1
mirror of https://git.videolan.org/git/ffmpeg.git synced 2024-07-29 07:18:22 +02:00
ffmpeg/libavcodec/aacenc_pred.c
Claudio Freire 2a31b076b4 AAC encoder: fix assertion error with prediction
Fixes an assertion error reported in #2686 that happens when
using prediction (either explicitly or implicitly by setting
the AAC main profile), since prediction code would allow
creating new zeroes or removing existing ones, without
properly checking for SF delta violations.

This patch forbids creating/removing zeroes, perhaps an
overly conservative approach, but a safe one. More permissive
and sophisticated approaches may be attempted in the future.
2016-01-13 05:28:34 -03:00

348 lines
12 KiB
C

/*
* AAC encoder main-type prediction
* Copyright (C) 2015 Rostislav Pehlivanov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder main-type prediction
* @author Rostislav Pehlivanov ( atomnuker gmail com )
*/
#include "aactab.h"
#include "aacenc_pred.h"
#include "aacenc_utils.h"
#include "aacenc_is.h" /* <- Needed for common window distortions */
#include "aacenc_quantization.h"
#define RESTORE_PRED(sce, sfb) \
if (sce->ics.prediction_used[sfb]) {\
sce->ics.prediction_used[sfb] = 0;\
sce->band_type[sfb] = sce->band_alt[sfb];\
}
static inline float flt16_round(float pf)
{
union av_intfloat32 tmp;
tmp.f = pf;
tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
return tmp.f;
}
static inline float flt16_even(float pf)
{
union av_intfloat32 tmp;
tmp.f = pf;
tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
return tmp.f;
}
static inline float flt16_trunc(float pf)
{
union av_intfloat32 pun;
pun.f = pf;
pun.i &= 0xFFFF0000U;
return pun.f;
}
static inline void predict(PredictorState *ps, float *coef, float *rcoef, int set)
{
float k2;
const float a = 0.953125; // 61.0 / 64
const float alpha = 0.90625; // 29.0 / 32
const float k1 = ps->k1;
const float r0 = ps->r0, r1 = ps->r1;
const float cor0 = ps->cor0, cor1 = ps->cor1;
const float var0 = ps->var0, var1 = ps->var1;
const float e0 = *coef - ps->x_est;
const float e1 = e0 - k1 * r0;
if (set)
*coef = e0;
ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
ps->r0 = flt16_trunc(a * e0);
/* Prediction for next frame */
ps->k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
*rcoef = ps->x_est = flt16_round(ps->k1*ps->r0 + k2*ps->r1);
}
static inline void reset_predict_state(PredictorState *ps)
{
ps->r0 = 0.0f;
ps->r1 = 0.0f;
ps->k1 = 0.0f;
ps->cor0 = 0.0f;
ps->cor1 = 0.0f;
ps->var0 = 1.0f;
ps->var1 = 1.0f;
ps->x_est = 0.0f;
}
static inline void reset_all_predictors(PredictorState *ps)
{
int i;
for (i = 0; i < MAX_PREDICTORS; i++)
reset_predict_state(&ps[i]);
}
static inline void reset_predictor_group(SingleChannelElement *sce, int group_num)
{
int i;
PredictorState *ps = sce->predictor_state;
for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
reset_predict_state(&ps[i]);
}
void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
{
int sfb, k;
const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
for (sfb = 0; sfb < pmax; sfb++) {
for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k],
sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
}
}
if (sce->ics.predictor_reset_group) {
reset_predictor_group(sce, sce->ics.predictor_reset_group);
}
} else {
reset_all_predictors(sce->predictor_state);
}
}
/* If inc = 0 you can check if this returns 0 to see if you can reset freely */
static inline int update_counters(IndividualChannelStream *ics, int inc)
{
int i;
for (i = 1; i < 31; i++) {
ics->predictor_reset_count[i] += inc;
if (ics->predictor_reset_count[i] > PRED_RESET_FRAME_MIN)
return i; /* Reset this immediately */
}
return 0;
}
void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe)
{
int start, w, w2, g, i, count = 0;
SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1];
const int pmax0 = FFMIN(sce0->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
const int pmax1 = FFMIN(sce1->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
const int pmax = FFMIN(pmax0, pmax1);
if (!cpe->common_window ||
sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
return;
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
start = 0;
for (g = 0; g < sce0->ics.num_swb; g++) {
int sfb = w*16+g;
int sum = sce0->ics.prediction_used[sfb] + sce1->ics.prediction_used[sfb];
float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
struct AACISError ph_err1, ph_err2, *erf;
if (sfb < PRED_SFB_START || sfb > pmax || sum != 2) {
RESTORE_PRED(sce0, sfb);
RESTORE_PRED(sce1, sfb);
start += sce0->ics.swb_sizes[g];
continue;
}
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
ener0 += coef0*coef0;
ener1 += coef1*coef1;
ener01 += (coef0 + coef1)*(coef0 + coef1);
}
}
ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
ener0, ener1, ener01, 1, -1);
ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
ener0, ener1, ener01, 1, +1);
erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2;
if (erf->pass) {
sce0->ics.prediction_used[sfb] = 1;
sce1->ics.prediction_used[sfb] = 1;
count++;
} else {
RESTORE_PRED(sce0, sfb);
RESTORE_PRED(sce1, sfb);
}
start += sce0->ics.swb_sizes[g];
}
}
sce1->ics.predictor_present = sce0->ics.predictor_present = !!count;
}
static void update_pred_resets(SingleChannelElement *sce)
{
int i, max_group_id_c, max_frame = 0;
float avg_frame = 0.0f;
IndividualChannelStream *ics = &sce->ics;
/* Update the counters and immediately update any frame behind schedule */
if ((ics->predictor_reset_group = update_counters(&sce->ics, 1)))
return;
for (i = 1; i < 31; i++) {
/* Count-based */
if (ics->predictor_reset_count[i] > max_frame) {
max_group_id_c = i;
max_frame = ics->predictor_reset_count[i];
}
avg_frame = (ics->predictor_reset_count[i] + avg_frame)/2;
}
if (max_frame > PRED_RESET_MIN) {
ics->predictor_reset_group = max_group_id_c;
} else {
ics->predictor_reset_group = 0;
}
}
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
{
int sfb, i, count = 0, cost_coeffs = 0, cost_pred = 0;
const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
float *O34 = &s->scoefs[128*0], *P34 = &s->scoefs[128*1];
float *SENT = &s->scoefs[128*2], *S34 = &s->scoefs[128*3];
float *QERR = &s->scoefs[128*4];
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
sce->ics.predictor_present = 0;
return;
}
if (!sce->ics.predictor_initialized) {
reset_all_predictors(sce->predictor_state);
sce->ics.predictor_initialized = 1;
memcpy(sce->prcoeffs, sce->coeffs, 1024*sizeof(float));
for (i = 1; i < 31; i++)
sce->ics.predictor_reset_count[i] = i;
}
update_pred_resets(sce);
memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
for (sfb = PRED_SFB_START; sfb < pmax; sfb++) {
int cost1, cost2, cb_p;
float dist1, dist2, dist_spec_err = 0.0f;
const int cb_n = sce->zeroes[sfb] ? 0 : sce->band_type[sfb];
const int cb_min = sce->zeroes[sfb] ? 0 : 1;
const int cb_max = sce->zeroes[sfb] ? 0 : RESERVED_BT;
const int start_coef = sce->ics.swb_offset[sfb];
const int num_coeffs = sce->ics.swb_offset[sfb + 1] - start_coef;
const FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb];
if (start_coef + num_coeffs > MAX_PREDICTORS ||
(s->cur_channel && sce->band_type[sfb] >= INTENSITY_BT2) ||
sce->band_type[sfb] == NOISE_BT)
continue;
/* Normal coefficients */
abs_pow34_v(O34, &sce->coeffs[start_coef], num_coeffs);
dist1 = quantize_and_encode_band_cost(s, NULL, &sce->coeffs[start_coef], NULL,
O34, num_coeffs, sce->sf_idx[sfb],
cb_n, s->lambda / band->threshold, INFINITY, &cost1, NULL, 0);
cost_coeffs += cost1;
/* Encoded coefficients - needed for #bits, band type and quant. error */
for (i = 0; i < num_coeffs; i++)
SENT[i] = sce->coeffs[start_coef + i] - sce->prcoeffs[start_coef + i];
abs_pow34_v(S34, SENT, num_coeffs);
if (cb_n < RESERVED_BT)
cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, S34), sce->sf_idx[sfb]), cb_min, cb_max);
else
cb_p = cb_n;
quantize_and_encode_band_cost(s, NULL, SENT, QERR, S34, num_coeffs,
sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY,
&cost2, NULL, 0);
/* Reconstructed coefficients - needed for distortion measurements */
for (i = 0; i < num_coeffs; i++)
sce->prcoeffs[start_coef + i] += QERR[i] != 0.0f ? (sce->prcoeffs[start_coef + i] - QERR[i]) : 0.0f;
abs_pow34_v(P34, &sce->prcoeffs[start_coef], num_coeffs);
if (cb_n < RESERVED_BT)
cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, P34), sce->sf_idx[sfb]), cb_min, cb_max);
else
cb_p = cb_n;
dist2 = quantize_and_encode_band_cost(s, NULL, &sce->prcoeffs[start_coef], NULL,
P34, num_coeffs, sce->sf_idx[sfb],
cb_p, s->lambda / band->threshold, INFINITY, NULL, NULL, 0);
for (i = 0; i < num_coeffs; i++)
dist_spec_err += (O34[i] - P34[i])*(O34[i] - P34[i]);
dist_spec_err *= s->lambda / band->threshold;
dist2 += dist_spec_err;
if (dist2 <= dist1 && cb_p <= cb_n) {
cost_pred += cost2;
sce->ics.prediction_used[sfb] = 1;
sce->band_alt[sfb] = cb_n;
sce->band_type[sfb] = cb_p;
count++;
} else {
cost_pred += cost1;
sce->band_alt[sfb] = cb_p;
}
}
if (count && cost_coeffs < cost_pred) {
count = 0;
for (sfb = PRED_SFB_START; sfb < pmax; sfb++)
RESTORE_PRED(sce, sfb);
memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
}
sce->ics.predictor_present = !!count;
}
/**
* Encoder predictors data.
*/
void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
{
int sfb;
IndividualChannelStream *ics = &sce->ics;
const int pmax = FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
if (s->profile != FF_PROFILE_AAC_MAIN ||
!ics->predictor_present)
return;
put_bits(&s->pb, 1, !!ics->predictor_reset_group);
if (ics->predictor_reset_group)
put_bits(&s->pb, 5, ics->predictor_reset_group);
for (sfb = 0; sfb < pmax; sfb++)
put_bits(&s->pb, 1, ics->prediction_used[sfb]);
}