
return -1;
}
skip_bits_long(gb, comment_len);
return tags;
}
/**
* Decode GA "General Audio" specific configuration; reference: table 4.1.
*
* @param ac pointer to AACContext, may be null
* @param avctx pointer to AVCCodecContext, used for logging
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx,
GetBitContext *gb,
MPEG4AudioConfig *m4ac,
int channel_config)
{
int extension_flag, ret;
uint8_t layout_map[MAX_ELEM_ID*4][3];
int tags = 0;
if (get_bits1(gb)) { // frameLengthFlag
avpriv_request_sample(avctx, "960/120 MDCT window");
return AVERROR_PATCHWELCOME;
}
if (get_bits1(gb)) // dependsOnCoreCoder
skip_bits(gb, 14); // coreCoderDelay
extension_flag = get_bits1(gb);
if (m4ac->object_type == AOT_AAC_SCALABLE ||
m4ac->object_type == AOT_ER_AAC_SCALABLE)
skip_bits(gb, 3); // layerNr
if (channel_config == 0) {
skip_bits(gb, 4); // element_instance_tag
tags = decode_pce(avctx, m4ac, layout_map, gb);
if (tags < 0)
return tags;
} else {
if ((ret = set_default_channel_config(avctx, layout_map, &tags, channel_config)))
return ret;
}
if (count_channels(layout_map, tags) > 1) {
m4ac->ps = 0;
} else if (m4ac->sbr == 1 && m4ac->ps == -1)
m4ac->ps = 1;
if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0)))
return ret;
if (extension_flag) {
switch (m4ac->object_type) {
case AOT_ER_BSAC:
skip_bits(gb, 5); // numOfSubFrame
skip_bits(gb, 11); // layer_length
break;
case AOT_ER_AAC_LC:
case AOT_ER_AAC_LTP:
case AOT_ER_AAC_SCALABLE:
case AOT_ER_AAC_LD:
skip_bits(gb, 3); /* aacSectionDataResilienceFlag
* aacScalefactorDataResilienceFlag
* aacSpectralDataResilienceFlag
*/
break;
}
skip_bits1(gb); // extensionFlag3 (TBD in version 3)
}
return 0;
}
/**
* Decode audio specific configuration; reference: table 1.13.
*
* @param ac pointer to AACContext, may be null
* @param avctx pointer to AVCCodecContext, used for logging
* @param m4ac pointer to MPEG4AudioConfig, used for parsing
* @param data pointer to buffer holding an audio specific config
* @param bit_size size of audio specific config or data in bits
* @param sync_extension look for an appended sync extension
*
* @return Returns error status or number of consumed bits. <0 - error
*/
static int decode_audio_specific_config(AACContext *ac,
AVCodecContext *avctx,
MPEG4AudioConfig *m4ac,
const uint8_t *data, int bit_size,
int sync_extension)
{
GetBitContext gb;
int i;
int ret;
av_dlog(avctx, "audio specific config size %d\n", bit_size >> 3);
for (i = 0; i < bit_size >> 3; i++)
av_dlog(avctx, "%02x ", data[i]);
av_dlog(avctx, "\n");
if ((ret = init_get_bits(&gb, data, bit_size)) < 0)
return ret;
if ((i = avpriv_mpeg4audio_get_config(m4ac, data, bit_size, sync_extension)) < 0)
return -1;
if (m4ac->sampling_index > 12) {
av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
return -1;
}
skip_bits_long(&gb, i);
switch (m4ac->object_type) {
case AOT_AAC_MAIN:
case AOT_AAC_LC:
case AOT_AAC_LTP:
if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
return -1;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
return -1;
}
av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
m4ac->sample_rate, m4ac->sbr, m4ac->ps);
return get_bits_count(&gb);
}
/**
* linear congruential pseudorandom number generator
*
* @param previous_val pointer to the current state of the generator
*
* @return Returns a 32-bit pseudorandom integer
*/
static av_always_inline int lcg_random(unsigned previous_val)
{
union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 };
return v.s;
}
static av_always_inline void reset_predict_state(PredictorState *ps)
{
ps->r0 = 0.0f;
ps->r1 = 0.0f;
ps->cor0 = 0.0f;
ps->cor1 = 0.0f;
ps->var0 = 1.0f;
ps->var1 = 1.0f;
}
static void reset_all_predictors(PredictorState *ps)
{
int i;
for (i = 0; i < MAX_PREDICTORS; i++)
reset_predict_state(&ps[i]);
}
static int sample_rate_idx (int rate)
{
if (92017 <= rate) return 0;
else if (75132 <= rate) return 1;
else if (55426 <= rate) return 2;
else if (46009 <= rate) return 3;
else if (37566 <= rate) return 4;
else if (27713 <= rate) return 5;
else if (23004 <= rate) return 6;
else if (18783 <= rate) return 7;
else if (13856 <= rate) return 8;
else if (11502 <= rate) return 9;
else if (9391 <= rate) return 10;
else return 11;
}
static void reset_predictor_group(PredictorState *ps, int group_num)
{
int i;
for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
reset_predict_state(&ps[i]);
}
#define AAC_INIT_VLC_STATIC(num, size) \
INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
size);
static void aacdec_init(AACContext *ac);
static av_cold int aac_decode_init(AVCodecContext *avctx)
{
AACContext *ac = avctx->priv_data;
ac->avctx = avctx;
ac->oc[1].m4ac.sample_rate = avctx->sample_rate;
aacdec_init(ac);
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
if (avctx->extradata_size > 0) {
if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac,
avctx->extradata,
avctx->extradata_size*8, 1) < 0)
return -1;
} else {
int sr, i;
uint8_t layout_map[MAX_ELEM_ID*4][3];
int layout_map_tags;
sr = sample_rate_idx(avctx->sample_rate);
ac->oc[1].m4ac.sampling_index = sr;
ac->oc[1].m4ac.channels = avctx->channels;
ac->oc[1].m4ac.sbr = -1;
ac->oc[1].m4ac.ps = -1;
for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++)
if (ff_mpeg4audio_channels[i] == avctx->channels)
break;
if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) {
i = 0;
}
ac->oc[1].m4ac.chan_config = i;
if (ac->oc[1].m4ac.chan_config) {
int ret = set_default_channel_config(avctx, layout_map,
&layout_map_tags, ac->oc[1].m4ac.chan_config);
if (!ret)
output_configure(ac, layout_map, layout_map_tags,
OC_GLOBAL_HDR, 0);
else if (avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
}
}
if (avctx->channels > MAX_CHANNELS) {
av_log(avctx, AV_LOG_ERROR, "Too many channels\n");
return AVERROR_INVALIDDATA;
}
AAC_INIT_VLC_STATIC( 0, 304);
AAC_INIT_VLC_STATIC( 1, 270);
AAC_INIT_VLC_STATIC( 2, 550);
AAC_INIT_VLC_STATIC( 3, 300);
AAC_INIT_VLC_STATIC( 4, 328);
AAC_INIT_VLC_STATIC( 5, 294);
AAC_INIT_VLC_STATIC( 6, 306);
AAC_INIT_VLC_STATIC( 7, 268);
AAC_INIT_VLC_STATIC( 8, 510);
AAC_INIT_VLC_STATIC( 9, 366);
AAC_INIT_VLC_STATIC(10, 462);
ff_aac_sbr_init();
ff_fmt_convert_init(&ac->fmt_conv, avctx);
avpriv_float_dsp_init(&ac->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
ac->random_state = 0x1f2e3d4c;
ff_aac_tableinit();
INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
352);
ff_mdct_init(&ac->mdct, 11, 1, 1.0 / (32768.0 * 1024.0));
ff_mdct_init(&ac->mdct_small, 8, 1, 1.0 / (32768.0 * 128.0));
ff_mdct_init(&ac->mdct_ltp, 11, 0, -2.0 * 32768.0);
// window initialization
ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
ff_init_ff_sine_windows(10);
ff_init_ff_sine_windows( 7);
cbrt_tableinit();
return 0;
}
/**
* Skip data_stream_element; reference: table 4.10.
*/
static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
{
int byte_align = get_bits1(gb);
int count = get_bits(gb, 8);
if (count == 255)
count += get_bits(gb, 8);
if (byte_align)
align_get_bits(gb);
if (get_bits_left(gb) < 8 * count) {
av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err);
return -1;
}
skip_bits_long(gb, 8 * count);
return 0;
}
static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
GetBitContext *gb)
{
int sfb;
if (get_bits1(gb)) {
ics->predictor_reset_group = get_bits(gb, 5);
if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
return -1;
}
}
for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) {
ics->prediction_used[sfb] = get_bits1(gb);
}
return 0;
}
/**
* Decode Long Term Prediction data; reference: table 4.xx.
*/
static void decode_ltp(LongTermPrediction *ltp,
GetBitContext *gb, uint8_t max_sfb)
{
int sfb;
ltp->lag = get_bits(gb, 11);
ltp->coef = ltp_coef[get_bits(gb, 3)];
for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
ltp->used[sfb] = get_bits1(gb);
}
/**
* Decode Individual Channel Stream info; reference: table 4.6.
*/
static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
GetBitContext *gb)
{
if (get_bits1(gb)) {
av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
return AVERROR_INVALIDDATA;
}
ics->window_sequence[1] = ics->window_sequence[0];
ics->window_sequence[0] = get_bits(gb, 2);
ics->use_kb_window[1] = ics->use_kb_window[0];
ics->use_kb_window[0] = get_bits1(gb);
ics->num_window_groups = 1;
ics->group_len[0] = 1;
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
int i;
ics->max_sfb = get_bits(gb, 4);
for (i = 0; i < 7; i++) {
if (get_bits1(gb)) {
ics->group_len[ics->num_window_groups - 1]++;
} else {
ics->num_window_groups++;
ics->group_len[ics->num_window_groups - 1] = 1;
}
}
ics->num_windows = 8;
ics->swb_offset = ff_swb_offset_128[ac->oc[1].m4ac.sampling_index];
ics->num_swb = ff_aac_num_swb_128[ac->oc[1].m4ac.sampling_index];
ics->tns_max_bands = ff_tns_max_bands_128[ac->oc[1].m4ac.sampling_index];
ics->predictor_present = 0;
} else {
ics->max_sfb = get_bits(gb, 6);
ics->num_windows = 1;
ics->swb_offset = ff_swb_offset_1024[ac->oc[1].m4ac.sampling_index];
ics->num_swb = ff_aac_num_swb_1024[ac->oc[1].m4ac.sampling_index];
ics->tns_max_bands = ff_tns_max_bands_1024[ac->oc[1].m4ac.sampling_index];
ics->predictor_present = get_bits1(gb);
ics->predictor_reset_group = 0;
if (ics->predictor_present) {
if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) {
if (decode_prediction(ac, ics, gb)) {
goto fail;
}
} else if (ac->oc[1].m4ac.object_type == AOT_AAC_LC) {
av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
goto fail;
} else {
if ((ics->ltp.present = get_bits(gb, 1)))
decode_ltp(&ics->ltp, gb, ics->max_sfb);
}
}
}
if (ics->max_sfb > ics->num_swb) {
av_log(ac->avctx, AV_LOG_ERROR,
"Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
ics->max_sfb, ics->num_swb);
goto fail;
}
return 0;
fail:
ics->max_sfb = 0;
return AVERROR_INVALIDDATA;
}
/**
* Decode band types (section_data payload); reference: table 4.46.
*
* @param band_type array of the used band type
* @param band_type_run_end array of the last scalefactor band of a band type run
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int decode_band_types(AACContext *ac, enum BandType band_type[120],
int band_type_run_end[120], GetBitContext *gb,
IndividualChannelStream *ics)
{
int g, idx = 0;
const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
for (g = 0; g < ics->num_window_groups; g++) {
int k = 0;
while (k < ics->max_sfb) {
uint8_t sect_end = k;
int sect_len_incr;
int sect_band_type = get_bits(gb, 4);
if (sect_band_type == 12) {
av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
return -1;
}
do {
sect_len_incr = get_bits(gb, bits);
sect_end += sect_len_incr;
if (get_bits_left(gb) < 0) {
av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err);
return -1;
}
if (sect_end > ics->max_sfb) {
av_log(ac->avctx, AV_LOG_ERROR,
"Number of bands (%d) exceeds limit (%d).\n",
sect_end, ics->max_sfb);
return -1;
}
} while (sect_len_incr == (1 << bits) - 1);
for (; k < sect_end; k++) {
band_type [idx] = sect_band_type;
band_type_run_end[idx++] = sect_end;
}
}
}
return 0;
}
/**
* Decode scalefactors; reference: table 4.47.
*
* @param global_gain first scalefactor value as scalefactors are differentially coded
* @param band_type array of the used band type
* @param band_type_run_end array of the last scalefactor band of a band type run
* @param sf array of scalefactors or intensity stereo positions
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
unsigned int global_gain,
IndividualChannelStream *ics,
enum BandType band_type[120],
int band_type_run_end[120])
{
int g, i, idx = 0;
int offset[3] = { global_gain, global_gain - 90, 0 };
int clipped_offset;
int noise_flag = 1;
for (g = 0; g < ics->num_window_groups; g++) {
for (i = 0; i < ics->max_sfb;) {
int run_end = band_type_run_end[idx];
if (band_type[idx] == ZERO_BT) {
for (; i < run_end; i++, idx++)
sf[idx] = 0.;
} else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
for (; i < run_end; i++, idx++) {
offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
clipped_offset = av_clip(offset[2], -155, 100);
if (offset[2] != clipped_offset) {
avpriv_request_sample(ac->avctx,
"If you heard an audible artifact, there may be a bug in the decoder. "
"Clipped intensity stereo position (%d -> %d)",
offset[2], clipped_offset);
}
sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO];
}
} else if (band_type[idx] == NOISE_BT) {
for (; i < run_end; i++, idx++) {
if (noise_flag-- > 0)
offset[1] += get_bits(gb, 9) - 256;
else
offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
clipped_offset = av_clip(offset[1], -100, 155);
if (offset[1] != clipped_offset) {
avpriv_request_sample(ac->avctx,
"If you heard an audible artifact, there may be a bug in the decoder. "
"Clipped noise gain (%d -> %d)",
offset[1], clipped_offset);
}
sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO];
}
} else {
for (; i < run_end; i++, idx++) {
offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
if (offset[0] > 255U) {
av_log(ac->avctx, AV_LOG_ERROR,
"Scalefactor (%d) out of range.\n", offset[0]);
return -1;
}
sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO];
}
}
}
}
return 0;
}
/**
* Decode pulse data; reference: table 4.7.
*/
static int decode_pulses(Pulse *pulse, GetBitContext *gb,
const uint16_t *swb_offset, int num_swb)
{
int i, pulse_swb;
pulse->num_pulse = get_bits(gb, 2) + 1;
pulse_swb = get_bits(gb, 6);
if (pulse_swb >= num_swb)
return -1;
pulse->pos[0] = swb_offset[pulse_swb];
pulse->pos[0] += get_bits(gb, 5);
if (pulse->pos[0] > 1023)
return -1;
pulse->amp[0] = get_bits(gb, 4);
for (i = 1; i < pulse->num_pulse; i++) {
pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
if (pulse->pos[i] > 1023)
return -1;
pulse->amp[i] = get_bits(gb, 4);
}
return 0;
}
/**
* Decode Temporal Noise Shaping data; reference: table 4.48.
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
GetBitContext *gb, const IndividualChannelStream *ics)
{
int w, filt, i, coef_len, coef_res, coef_compress;
const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
const int tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
for (w = 0; w < ics->num_windows; w++) {
if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
coef_res = get_bits1(gb);
for (filt = 0; filt < tns->n_filt[w]; filt++) {
int tmp2_idx;
tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
tns->order[w][filt], tns_max_order);
tns->order[w][filt] = 0;
return -1;
}
if (tns->order[w][filt]) {
tns->direction[w][filt] = get_bits1(gb);
coef_compress = get_bits1(gb);
coef_len = coef_res + 3 - coef_compress;
tmp2_idx = 2 * coef_compress + coef_res;
for (i = 0; i < tns->order[w][filt]; i++)
tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
}
}
}
}
return 0;
}
/**
* Decode Mid/Side data; reference: table 4.54.
*
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
* [1] mask is decoded from bitstream; [2] mask is all 1s;
* [3] reserved for scalable AAC
*/
static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
int ms_present)
{
int idx;
if (ms_present == 1) {
for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
cpe->ms_mask[idx] = get_bits1(gb);
} else if (ms_present == 2) {
memset(cpe->ms_mask, 1, sizeof(cpe->ms_mask[0]) * cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb);
}
}
#ifndef VMUL2
static inline float *VMUL2(float *dst, const float *v, unsigned idx,
const float *scale)
{
float s = *scale;
*dst++ = v[idx & 15] * s;
*dst++ = v[idx>>4 & 15] * s;
return dst;
}
#endif
#ifndef VMUL4
static inline float *VMUL4(float *dst, const float *v, unsigned idx,
const float *scale)
{
float s = *scale;
*dst++ = v[idx & 3] * s;
*dst++ = v[idx>>2 & 3] * s;
*dst++ = v[idx>>4 & 3] * s;
*dst++ = v[idx>>6 & 3] * s;
return dst;
}
#endif
#ifndef VMUL2S
static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
unsigned sign, const float *scale)
{
union av_intfloat32 s0, s1;
s0.f = s1.f = *scale;
s0.i ^= sign >> 1 << 31;
s1.i ^= sign << 31;
*dst++ = v[idx & 15] * s0.f;
*dst++ = v[idx>>4 & 15] * s1.f;
return dst;
}
#endif
#ifndef VMUL4S
static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
unsigned sign, const float *scale)
{
unsigned nz = idx >> 12;
union av_intfloat32 s = { .f = *scale };
union av_intfloat32 t;
t.i = s.i ^ (sign & 1U<<31);
*dst++ = v[idx & 3] * t.f;
sign <<= nz & 1; nz >>= 1;
t.i = s.i ^ (sign & 1U<<31);
*dst++ = v[idx>>2 & 3] * t.f;
sign <<= nz & 1; nz >>= 1;
t.i = s.i ^ (sign & 1U<<31);
*dst++ = v[idx>>4 & 3] * t.f;
sign <<= nz & 1;
t.i = s.i ^ (sign & 1U<<31);
*dst++ = v[idx>>6 & 3] * t.f;
return dst;
}
#endif
/**
* Decode spectral data; reference: table 4.50.
* Dequantize and scale spectral data; reference: 4.6.3.3.
*
* @param coef array of dequantized, scaled spectral data
* @param sf array of scalefactors or intensity stereo positions
* @param pulse_present set if pulses are present
* @param pulse pointer to pulse data struct
* @param band_type array of the used band type
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
GetBitContext *gb, const float sf[120],
int pulse_present, const Pulse *pulse,
const IndividualChannelStream *ics,
enum BandType band_type[120])
{
int i, k, g, idx = 0;
const int c = 1024 / ics->num_windows;
const uint16_t *offsets = ics->swb_offset;
float *coef_base = coef;
for (g = 0; g < ics->num_windows; g++)
memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
for (g = 0; g < ics->num_window_groups; g++) {
unsigned g_len = ics->group_len[g];
for (i = 0; i < ics->max_sfb; i++, idx++) {
const unsigned cbt_m1 = band_type[idx] - 1;
float *cfo = coef + offsets[i];
int off_len = offsets[i + 1] - offsets[i];
int group;
if (cbt_m1 >= INTENSITY_BT2 - 1) {
for (group = 0; group < g_len; group++, cfo+=128) {
memset(cfo, 0, off_len * sizeof(float));
}
} else if (cbt_m1 == NOISE_BT - 1) {
for (group = 0; group < g_len; group++, cfo+=128) {
float scale;
float band_energy;
for (k = 0; k < off_len; k++) {
ac->random_state = lcg_random(ac->random_state);
cfo[k] = ac->random_state;
}
band_energy = ac->fdsp.scalarproduct_float(cfo, cfo, off_len);
scale = sf[idx] / sqrtf(band_energy);
ac->fdsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
}
} else {
const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
OPEN_READER(re, gb);
switch (cbt_m1 >> 1) {
case 0:
for (group = 0; group < g_len; group++, cfo+=128) {
float *cf = cfo;
int len = off_len;
do {
int code;
unsigned cb_idx;
UPDATE_CACHE(re, gb);
GET_VLC(code, re, gb, vlc_tab, 8, 2);
cb_idx = cb_vector_idx[code];
cf = VMUL4(cf, vq, cb_idx, sf + idx);
} while (len -= 4);
}
break;
case 1:
for (group = 0; group < g_len; group++, cfo+=128) {
float *cf = cfo;
int len = off_len;
do {
int code;
unsigned nnz;
unsigned cb_idx;
uint32_t bits;
UPDATE_CACHE(re, gb);
GET_VLC(code, re, gb, vlc_tab, 8, 2);
cb_idx = cb_vector_idx[code];
nnz = cb_idx >> 8 & 15;
bits = nnz ? GET_CACHE(re, gb) : 0;
LAST_SKIP_BITS(re, gb, nnz);
cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
} while (len -= 4);
}
break;
case 2:
for (group = 0; group < g_len; group++, cfo+=128) {
float *cf = cfo;
int len = off_len;
do {
int code;
unsigned cb_idx;
UPDATE_CACHE(re, gb);
GET_VLC(code, re, gb, vlc_tab, 8, 2);
cb_idx = cb_vector_idx[code];
cf = VMUL2(cf, vq, cb_idx, sf + idx);
} while (len -= 2);
}
break;
case 3:
case 4:
for (group = 0; group < g_len; group++, cfo+=128) {
float *cf = cfo;
int len = off_len;
do {
int code;
unsigned nnz;
unsigned cb_idx;
unsigned sign;
UPDATE_CACHE(re, gb);
GET_VLC(code, re, gb, vlc_tab, 8, 2);
cb_idx = cb_vector_idx[code];
nnz = cb_idx >> 8 & 15;
sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0;
LAST_SKIP_BITS(re, gb, nnz);
cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
} while (len -= 2);
}
break;
default:
for (group = 0; group < g_len; group++, cfo+=128) {
float *cf = cfo;
uint32_t *icf = (uint32_t *) cf;
int len = off_len;
do {
int code;
unsigned nzt, nnz;
unsigned cb_idx;
uint32_t bits;
int j;
UPDATE_CACHE(re, gb);
GET_VLC(code, re, gb, vlc_tab, 8, 2);
if (!code) {
*icf++ = 0;
*icf++ = 0;
continue;
}
cb_idx = cb_vector_idx[code];
nnz = cb_idx >> 12;
nzt = cb_idx >> 8;
bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
LAST_SKIP_BITS(re, gb, nnz);
for (j = 0; j < 2; j++) {
if (nzt & 1<<j) {
uint32_t b;
int n;
/* The total length of escape_sequence must be < 22 bits according
to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
UPDATE_CACHE(re, gb);
b = GET_CACHE(re, gb);
b = 31 - av_log2(~b);
if (b > 8) {
av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
return -1;
}
SKIP_BITS(re, gb, b + 1);
b += 4;
n = (1 << b) + SHOW_UBITS(re, gb, b);
LAST_SKIP_BITS(re, gb, b);
*icf++ = cbrt_tab[n] | (bits & 1U<<31);
bits <<= 1;
} else {
unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
*icf++ = (bits & 1U<<31) | v;
bits <<= !!v;
}
cb_idx >>= 4;
}
} while (len -= 2);
ac->fdsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
}
}
CLOSE_READER(re, gb);
}
}
coef += g_len << 7;
}
if (pulse_present) {
idx = 0;
for (i = 0; i < pulse->num_pulse; i++) {
float co = coef_base[ pulse->pos[i] ];
while (offsets[idx + 1] <= pulse->pos[i])
idx++;
if (band_type[idx] != NOISE_BT && sf[idx]) {
float ico = -pulse->amp[i];
if (co) {
co /= sf[idx];
ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
}
coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
}
}
}
return 0;
}
static av_always_inline float flt16_round(float pf)
{
union av_intfloat32 tmp;
tmp.f = pf;
tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
return tmp.f;
}
static av_always_inline float flt16_even(float pf)
{
union av_intfloat32 tmp;
tmp.f = pf;
tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
return tmp.f;
}
static av_always_inline float flt16_trunc(float pf)
{
union av_intfloat32 pun;
pun.f = pf;
pun.i &= 0xFFFF0000U;
return pun.f;
}
static av_always_inline void predict(PredictorState *ps, float *coef,
int output_enable)
{
const float a = 0.953125; // 61.0 / 64
const float alpha = 0.90625; // 29.0 / 32
float e0, e1;
float pv;
float k1, k2;
float r0 = ps->r0, r1 = ps->r1;
float cor0 = ps->cor0, cor1 = ps->cor1;
float var0 = ps->var0, var1 = ps->var1;
k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
pv = flt16_round(k1 * r0 + k2 * r1);
if (output_enable)
*coef += pv;
e0 = *coef;
e1 = e0 - k1 * r0;
ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
ps->r0 = flt16_trunc(a * e0);
}
/**
* Apply AAC-Main style frequency domain prediction.
*/
static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
{
int sfb, k;
if (!sce->ics.predictor_initialized) {
reset_all_predictors(sce->predictor_state);
sce->ics.predictor_initialized = 1;
}
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]; sfb++) {
for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
predict(&sce->predictor_state[k], &sce->coeffs[k],
sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
}
}
if (sce->ics.predictor_reset_group)
reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
} else
reset_all_predictors(sce->predictor_state);
}
/**
* Decode an individual_channel_stream payload; reference: table 4.44.
*
* @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
* @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int decode_ics(AACContext *ac, SingleChannelElement *sce,
GetBitContext *gb, int common_window, int scale_flag)
{
Pulse pulse;
TemporalNoiseShaping *tns = &sce->tns;
IndividualChannelStream *ics = &sce->ics;
float *out = sce->coeffs;
int global_gain, pulse_present = 0;
/* This assignment is to silence a GCC warning about the variable being used
* uninitialized when in fact it always is.
*/
pulse.num_pulse = 0;
global_gain = get_bits(gb, 8);
if (!common_window && !scale_flag) {
if (decode_ics_info(ac, ics, gb) < 0)
return AVERROR_INVALIDDATA;
}
if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
return -1;
if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
return -1;
pulse_present = 0;
if (!scale_flag) {
if ((pulse_present = get_bits1(gb))) {
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
return -1;
}
if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
return -1;
}
}
if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
return -1;
if (get_bits1(gb)) {
avpriv_request_sample(ac->avctx, "SSR");
return AVERROR_PATCHWELCOME;
}
}
if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
return -1;
if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window)
apply_prediction(ac, sce);
return 0;
}
/**
* Mid/Side stereo decoding; reference: 4.6.8.1.3.
*/
static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
{
const IndividualChannelStream *ics = &cpe->ch[0].ics;
float *ch0 = cpe->ch[0].coeffs;
float *ch1 = cpe->ch[1].coeffs;
int g, i, group, idx = 0;
const uint16_t *offsets = ics->swb_offset;
for (g = 0; g < ics->num_window_groups; g++) {
for (i = 0; i < ics->max_sfb; i++, idx++) {
if (cpe->ms_mask[idx] &&
cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
for (group = 0; group < ics->group_len[g]; group++) {
ac->fdsp.butterflies_float(ch0 + group * 128 + offsets[i],
ch1 + group * 128 + offsets[i],
offsets[i+1] - offsets[i]);
}
}
}
ch0 += ics->group_len[g] * 128;
ch1 += ics->group_len[g] * 128;
}
}
/**
* intensity stereo decoding; reference: 4.6.8.2.3
*
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
* [1] mask is decoded from bitstream; [2] mask is all 1s;
* [3] reserved for scalable AAC
*/
static void apply_intensity_stereo(AACContext *ac, ChannelElement *cpe, int ms_present)
{
const IndividualChannelStream *ics = &cpe->ch[1].ics;
SingleChannelElement *sce1 = &cpe->ch[1];
float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
const uint16_t *offsets = ics->swb_offset;
int g, group, i, idx = 0;
int c;
float scale;
for (g = 0; g < ics->num_window_groups; g++) {
for (i = 0; i < ics->max_sfb;) {
if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
const int bt_run_end = sce1->band_type_run_end[idx];
for (; i < bt_run_end; i++, idx++) {
c = -1 + 2 * (sce1->band_type[idx] - 14);
if (ms_present)
c *= 1 - 2 * cpe->ms_mask[idx];
scale = c * sce1->sf[idx];
for (group = 0; group < ics->group_len[g]; group++)
ac->fdsp.vector_fmul_scalar(coef1 + group * 128 + offsets[i],
coef0 + group * 128 + offsets[i],
scale,
offsets[i + 1] - offsets[i]);
}
} else {
int bt_run_end = sce1->band_type_run_end[idx];
idx += bt_run_end - i;
i = bt_run_end;
}
}
coef0 += ics->group_len[g] * 128;
coef1 += ics->group_len[g] * 128;
}
}
/**
* Decode a channel_pair_element; reference: table 4.4.
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
{
int i, ret, common_window, ms_present = 0;
common_window = get_bits1(gb);
if (common_window) {
if (decode_ics_info(ac, &cpe->ch[0].ics, gb))
return AVERROR_INVALIDDATA;
i = cpe->ch[1].ics.use_kb_window[0];
cpe->ch[1].ics = cpe->ch[0].ics;
cpe->ch[1].ics.use_kb_window[1] = i;
if (cpe->ch[1].ics.predictor_present && (ac->oc[1].m4ac.object_type != AOT_AAC_MAIN))
if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1)))
decode_ltp(&cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb);
ms_present = get_bits(gb, 2);
if (ms_present == 3) {
av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
return -1;
} else if (ms_present)
decode_mid_side_stereo(cpe, gb, ms_present);
}
if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
return ret;
if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
return ret;
if (common_window) {
if (ms_present)
apply_mid_side_stereo(ac, cpe);
if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) {
apply_prediction(ac, &cpe->ch[0]);
apply_prediction(ac, &cpe->ch[1]);
}
}
apply_intensity_stereo(ac, cpe, ms_present);
return 0;
}
static const float cce_scale[] = {
1.09050773266525765921, //2^(1/8)
1.18920711500272106672, //2^(1/4)
M_SQRT2,
2,
};
/**
* Decode coupling_channel_element; reference: table 4.8.
*
* @return Returns error status. 0 - OK, !0 - error
*/
static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
{
int num_gain = 0;
int c, g, sfb, ret;
int sign;
float scale;
SingleChannelElement *sce = &che->ch[0];
ChannelCoupling *coup = &che->coup;
coup->coupling_point = 2 * get_bits1(gb);
coup->num_coupled = get_bits(gb, 3);
for (c = 0; c <= coup->num_coupled; c++) {
num_gain++;
coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
coup->id_select[c] = get_bits(gb, 4);
if (coup->type[c] == TYPE_CPE) {
coup->ch_select[c] = get_bits(gb, 2);
if (coup->ch_select[c] == 3)
num_gain++;
} else
coup->ch_select[c] = 2;
}
coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
sign = get_bits(gb, 1);
scale = cce_scale[get_bits(gb, 2)];
if ((ret = decode_ics(ac, sce, gb, 0, 0)))
return ret;
for (c = 0; c < num_gain; c++) {
int idx = 0;
int cge = 1;
int gain = 0;
float gain_cache = 1.;
if (c) {
cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
gain_cache = powf(scale, -gain);
}
if (coup->coupling_point == AFTER_IMDCT) {
coup->gain[c][0] = gain_cache;
} else {
for (g = 0; g < sce->ics.num_window_groups; g++) {
for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
if (sce->band_type[idx] != ZERO_BT) {
if (!cge) {
int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
if (t) {
int s = 1;
t = gain += t;
if (sign) {
s -= 2 * (t & 0x1);
t >>= 1;
}
gain_cache = powf(scale, -t) * s;
}
}
coup->gain[c][idx] = gain_cache;
}
}
}
}
}
return 0;
}
/**
* Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
*
* @return Returns number of bytes consumed.
*/
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
GetBitContext *gb)
{
int i;
int num_excl_chan = 0;
do {
for (i = 0; i < 7; i++)
che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
} while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
return num_excl_chan / 7;
}
/**
* Decode dynamic range information; reference: table 4.52.
*
* @return Returns number of bytes consumed.
*/
static int decode_dynamic_range(DynamicRangeControl *che_drc,
GetBitContext *gb)
{
int n = 1;
int drc_num_bands = 1;
int i;
/* pce_tag_present? */
if (get_bits1(gb)) {
che_drc->pce_instance_tag = get_bits(gb, 4);
skip_bits(gb, 4); // tag_reserved_bits
n++;
}
/* excluded_chns_present? */
if (get_bits1(gb)) {
n += decode_drc_channel_exclusions(che_drc, gb);
}
/* drc_bands_present? */
if (get_bits1(gb)) {
che_drc->band_incr = get_bits(gb, 4);
che_drc->interpolation_scheme = get_bits(gb, 4);
n++;
drc_num_bands += che_drc->band_incr;
for (i = 0; i < drc_num_bands; i++) {
che_drc->band_top[i] = get_bits(gb, 8);
n++;
}
}
/* prog_ref_level_present? */
if (get_bits1(gb)) {
che_drc->prog_ref_level = get_bits(gb, 7);
skip_bits1(gb); // prog_ref_level_reserved_bits
n++;
}
for (i = 0; i < drc_num_bands; i++) {
che_drc->dyn_rng_sgn[i] = get_bits1(gb);
che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
n++;
}
return n;
}
static int decode_fill(AACContext *ac, GetBitContext *gb, int len) {
uint8_t buf[256];
int i, major, minor;
if (len < 13+7*8)
goto unknown;
get_bits(gb, 13); len -= 13;
for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8)
buf[i] = get_bits(gb, 8);
buf[i] = 0;
if (ac->avctx->debug & FF_DEBUG_PICT_INFO)
av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf);
if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){
ac->avctx->internal->skip_samples = 1024;
}
unknown:
skip_bits_long(gb, len);
return 0;
}
/**
* Decode extension data (incomplete); reference: table 4.51.
*
* @param cnt length of TYPE_FIL syntactic element in bytes
*
* @return Returns number of bytes consumed
*/
static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
ChannelElement *che, enum RawDataBlockType elem_type)
{
int crc_flag = 0;
int res = cnt;
switch (get_bits(gb, 4)) { // extension type
case EXT_SBR_DATA_CRC:
crc_flag++;
case EXT_SBR_DATA:
if (!che) {
av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
return res;
} else if (!ac->oc[1].m4ac.sbr) {
av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
skip_bits_long(gb, 8 * cnt - 4);
return res;
} else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) {
av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
skip_bits_long(gb, 8 * cnt - 4);
return res;
} else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED && ac->avctx->channels == 1) {
ac->oc[1].m4ac.sbr = 1;
ac->oc[1].m4ac.ps = 1;
output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags,
ac->oc[1].status, 1);
} else {
ac->oc[1].m4ac.sbr = 1;
}
res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
break;
case EXT_DYNAMIC_RANGE:
res = decode_dynamic_range(&ac->che_drc, gb);
break;
case EXT_FILL:
decode_fill(ac, gb, 8 * cnt - 4);
break;
case EXT_FILL_DATA:
case EXT_DATA_ELEMENT:
default:
skip_bits_long(gb, 8 * cnt - 4);
break;
};
return res;
}
/**
* Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
*
* @param decode 1 if tool is used normally, 0 if tool is used in LTP.
* @param coef spectral coefficients
*/
static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
IndividualChannelStream *ics, int decode)
{
const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
int w, filt, m, i;
int bottom, top, order, start, end, size, inc;
float lpc[TNS_MAX_ORDER];
float tmp[TNS_MAX_ORDER+1];
for (w = 0; w < ics->num_windows; w++) {
bottom = ics->num_swb;
for (filt = 0; filt < tns->n_filt[w]; filt++) {
top = bottom;
bottom = FFMAX(0, top - tns->length[w][filt]);
order = tns->order[w][filt];
if (order == 0)
continue;
// tns_decode_coef
compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
start = ics->swb_offset[FFMIN(bottom, mmm)];
end = ics->swb_offset[FFMIN( top, mmm)];
if ((size = end - start) <= 0)
continue;
if (tns->direction[w][filt]) {
inc = -1;
start = end - 1;
} else {
inc = 1;
}
start += w * 128;
if (decode) {
// ar filter
for (m = 0; m < size; m++, start += inc)
for (i = 1; i <= FFMIN(m, order); i++)
coef[start] -= coef[start - i * inc] * lpc[i - 1];
} else {
// ma filter
for (m = 0; m < size; m++, start += inc) {
tmp[0] = coef[start];
for (i = 1; i <= FFMIN(m, order); i++)
coef[start] += tmp[i] * lpc[i - 1];
for (i = order; i > 0; i--)
tmp[i] = tmp[i - 1];
}
}
}
}
}
/**
* Apply windowing and MDCT to obtain the spectral
* coefficient from the predicted sample by LTP.
*/
static void windowing_and_mdct_ltp(AACContext *ac, float *out,
float *in, IndividualChannelStream *ics)
{
const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) {
ac->fdsp.vector_fmul(in, in, lwindow_prev, 1024);
} else {
memset(in, 0, 448 * sizeof(float));
ac->fdsp.vector_fmul(in + 448, in + 448, swindow_prev, 128);
}
if (ics->window_sequence[0] != LONG_START_SEQUENCE) {
ac->fdsp.vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024);
} else {
ac->fdsp.vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128);
memset(in + 1024 + 576, 0, 448 * sizeof(float));
}
ac->mdct_ltp.mdct_calc(&ac->mdct_ltp, out, in);
}
/**
* Apply the long term prediction
*/
static void apply_ltp(AACContext *ac, SingleChannelElement *sce)
{
const LongTermPrediction *ltp = &sce->ics.ltp;
const uint16_t *offsets = sce->ics.swb_offset;
int i, sfb;
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
float *predTime = sce->ret;
float *predFreq = ac->buf_mdct;
int16_t num_samples = 2048;
if (ltp->lag < 1024)
num_samples = ltp->lag + 1024;
for (i = 0; i < num_samples; i++)
predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
memset(&predTime[i], 0, (2048 - i) * sizeof(float));
ac->windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);
if (sce->tns.present)
ac->apply_tns(predFreq, &sce->tns, &sce->ics, 0);
for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
if (ltp->used[sfb])
for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
sce->coeffs[i] += predFreq[i];
}
}
/**
* Update the LTP buffer for next frame
*/
static void update_ltp(AACContext *ac, SingleChannelElement *sce)
{
IndividualChannelStream *ics = &sce->ics;
float *saved = sce->saved;
float *saved_ltp = sce->coeffs;
const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
int i;
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
memcpy(saved_ltp, saved, 512 * sizeof(float));
memset(saved_ltp + 576, 0, 448 * sizeof(float));
ac->fdsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
for (i = 0; i < 64; i++)
saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
memcpy(saved_ltp, ac->buf_mdct + 512, 448 * sizeof(float));
memset(saved_ltp + 576, 0, 448 * sizeof(float));
ac->fdsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
for (i = 0; i < 64; i++)
saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
} else { // LONG_STOP or ONLY_LONG
ac->fdsp.vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512);
for (i = 0; i < 512; i++)
saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * lwindow[511 - i];
}
memcpy(sce->ltp_state, sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state));
memcpy(sce->ltp_state+1024, sce->ret, 1024 * sizeof(*sce->ltp_state));
memcpy(sce->ltp_state+2048, saved_ltp, 1024 * sizeof(*sce->ltp_state));
}
/**
* Conduct IMDCT and windowing.
*/
static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
{
IndividualChannelStream *ics = &sce->ics;
float *in = sce->coeffs;
float *out = sce->ret;
float *saved = sce->saved;
const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
float *buf = ac->buf_mdct;
float *temp = ac->temp;
int i;
// imdct
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
for (i = 0; i < 1024; i += 128)
ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
} else
ac->mdct.imdct_half(&ac->mdct, buf, in);
/* window overlapping
* NOTE: To simplify the overlapping code, all 'meaningless' short to long
* and long to short transitions are considered to be short to short
* transitions. This leaves just two cases (long to long and short to short)
* with a little special sauce for EIGHT_SHORT_SEQUENCE.
*/
if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
(ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
ac->fdsp.vector_fmul_window( out, saved, buf, lwindow_prev, 512);
} else {
memcpy( out, saved, 448 * sizeof(float));
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
ac->fdsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64);
ac->fdsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64);
ac->fdsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64);
ac->fdsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64);
ac->fdsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64);
memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
} else {
ac->fdsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64);
memcpy( out + 576, buf + 64, 448 * sizeof(float));
}
}
// buffer update
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
memcpy( saved, temp + 64, 64 * sizeof(float));
ac->fdsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64);
ac->fdsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
ac->fdsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
memcpy( saved, buf + 512, 448 * sizeof(float));
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
} else { // LONG_STOP or ONLY_LONG
memcpy( saved, buf + 512, 512 * sizeof(float));
}
}
/**
* Apply dependent channel coupling (applied before IMDCT).
*
* @param index index into coupling gain array
*/
static void apply_dependent_coupling(AACContext *ac,
SingleChannelElement *target,
ChannelElement *cce, int index)
{
IndividualChannelStream *ics = &cce->ch[0].ics;
const uint16_t *offsets = ics->swb_offset;
float *dest = target->coeffs;
const float *src = cce->ch[0].coeffs;
int g, i, group, k, idx = 0;
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
av_log(ac->avctx, AV_LOG_ERROR,
"Dependent coupling is not supported together with LTP\n");
return;
}
for (g = 0; g < ics->num_window_groups; g++) {
for (i = 0; i < ics->max_sfb; i++, idx++) {
if (cce->ch[0].band_type[idx] != ZERO_BT) {
const float gain = cce->coup.gain[index][idx];
for (group = 0; group < ics->group_len[g]; group++) {
for (k = offsets[i]; k < offsets[i + 1]; k++) {
// XXX dsputil-ize
dest[group * 128 + k] += gain * src[group * 128 + k];
}
}
}
}
dest += ics->group_len[g] * 128;
src += ics->group_len[g] * 128;
}
}
/**
* Apply independent channel coupling (applied after IMDCT).
*
* @param index index into coupling gain array
*/
static void apply_independent_coupling(AACContext *ac,
SingleChannelElement *target,
ChannelElement *cce, int index)
{
int i;
const float gain = cce->coup.gain[index][0];
const float *src = cce->ch[0].ret;
float *dest = target->ret;
const int len = 1024 << (ac->oc[1].m4ac.sbr == 1);
for (i = 0; i < len; i++)
dest[i] += gain * src[i];
}
/**
* channel coupling transformation interface
*
* @param apply_coupling_method pointer to (in)dependent coupling function
*/
static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
enum RawDataBlockType type, int elem_id,
enum CouplingPoint coupling_point,
void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
{
int i, c;
for (i = 0; i < MAX_ELEM_ID; i++) {
ChannelElement *cce = ac->che[TYPE_CCE][i];
int index = 0;
if (cce && cce->coup.coupling_point == coupling_point) {
ChannelCoupling *coup = &cce->coup;
for (c = 0; c <= coup->num_coupled; c++) {
if (coup->type[c] == type && coup->id_select[c] == elem_id) {
if (coup->ch_select[c] != 1) {
apply_coupling_method(ac, &cc->ch[0], cce, index);
if (coup->ch_select[c] != 0)
index++;
}
if (coup->ch_select[c] != 2)
apply_coupling_method(ac, &cc->ch[1], cce, index++);
} else
index += 1 + (coup->ch_select[c] == 3);
}
}
}
}
/**
* Convert spectral data to float samples, applying all supported tools as appropriate.
*/
static void spectral_to_sample(AACContext *ac)
{
int i, type;
for (type = 3; type >= 0; type--) {
for (i = 0; i < MAX_ELEM_ID; i++) {
ChannelElement *che = ac->che[type][i];
if (che) {
if (type <= TYPE_CPE)
apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP) {
if (che->ch[0].ics.predictor_present) {
if (che->ch[0].ics.ltp.present)
ac->apply_ltp(ac, &che->ch[0]);
if (che->ch[1].ics.ltp.present && type == TYPE_CPE)
ac->apply_ltp(ac, &che->ch[1]);
}
}
if (che->ch[0].tns.present)
ac->apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
if (che->ch[1].tns.present)
ac->apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
if (type <= TYPE_CPE)
apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
ac->imdct_and_windowing(ac, &che->ch[0]);
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP)
ac->update_ltp(ac, &che->ch[0]);
if (type == TYPE_CPE) {
ac->imdct_and_windowing(ac, &che->ch[1]);
if (ac->oc[1].m4ac.object_type == AOT_AAC_LTP)
ac->update_ltp(ac, &che->ch[1]);
}
if (ac->oc[1].m4ac.sbr > 0) {
ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
}
}
if (type <= TYPE_CCE)
apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
}
}
}
}
static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
{
int size;
AACADTSHeaderInfo hdr_info;
uint8_t layout_map[MAX_ELEM_ID*4][3];
int layout_map_tags;
size = avpriv_aac_parse_header(gb, &hdr_info);
if (size > 0) {
if (!ac->warned_num_aac_frames && hdr_info.num_aac_frames != 1) {
// This is 2 for "VLB " audio in NSV files.
// See samples/nsv/vlb_audio.
avpriv_report_missing_feature(ac->avctx,
"More than one AAC RDB per ADTS frame");
ac->warned_num_aac_frames = 1;
}
push_output_configuration(ac);
if (hdr_info.chan_config) {
ac->oc[1].m4ac.chan_config = hdr_info.chan_config;
if (set_default_channel_config(ac->avctx, layout_map,
&layout_map_tags, hdr_info.chan_config))
return -7;
if (output_configure(ac, layout_map, layout_map_tags,
FFMAX(ac->oc[1].status, OC_TRIAL_FRAME), 0))
return -7;
} else {
ac->oc[1].m4ac.chan_config = 0;
/**
* dual mono frames in Japanese DTV can have chan_config 0
* WITHOUT specifying PCE.
* thus, set dual mono as default.
*/
if (ac->dmono_mode && ac->oc[0].status == OC_NONE) {
layout_map_tags = 2;
layout_map[0][0] = layout_map[1][0] = TYPE_SCE;
layout_map[0][2] = layout_map[1][2] = AAC_CHANNEL_FRONT;
layout_map[0][1] = 0;
layout_map[1][1] = 1;
if (output_configure(ac, layout_map, layout_map_tags,
OC_TRIAL_FRAME, 0))
return -7;
}
}
ac->oc[1].m4ac.sample_rate = hdr_info.sample_rate;
ac->oc[1].m4ac.sampling_index = hdr_info.sampling_index;
ac->oc[1].m4ac.object_type = hdr_info.object_type;
if (ac->oc[0].status != OC_LOCKED ||
ac->oc[0].m4ac.chan_config != hdr_info.chan_config ||
ac->oc[0].m4ac.sample_rate != hdr_info.sample_rate) {
ac->oc[1].m4ac.sbr = -1;
ac->oc[1].m4ac.ps = -1;
}
if (!hdr_info.crc_absent)
skip_bits(gb, 16);
}
return size;
}
static int aac_decode_frame_int(AVCodecContext *avctx, void *data,
int *got_frame_ptr, GetBitContext *gb, AVPacket *avpkt)
{
AACContext *ac = avctx->priv_data;
ChannelElement *che = NULL, *che_prev = NULL;
enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
int err, elem_id;
int samples = 0, multiplier, audio_found = 0, pce_found = 0;
int is_dmono, sce_count = 0;
ac->frame = data;
if (show_bits(gb, 12) == 0xfff) {
if (parse_adts_frame_header(ac, gb) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
err = -1;
goto fail;
}
if (ac->oc[1].m4ac.sampling_index > 12) {
av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->oc[1].m4ac.sampling_index);
err = -1;
goto fail;
}
}
if (frame_configure_elements(avctx) < 0) {
err = -1;
goto fail;
}
ac->tags_mapped = 0;
// parse
while ((elem_type = get_bits(gb, 3)) != TYPE_END) {
elem_id = get_bits(gb, 4);
if (elem_type < TYPE_DSE) {
if (!(che=get_che(ac, elem_type, elem_id))) {
av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
elem_type, elem_id);
err = -1;
goto fail;
}
samples = 1024;
}
switch (elem_type) {
case TYPE_SCE:
err = decode_ics(ac, &che->ch[0], gb, 0, 0);
audio_found = 1;
sce_count++;
break;
case TYPE_CPE:
err = decode_cpe(ac, gb, che);
audio_found = 1;
break;
case TYPE_CCE:
err = decode_cce(ac, gb, che);
break;
case TYPE_LFE:
err = decode_ics(ac, &che->ch[0], gb, 0, 0);
audio_found = 1;
break;
case TYPE_DSE:
err = skip_data_stream_element(ac, gb);
break;
case TYPE_PCE: {
uint8_t layout_map[MAX_ELEM_ID*4][3];
int tags;
push_output_configuration(ac);
tags = decode_pce(avctx, &ac->oc[1].m4ac, layout_map, gb);
if (tags < 0) {
err = tags;
break;
}
if (pce_found) {
av_log(avctx, AV_LOG_ERROR,
"Not evaluating a further program_config_element as this construct is dubious at best.\n");
} else {
err = output_configure(ac, layout_map, tags, OC_TRIAL_PCE, 1);
if (!err)
ac->oc[1].m4ac.chan_config = 0;
pce_found = 1;
}
break;
}
case TYPE_FIL:
if (elem_id == 15)
elem_id += get_bits(gb, 8) - 1;
if (get_bits_left(gb) < 8 * elem_id) {
av_log(avctx, AV_LOG_ERROR, "TYPE_FIL: "overread_err);
err = -1;
goto fail;
}
while (elem_id > 0)
elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev);
err = 0; /* FIXME */
break;
default:
err = -1; /* should not happen, but keeps compiler happy */
break;
}
che_prev = che;
elem_type_prev = elem_type;
if (err)
goto fail;
if (get_bits_left(gb) < 3) {
av_log(avctx, AV_LOG_ERROR, overread_err);
err = -1;
goto fail;
}
}
spectral_to_sample(ac);
multiplier = (ac->oc[1].m4ac.sbr == 1) ? ac->oc[1].m4ac.ext_sample_rate > ac->oc[1].m4ac.sample_rate : 0;
samples <<= multiplier;
/* for dual-mono audio (SCE + SCE) */
is_dmono = ac->dmono_mode && sce_count == 2 &&
ac->oc[1].channel_layout == (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT);
if (samples)
ac->frame->nb_samples = samples;
else
av_frame_unref(ac->frame);
*got_frame_ptr = !!samples;
if (is_dmono) {
if (ac->dmono_mode == 1)
((AVFrame *)data)->data[1] =((AVFrame *)data)->data[0];
else if (ac->dmono_mode == 2)
((AVFrame *)data)->data[0] =((AVFrame *)data)->data[1];
}
if (ac->oc[1].status && audio_found) {
avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier;
avctx->frame_size = samples;
ac->oc[1].status = OC_LOCKED;
}
if (multiplier) {
int side_size;
const uint8_t *side = av_packet_get_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, &side_size);
if (side && side_size>=4)
AV_WL32(side, 2*AV_RL32(side));
}
return 0;
fail:
pop_output_configuration(ac);
return err;
}
static int aac_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
AACContext *ac = avctx->priv_data;
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
GetBitContext gb;
int buf_consumed;
int buf_offset;
int err;
int new_extradata_size;
const uint8_t *new_extradata = av_packet_get_side_data(avpkt,
AV_PKT_DATA_NEW_EXTRADATA,
&new_extradata_size);
int jp_dualmono_size;
const uint8_t *jp_dualmono = av_packet_get_side_data(avpkt,
AV_PKT_DATA_JP_DUALMONO,
&jp_dualmono_size);
if (new_extradata && 0) {
av_free(avctx->extradata);
avctx->extradata = av_mallocz(new_extradata_size +
FF_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata)
return AVERROR(ENOMEM);
avctx->extradata_size = new_extradata_size;
memcpy(avctx->extradata, new_extradata, new_extradata_size);
push_output_configuration(ac);
if (decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac,
avctx->extradata,
avctx->extradata_size*8, 1) < 0) {
pop_output_configuration(ac);
return AVERROR_INVALIDDATA;
}
}
ac->dmono_mode = 0;
if (jp_dualmono && jp_dualmono_size > 0)
ac->dmono_mode = 1 + *jp_dualmono;
if (ac->force_dmono_mode >= 0)
ac->dmono_mode = ac->force_dmono_mode;
if (INT_MAX / 8 <= buf_size)
return AVERROR_INVALIDDATA;
init_get_bits(&gb, buf, buf_size * 8);
if ((err = aac_decode_frame_int(avctx, data, got_frame_ptr, &gb, avpkt)) < 0)
return err;
buf_consumed = (get_bits_count(&gb) + 7) >> 3;
for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
if (buf[buf_offset])
break;
return buf_size > buf_offset ? buf_consumed : buf_size;
}
static av_cold int aac_decode_close(AVCodecContext *avctx)
{
AACContext *ac = avctx->priv_data;
int i, type;
for (i = 0; i < MAX_ELEM_ID; i++) {
for (type = 0; type < 4; type++) {
if (ac->che[type][i])
ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
av_freep(&ac->che[type][i]);
}
}
ff_mdct_end(&ac->mdct);
ff_mdct_end(&ac->mdct_small);
ff_mdct_end(&ac->mdct_ltp);
return 0;
}
#define LOAS_SYNC_WORD 0x2b7 ///< 11 bits LOAS sync word
struct LATMContext {
AACContext aac_ctx; ///< containing AACContext
int initialized; ///< initialized after a valid extradata was seen
// parser data
int audio_mux_version_A; ///< LATM syntax version
int frame_length_type; ///< 0/1 variable/fixed frame length
int frame_length; ///< frame length for fixed frame length
};
static inline uint32_t latm_get_value(GetBitContext *b)
{
int length = get_bits(b, 2);
return get_bits_long(b, (length+1)*8);
}
static int latm_decode_audio_specific_config(struct LATMContext *latmctx,
GetBitContext *gb, int asclen)
{
AACContext *ac = &latmctx->aac_ctx;
AVCodecContext *avctx = ac->avctx;
MPEG4AudioConfig m4ac = { 0 };
int config_start_bit = get_bits_count(gb);
int sync_extension = 0;
int bits_consumed, esize;
if (asclen) {
sync_extension = 1;
asclen = FFMIN(asclen, get_bits_left(gb));
} else
asclen = get_bits_left(gb);
if (config_start_bit % 8) {
avpriv_request_sample(latmctx->aac_ctx.avctx,
"Non-byte-aligned audio-specific config");
return AVERROR_PATCHWELCOME;
}
if (asclen <= 0)
return AVERROR_INVALIDDATA;
bits_consumed = decode_audio_specific_config(NULL, avctx, &m4ac,
gb->buffer + (config_start_bit / 8),
asclen, sync_extension);
if (bits_consumed < 0)
return AVERROR_INVALIDDATA;
if (!latmctx->initialized ||
ac->oc[1].m4ac.sample_rate != m4ac.sample_rate ||
ac->oc[1].m4ac.chan_config != m4ac.chan_config) {
if(latmctx->initialized) {
av_log(avctx, AV_LOG_INFO, "audio config changed\n");
} else {
av_log(avctx, AV_LOG_DEBUG, "initializing latmctx\n");
}
latmctx->initialized = 0;
esize = (bits_consumed+7) / 8;
if (avctx->extradata_size < esize) {
av_free(avctx->extradata);
avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata)
return AVERROR(ENOMEM);
}
avctx->extradata_size = esize;
memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize);
memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
}
skip_bits_long(gb, bits_consumed);
return bits_consumed;
}
static int read_stream_mux_config(struct LATMContext *latmctx,
GetBitContext *gb)
{
int ret, audio_mux_version = get_bits(gb, 1);
latmctx->audio_mux_version_A = 0;
if (audio_mux_version)
latmctx->audio_mux_version_A = get_bits(gb, 1);
if (!latmctx->audio_mux_version_A) {
if (audio_mux_version)
latm_get_value(gb); // taraFullness
skip_bits(gb, 1); // allStreamSameTimeFraming
skip_bits(gb, 6); // numSubFrames
// numPrograms
if (get_bits(gb, 4)) { // numPrograms
avpriv_request_sample(latmctx->aac_ctx.avctx, "Multiple programs");
return AVERROR_PATCHWELCOME;
}
// for each program (which there is only one in DVB)
// for each layer (which there is only one in DVB)
if (get_bits(gb, 3)) { // numLayer
avpriv_request_sample(latmctx->aac_ctx.avctx, "Multiple layers");
return AVERROR_PATCHWELCOME;
}
// for all but first stream: use_same_config = get_bits(gb, 1);
if (!audio_mux_version) {
if ((ret = latm_decode_audio_specific_config(latmctx, gb, 0)) < 0)
return ret;
} else {
int ascLen = latm_get_value(gb);
if ((ret = latm_decode_audio_specific_config(latmctx, gb, ascLen)) < 0)
return ret;
ascLen -= ret;
skip_bits_long(gb, ascLen);
}
latmctx->frame_length_type = get_bits(gb, 3);
switch (latmctx->frame_length_type) {
case 0:
skip_bits(gb, 8); // latmBufferFullness
break;
case 1:
latmctx->frame_length = get_bits(gb, 9);
break;
case 3:
case 4:
case 5:
skip_bits(gb, 6); // CELP frame length table index
break;
case 6:
case 7:
skip_bits(gb, 1); // HVXC frame length table index
break;
}
if (get_bits(gb, 1)) { // other data
if (audio_mux_version) {
latm_get_value(gb); // other_data_bits
} else {
int esc;
do {
esc = get_bits(gb, 1);
skip_bits(gb, 8);
} while (esc);
}
}
if (get_bits(gb, 1)) // crc present
skip_bits(gb, 8); // config_crc
}
return 0;
}
static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb)
{
uint8_t tmp;
if (ctx->frame_length_type == 0) {
int mux_slot_length = 0;
do {
tmp = get_bits(gb, 8);
mux_slot_length += tmp;
} while (tmp == 255);
return mux_slot_length;
} else if (ctx->frame_length_type == 1) {
return ctx->frame_length;
} else if (ctx->frame_length_type == 3 ||
ctx->frame_length_type == 5 ||
ctx->frame_length_type == 7) {
skip_bits(gb, 2); // mux_slot_length_coded
}
return 0;
}
static int read_audio_mux_element(struct LATMContext *latmctx,
GetBitContext *gb)
{
int err;
uint8_t use_same_mux = get_bits(gb, 1);
if (!use_same_mux) {
if ((err = read_stream_mux_config(latmctx, gb)) < 0)
return err;
} else if (!latmctx->aac_ctx.avctx->extradata) {
av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG,
"no decoder config found\n");
return AVERROR(EAGAIN);
}
if (latmctx->audio_mux_version_A == 0) {
int mux_slot_length_bytes = read_payload_length_info(latmctx, gb);
if (mux_slot_length_bytes * 8 > get_bits_left(gb)) {
av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n");
return AVERROR_INVALIDDATA;
} else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) {
av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
"frame length mismatch %d << %d\n",
mux_slot_length_bytes * 8, get_bits_left(gb));
return AVERROR_INVALIDDATA;
}
}
return 0;
}
static int latm_decode_frame(AVCodecContext *avctx, void *out,
int *got_frame_ptr, AVPacket *avpkt)
{
struct LATMContext *latmctx = avctx->priv_data;
int muxlength, err;
GetBitContext gb;
if ((err = init_get_bits8(&gb, avpkt->data, avpkt->size)) < 0)
return err;
// check for LOAS sync word
if (get_bits(&gb, 11) != LOAS_SYNC_WORD)
return AVERROR_INVALIDDATA;
muxlength = get_bits(&gb, 13) + 3;
// not enough data, the parser should have sorted this out
if (muxlength > avpkt->size)
return AVERROR_INVALIDDATA;
if ((err = read_audio_mux_element(latmctx, &gb)) < 0)
return err;
if (!latmctx->initialized) {
if (!avctx->extradata) {
*got_frame_ptr = 0;
return avpkt->size;
} else {
push_output_configuration(&latmctx->aac_ctx);
if ((err = decode_audio_specific_config(
&latmctx->aac_ctx, avctx, &latmctx->aac_ctx.oc[1].m4ac,
avctx->extradata, avctx->extradata_size*8, 1)) < 0) {
pop_output_configuration(&latmctx->aac_ctx);
return err;
}
latmctx->initialized = 1;
}
}
if (show_bits(&gb, 12) == 0xfff) {
av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
"ADTS header detected, probably as result of configuration "
"misparsing\n");
return AVERROR_INVALIDDATA;
}
if ((err = aac_decode_frame_int(avctx, out, got_frame_ptr, &gb, avpkt)) < 0)
return err;
return muxlength;
}
static av_cold int latm_decode_init(AVCodecContext *avctx)
{
struct LATMContext *latmctx = avctx->priv_data;
int ret = aac_decode_init(avctx);
if (avctx->extradata_size > 0)
latmctx->initialized = !ret;
return ret;
}
static void aacdec_init(AACContext *c)
{
c->imdct_and_windowing = imdct_and_windowing;
c->apply_ltp = apply_ltp;
c->apply_tns = apply_tns;
c->windowing_and_mdct_ltp = windowing_and_mdct_ltp;
c->update_ltp = update_ltp;
if(ARCH_MIPS)
ff_aacdec_init_mips(c);
}
/**
* AVOptions for Japanese DTV specific extensions (ADTS only)
*/
#define AACDEC_FLAGS AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
static const AVOption options[] = {
{"dual_mono_mode", "Select the channel to decode for dual mono",
offsetof(AACContext, force_dmono_mode), AV_OPT_TYPE_INT, {.i64=-1}, -1, 2,
AACDEC_FLAGS, "dual_mono_mode"},
{"auto", "autoselection", 0, AV_OPT_TYPE_CONST, {.i64=-1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"},
{"main", "Select Main/Left channel", 0, AV_OPT_TYPE_CONST, {.i64= 1}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"},
{"sub" , "Select Sub/Right channel", 0, AV_OPT_TYPE_CONST, {.i64= 2}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"},
{"both", "Select both channels", 0, AV_OPT_TYPE_CONST, {.i64= 0}, INT_MIN, INT_MAX, AACDEC_FLAGS, "dual_mono_mode"},
{NULL},
};
static const AVClass aac_decoder_class = {
.class_name = "AAC decoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_aac_decoder = {
.name = "aac",
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_AAC,
.priv_data_size = sizeof(AACContext),
.init = aac_decode_init,
.close = aac_decode_close,
.decode = aac_decode_frame,
.long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
.sample_fmts = (const enum AVSampleFormat[]) {
AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE
},
.capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
.channel_layouts = aac_channel_layout,
.flush = flush,
.priv_class = &aac_decoder_class,
};
/*
Note: This decoder filter is intended to decode LATM streams transferred
in MPEG transport streams which only contain one program.
To do a more complex LATM demuxing a separate LATM demuxer should be used.
*/
AVCodec ff_aac_latm_decoder = {
.name = "aac_latm",
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_AAC_LATM,
.priv_data_size = sizeof(struct LATMContext),
.init = latm_decode_init,
.close = aac_decode_close,
.decode = latm_decode_frame,
.long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Coding LATM syntax)"),
.sample_fmts = (const enum AVSampleFormat[]) {
AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE
},
.capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
.channel_layouts = aac_channel_layout,
.flush = flush,
};