/* * Copyright (c) 2010 Stefano Sabatini * Copyright (c) 2010 Baptiste Coudurier * Copyright (c) 2007 Bobby Bingham * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * overlay one video on top of another */ /* #define DEBUG */ #include "avfilter.h" #include "formats.h" #include "libavutil/common.h" #include "libavutil/eval.h" #include "libavutil/avstring.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/imgutils.h" #include "libavutil/mathematics.h" #include "libavutil/opt.h" #include "libavutil/timestamp.h" #include "internal.h" #include "bufferqueue.h" #include "drawutils.h" #include "video.h" static const char *const var_names[] = { "main_w", "W", ///< width of the main video "main_h", "H", ///< height of the main video "overlay_w", "w", ///< width of the overlay video "overlay_h", "h", ///< height of the overlay video "hsub", "vsub", "x", "y", "n", ///< number of frame "pos", ///< position in the file "t", ///< timestamp expressed in seconds NULL }; enum var_name { VAR_MAIN_W, VAR_MW, VAR_MAIN_H, VAR_MH, VAR_OVERLAY_W, VAR_OW, VAR_OVERLAY_H, VAR_OH, VAR_HSUB, VAR_VSUB, VAR_X, VAR_Y, VAR_N, VAR_POS, VAR_T, VAR_VARS_NB }; #define MAIN 0 #define OVERLAY 1 #define R 0 #define G 1 #define B 2 #define A 3 #define Y 0 #define U 1 #define V 2 typedef struct { const AVClass *class; int x, y; ///< position of overlayed picture double enable; ///< tells if blending is enabled int allow_packed_rgb; uint8_t frame_requested; uint8_t overlay_eof; uint8_t main_is_packed_rgb; uint8_t main_rgba_map[4]; uint8_t main_has_alpha; uint8_t overlay_is_packed_rgb; uint8_t overlay_rgba_map[4]; uint8_t overlay_has_alpha; enum OverlayFormat { OVERLAY_FORMAT_YUV420, OVERLAY_FORMAT_YUV444, OVERLAY_FORMAT_RGB, OVERLAY_FORMAT_NB} format; enum EvalMode { EVAL_MODE_INIT, EVAL_MODE_FRAME, EVAL_MODE_NB } eval_mode; AVFrame *overpicref; struct FFBufQueue queue_main; struct FFBufQueue queue_over; int main_pix_step[4]; ///< steps per pixel for each plane of the main output int overlay_pix_step[4]; ///< steps per pixel for each plane of the overlay int hsub, vsub; ///< chroma subsampling values int shortest; ///< terminate stream when the shortest input terminates int repeatlast; ///< repeat last overlay frame double var_values[VAR_VARS_NB]; char *x_expr, *y_expr; char *enable_expr; AVExpr *x_pexpr, *y_pexpr, *enable_pexpr; } OverlayContext; static av_cold int init(AVFilterContext *ctx) { OverlayContext *over = ctx->priv; if (over->allow_packed_rgb) { av_log(ctx, AV_LOG_WARNING, "The rgb option is deprecated and is overriding the format option, use format instead\n"); over->format = OVERLAY_FORMAT_RGB; } return 0; } static av_cold void uninit(AVFilterContext *ctx) { OverlayContext *over = ctx->priv; av_frame_free(&over->overpicref); ff_bufqueue_discard_all(&over->queue_main); ff_bufqueue_discard_all(&over->queue_over); av_expr_free(over->x_pexpr); over->x_pexpr = NULL; av_expr_free(over->y_pexpr); over->y_pexpr = NULL; av_expr_free(over->enable_pexpr); over->enable_pexpr = NULL; } static inline int normalize_xy(double d, int chroma_sub) { if (isnan(d)) return INT_MAX; return (int)d & ~((1 << chroma_sub) - 1); } enum EvalTarget { EVAL_XY, EVAL_ENABLE, EVAL_ALL }; static void eval_expr(AVFilterContext *ctx, enum EvalTarget eval_tgt) { OverlayContext *over = ctx->priv; if (eval_tgt == EVAL_XY || eval_tgt == EVAL_ALL) { over->var_values[VAR_X] = av_expr_eval(over->x_pexpr, over->var_values, NULL); over->var_values[VAR_Y] = av_expr_eval(over->y_pexpr, over->var_values, NULL); over->var_values[VAR_X] = av_expr_eval(over->x_pexpr, over->var_values, NULL); over->x = normalize_xy(over->var_values[VAR_X], over->hsub); over->y = normalize_xy(over->var_values[VAR_Y], over->vsub); } if (eval_tgt == EVAL_ENABLE || eval_tgt == EVAL_ALL) { over->enable = av_expr_eval(over->enable_pexpr, over->var_values, NULL); } } static int set_expr(AVExpr **pexpr, const char *expr, const char *option, void *log_ctx) { int ret; AVExpr *old = NULL; if (*pexpr) old = *pexpr; ret = av_expr_parse(pexpr, expr, var_names, NULL, NULL, NULL, NULL, 0, log_ctx); if (ret < 0) { av_log(log_ctx, AV_LOG_ERROR, "Error when evaluating the expression '%s' for %s\n", expr, option); *pexpr = old; return ret; } av_expr_free(old); return 0; } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { OverlayContext *over = ctx->priv; int ret; if (!strcmp(cmd, "x")) ret = set_expr(&over->x_pexpr, args, cmd, ctx); else if (!strcmp(cmd, "y")) ret = set_expr(&over->y_pexpr, args, cmd, ctx); else if (!strcmp(cmd, "enable")) ret = set_expr(&over->enable_pexpr, args, cmd, ctx); else ret = AVERROR(ENOSYS); if (ret < 0) return ret; if (over->eval_mode == EVAL_MODE_INIT) { eval_expr(ctx, EVAL_ALL); av_log(ctx, AV_LOG_VERBOSE, "x:%f xi:%d y:%f yi:%d enable:%f\n", over->var_values[VAR_X], over->x, over->var_values[VAR_Y], over->y, over->enable); } return ret; } static int query_formats(AVFilterContext *ctx) { OverlayContext *over = ctx->priv; /* overlay formats contains alpha, for avoiding conversion with alpha information loss */ static const enum AVPixelFormat main_pix_fmts_yuv420[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat overlay_pix_fmts_yuv420[] = { AV_PIX_FMT_YUVA420P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat main_pix_fmts_yuv444[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat overlay_pix_fmts_yuv444[] = { AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat main_pix_fmts_rgb[] = { AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_NONE }; static const enum AVPixelFormat overlay_pix_fmts_rgb[] = { AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, AV_PIX_FMT_NONE }; AVFilterFormats *main_formats; AVFilterFormats *overlay_formats; switch (over->format) { case OVERLAY_FORMAT_YUV420: main_formats = ff_make_format_list(main_pix_fmts_yuv420); overlay_formats = ff_make_format_list(overlay_pix_fmts_yuv420); break; case OVERLAY_FORMAT_YUV444: main_formats = ff_make_format_list(main_pix_fmts_yuv444); overlay_formats = ff_make_format_list(overlay_pix_fmts_yuv444); break; case OVERLAY_FORMAT_RGB: main_formats = ff_make_format_list(main_pix_fmts_rgb); overlay_formats = ff_make_format_list(overlay_pix_fmts_rgb); break; default: av_assert0(0); } ff_formats_ref(main_formats, &ctx->inputs [MAIN ]->out_formats); ff_formats_ref(overlay_formats, &ctx->inputs [OVERLAY]->out_formats); ff_formats_ref(main_formats, &ctx->outputs[MAIN ]->in_formats ); return 0; } static const enum AVPixelFormat alpha_pix_fmts[] = { AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_NONE }; static int config_input_main(AVFilterLink *inlink) { OverlayContext *over = inlink->dst->priv; const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format); av_image_fill_max_pixsteps(over->main_pix_step, NULL, pix_desc); over->hsub = pix_desc->log2_chroma_w; over->vsub = pix_desc->log2_chroma_h; over->main_is_packed_rgb = ff_fill_rgba_map(over->main_rgba_map, inlink->format) >= 0; over->main_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts); return 0; } static int config_input_overlay(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; OverlayContext *over = inlink->dst->priv; int ret; const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format); av_image_fill_max_pixsteps(over->overlay_pix_step, NULL, pix_desc); /* Finish the configuration by evaluating the expressions now when both inputs are configured. */ over->var_values[VAR_MAIN_W ] = over->var_values[VAR_MW] = ctx->inputs[MAIN ]->w; over->var_values[VAR_MAIN_H ] = over->var_values[VAR_MH] = ctx->inputs[MAIN ]->h; over->var_values[VAR_OVERLAY_W] = over->var_values[VAR_OW] = ctx->inputs[OVERLAY]->w; over->var_values[VAR_OVERLAY_H] = over->var_values[VAR_OH] = ctx->inputs[OVERLAY]->h; over->var_values[VAR_HSUB] = 1<log2_chroma_w; over->var_values[VAR_VSUB] = 1<log2_chroma_h; over->var_values[VAR_X] = NAN; over->var_values[VAR_Y] = NAN; over->var_values[VAR_N] = 0; over->var_values[VAR_T] = NAN; over->var_values[VAR_POS] = NAN; if ((ret = set_expr(&over->x_pexpr, over->x_expr, "x", ctx)) < 0 || (ret = set_expr(&over->y_pexpr, over->y_expr, "y", ctx)) < 0 || (ret = set_expr(&over->enable_pexpr, over->enable_expr, "enable", ctx)) < 0) return ret; over->overlay_is_packed_rgb = ff_fill_rgba_map(over->overlay_rgba_map, inlink->format) >= 0; over->overlay_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts); if (over->eval_mode == EVAL_MODE_INIT) { eval_expr(ctx, EVAL_ALL); av_log(ctx, AV_LOG_VERBOSE, "x:%f xi:%d y:%f yi:%d enable:%f\n", over->var_values[VAR_X], over->x, over->var_values[VAR_Y], over->y, over->enable); } av_log(ctx, AV_LOG_VERBOSE, "main w:%d h:%d fmt:%s overlay w:%d h:%d fmt:%s\n", ctx->inputs[MAIN]->w, ctx->inputs[MAIN]->h, av_get_pix_fmt_name(ctx->inputs[MAIN]->format), ctx->inputs[OVERLAY]->w, ctx->inputs[OVERLAY]->h, av_get_pix_fmt_name(ctx->inputs[OVERLAY]->format)); return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; outlink->w = ctx->inputs[MAIN]->w; outlink->h = ctx->inputs[MAIN]->h; outlink->time_base = ctx->inputs[MAIN]->time_base; return 0; } // divide by 255 and round to nearest // apply a fast variant: (X+127)/255 = ((X+127)*257+257)>>16 = ((X+128)*257)>>16 #define FAST_DIV255(x) ((((x) + 128) * 257) >> 16) // calculate the unpremultiplied alpha, applying the general equation: // alpha = alpha_overlay / ( (alpha_main + alpha_overlay) - (alpha_main * alpha_overlay) ) // (((x) << 16) - ((x) << 9) + (x)) is a faster version of: 255 * 255 * x // ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x)) is a faster version of: 255 * (x + y) #define UNPREMULTIPLY_ALPHA(x, y) ((((x) << 16) - ((x) << 9) + (x)) / ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x))) /** * Blend image in src to destination buffer dst at position (x, y). */ static void blend_image(AVFilterContext *ctx, AVFrame *dst, AVFrame *src, int x, int y) { OverlayContext *over = ctx->priv; int i, imax, j, jmax, k, kmax; const int src_w = src->width; const int src_h = src->height; const int dst_w = dst->width; const int dst_h = dst->height; if (x >= dst_w || x+dst_w < 0 || y >= dst_h || y+dst_h < 0) return; /* no intersection */ if (over->main_is_packed_rgb) { uint8_t alpha; ///< the amount of overlay to blend on to main const int dr = over->main_rgba_map[R]; const int dg = over->main_rgba_map[G]; const int db = over->main_rgba_map[B]; const int da = over->main_rgba_map[A]; const int dstep = over->main_pix_step[0]; const int sr = over->overlay_rgba_map[R]; const int sg = over->overlay_rgba_map[G]; const int sb = over->overlay_rgba_map[B]; const int sa = over->overlay_rgba_map[A]; const int sstep = over->overlay_pix_step[0]; const int main_has_alpha = over->main_has_alpha; uint8_t *s, *sp, *d, *dp; i = FFMAX(-y, 0); sp = src->data[0] + i * src->linesize[0]; dp = dst->data[0] + (y+i) * dst->linesize[0]; for (imax = FFMIN(-y + dst_h, src_h); i < imax; i++) { j = FFMAX(-x, 0); s = sp + j * sstep; d = dp + (x+j) * dstep; for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) { alpha = s[sa]; // if the main channel has an alpha channel, alpha has to be calculated // to create an un-premultiplied (straight) alpha value if (main_has_alpha && alpha != 0 && alpha != 255) { uint8_t alpha_d = d[da]; alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); } switch (alpha) { case 0: break; case 255: d[dr] = s[sr]; d[dg] = s[sg]; d[db] = s[sb]; break; default: // main_value = main_value * (1 - alpha) + overlay_value * alpha // since alpha is in the range 0-255, the result must divided by 255 d[dr] = FAST_DIV255(d[dr] * (255 - alpha) + s[sr] * alpha); d[dg] = FAST_DIV255(d[dg] * (255 - alpha) + s[sg] * alpha); d[db] = FAST_DIV255(d[db] * (255 - alpha) + s[sb] * alpha); } if (main_has_alpha) { switch (alpha) { case 0: break; case 255: d[da] = s[sa]; break; default: // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha d[da] += FAST_DIV255((255 - d[da]) * s[sa]); } } d += dstep; s += sstep; } dp += dst->linesize[0]; sp += src->linesize[0]; } } else { const int main_has_alpha = over->main_has_alpha; if (main_has_alpha) { uint8_t alpha; ///< the amount of overlay to blend on to main uint8_t *s, *sa, *d, *da; i = FFMAX(-y, 0); sa = src->data[3] + i * src->linesize[3]; da = dst->data[3] + (y+i) * dst->linesize[3]; for (imax = FFMIN(-y + dst_h, src_h); i < imax; i++) { j = FFMAX(-x, 0); s = sa + j; d = da + x+j; for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) { alpha = *s; if (alpha != 0 && alpha != 255) { uint8_t alpha_d = *d; alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); } switch (alpha) { case 0: break; case 255: *d = *s; break; default: // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha *d += FAST_DIV255((255 - *d) * *s); } d += 1; s += 1; } da += dst->linesize[3]; sa += src->linesize[3]; } } for (i = 0; i < 3; i++) { int hsub = i ? over->hsub : 0; int vsub = i ? over->vsub : 0; int src_wp = FFALIGN(src_w, 1<> hsub; int src_hp = FFALIGN(src_h, 1<> vsub; int dst_wp = FFALIGN(dst_w, 1<> hsub; int dst_hp = FFALIGN(dst_h, 1<> vsub; int yp = y>>vsub; int xp = x>>hsub; uint8_t *s, *sp, *d, *dp, *a, *ap; j = FFMAX(-yp, 0); sp = src->data[i] + j * src->linesize[i]; dp = dst->data[i] + (yp+j) * dst->linesize[i]; ap = src->data[3] + (j<linesize[3]; for (jmax = FFMIN(-yp + dst_hp, src_hp); j < jmax; j++) { k = FFMAX(-xp, 0); d = dp + xp+k; s = sp + k; a = ap + (k<linesize[3]] + a[1] + a[src->linesize[3]+1]) >> 2; } else if (hsub || vsub) { alpha_h = hsub && k+1 < src_wp ? (a[0] + a[1]) >> 1 : a[0]; alpha_v = vsub && j+1 < src_hp ? (a[0] + a[src->linesize[3]]) >> 1 : a[0]; alpha = (alpha_v + alpha_h) >> 1; } else alpha = a[0]; // if the main channel has an alpha channel, alpha has to be calculated // to create an un-premultiplied (straight) alpha value if (main_has_alpha && alpha != 0 && alpha != 255) { // average alpha for color components, improve quality uint8_t alpha_d; if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) { alpha_d = (d[0] + d[src->linesize[3]] + d[1] + d[src->linesize[3]+1]) >> 2; } else if (hsub || vsub) { alpha_h = hsub && k+1 < src_wp ? (d[0] + d[1]) >> 1 : d[0]; alpha_v = vsub && j+1 < src_hp ? (d[0] + d[src->linesize[3]]) >> 1 : d[0]; alpha_d = (alpha_v + alpha_h) >> 1; } else alpha_d = d[0]; alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); } *d = FAST_DIV255(*d * (255 - alpha) + *s * alpha); s++; d++; a += 1 << hsub; } dp += dst->linesize[i]; sp += src->linesize[i]; ap += (1 << vsub) * src->linesize[3]; } } } } static int try_filter_frame(AVFilterContext *ctx, AVFrame *mainpic) { OverlayContext *over = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; AVFrame *next_overpic; int ret; /* Discard obsolete overlay frames: if there is a next overlay frame with pts * before the main frame, we can drop the current overlay. */ while (1) { next_overpic = ff_bufqueue_peek(&over->queue_over, 0); if (!next_overpic && over->overlay_eof && !over->repeatlast) { av_frame_free(&over->overpicref); break; } if (!next_overpic || av_compare_ts(next_overpic->pts, ctx->inputs[OVERLAY]->time_base, mainpic->pts , ctx->inputs[MAIN]->time_base) > 0) break; ff_bufqueue_get(&over->queue_over); av_frame_free(&over->overpicref); over->overpicref = next_overpic; } /* If there is no next frame and no EOF and the overlay frame is before * the main frame, we can not know yet if it will be superseded. */ if (!over->queue_over.available && !over->overlay_eof && (!over->overpicref || av_compare_ts(over->overpicref->pts, ctx->inputs[OVERLAY]->time_base, mainpic->pts , ctx->inputs[MAIN]->time_base) < 0)) return AVERROR(EAGAIN); /* At this point, we know that the current overlay frame extends to the * time of the main frame. */ av_dlog(ctx, "main_pts:%s main_pts_time:%s", av_ts2str(mainpic->pts), av_ts2timestr(mainpic->pts, &ctx->inputs[MAIN]->time_base)); if (over->overpicref) av_dlog(ctx, " over_pts:%s over_pts_time:%s", av_ts2str(over->overpicref->pts), av_ts2timestr(over->overpicref->pts, &ctx->inputs[OVERLAY]->time_base)); av_dlog(ctx, "\n"); if (over->overpicref) { if (over->eval_mode == EVAL_MODE_FRAME) { int64_t pos = av_frame_get_pkt_pos(mainpic); over->var_values[VAR_T] = mainpic->pts == AV_NOPTS_VALUE ? NAN : mainpic->pts * av_q2d(inlink->time_base); over->var_values[VAR_POS] = pos == -1 ? NAN : pos; eval_expr(ctx, EVAL_ALL); av_log(ctx, AV_LOG_DEBUG, "n:%f t:%f pos:%f x:%f xi:%d y:%f yi:%d enable:%f\n", over->var_values[VAR_N], over->var_values[VAR_T], over->var_values[VAR_POS], over->var_values[VAR_X], over->x, over->var_values[VAR_Y], over->y, over->enable); } if (over->enable) blend_image(ctx, mainpic, over->overpicref, over->x, over->y); over->var_values[VAR_N] += 1.0; } ret = ff_filter_frame(ctx->outputs[0], mainpic); av_assert1(ret != AVERROR(EAGAIN)); over->frame_requested = 0; return ret; } static int try_filter_next_frame(AVFilterContext *ctx) { OverlayContext *over = ctx->priv; AVFrame *next_mainpic = ff_bufqueue_peek(&over->queue_main, 0); int ret; if (!next_mainpic) return AVERROR(EAGAIN); if ((ret = try_filter_frame(ctx, next_mainpic)) == AVERROR(EAGAIN)) return ret; ff_bufqueue_get(&over->queue_main); return ret; } static int flush_frames(AVFilterContext *ctx) { int ret; while (!(ret = try_filter_next_frame(ctx))); return ret == AVERROR(EAGAIN) ? 0 : ret; } static int filter_frame_main(AVFilterLink *inlink, AVFrame *inpicref) { AVFilterContext *ctx = inlink->dst; OverlayContext *over = ctx->priv; int ret; if ((ret = flush_frames(ctx)) < 0) return ret; if ((ret = try_filter_frame(ctx, inpicref)) < 0) { if (ret != AVERROR(EAGAIN)) return ret; ff_bufqueue_add(ctx, &over->queue_main, inpicref); } if (!over->overpicref) return 0; flush_frames(ctx); return 0; } static int filter_frame_over(AVFilterLink *inlink, AVFrame *inpicref) { AVFilterContext *ctx = inlink->dst; OverlayContext *over = ctx->priv; int ret; if ((ret = flush_frames(ctx)) < 0) return ret; ff_bufqueue_add(ctx, &over->queue_over, inpicref); ret = try_filter_next_frame(ctx); return ret == AVERROR(EAGAIN) ? 0 : ret; } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; OverlayContext *over = ctx->priv; int input, ret; if (!try_filter_next_frame(ctx)) return 0; over->frame_requested = 1; while (over->frame_requested) { /* TODO if we had a frame duration, we could guess more accurately */ input = !over->overlay_eof && (over->queue_main.available || over->queue_over.available < 2) ? OVERLAY : MAIN; ret = ff_request_frame(ctx->inputs[input]); /* EOF on main is reported immediately */ if (ret == AVERROR_EOF && input == OVERLAY) { over->overlay_eof = 1; if (over->shortest) return ret; if ((ret = try_filter_next_frame(ctx)) != AVERROR(EAGAIN)) return ret; ret = 0; /* continue requesting frames on main */ } if (ret < 0) return ret; } return 0; } #define OFFSET(x) offsetof(OverlayContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption overlay_options[] = { { "x", "set the x expression", OFFSET(x_expr), AV_OPT_TYPE_STRING, {.str = "0"}, CHAR_MIN, CHAR_MAX, FLAGS }, { "y", "set the y expression", OFFSET(y_expr), AV_OPT_TYPE_STRING, {.str = "0"}, CHAR_MIN, CHAR_MAX, FLAGS }, { "enable", "set expression which enables overlay", OFFSET(enable_expr), AV_OPT_TYPE_STRING, {.str = "1"}, .flags = FLAGS }, { "eval", "specify when to evaluate expressions", OFFSET(eval_mode), AV_OPT_TYPE_INT, {.i64 = EVAL_MODE_FRAME}, 0, EVAL_MODE_NB-1, FLAGS, "eval" }, { "init", "eval expressions once during initialization", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_INIT}, .flags = FLAGS, .unit = "eval" }, { "frame", "eval expressions per-frame", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_FRAME}, .flags = FLAGS, .unit = "eval" }, { "rgb", "force packed RGB in input and output (deprecated)", OFFSET(allow_packed_rgb), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS }, { "shortest", "force termination when the shortest input terminates", OFFSET(shortest), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS }, { "format", "set output format", OFFSET(format), AV_OPT_TYPE_INT, {.i64=OVERLAY_FORMAT_YUV420}, 0, OVERLAY_FORMAT_NB-1, FLAGS, "format" }, { "yuv420", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV420}, .flags = FLAGS, .unit = "format" }, { "yuv444", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV444}, .flags = FLAGS, .unit = "format" }, { "rgb", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_RGB}, .flags = FLAGS, .unit = "format" }, { "repeatlast", "repeat overlay of the last overlay frame", OFFSET(repeatlast), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(overlay); static const AVFilterPad avfilter_vf_overlay_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_VIDEO, .get_video_buffer = ff_null_get_video_buffer, .config_props = config_input_main, .filter_frame = filter_frame_main, .needs_writable = 1, }, { .name = "overlay", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_overlay, .filter_frame = filter_frame_over, }, { NULL } }; static const AVFilterPad avfilter_vf_overlay_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, .request_frame = request_frame, }, { NULL } }; AVFilter avfilter_vf_overlay = { .name = "overlay", .description = NULL_IF_CONFIG_SMALL("Overlay a video source on top of the input."), .init = init, .uninit = uninit, .priv_size = sizeof(OverlayContext), .priv_class = &overlay_class, .query_formats = query_formats, .process_command = process_command, .inputs = avfilter_vf_overlay_inputs, .outputs = avfilter_vf_overlay_outputs, };