1
mirror of https://git.videolan.org/git/ffmpeg.git synced 2024-10-05 18:01:59 +02:00

avfilter/af_headphone: Avoid intermediate buffers II

When the headphone filter is configured to perform its processing in the
frequency domain, it allocates (among other things) two pairs of
buffers, all of the same size. One pair is used to store data in it
during the initialization of the filter; the other pair is only
allocated lateron. It is zero-initialized and yet its data is
immediately overwritten by the content of the other pair of buffers
mentioned above; the latter pair is then freed.

This commit eliminates the pair of intermediate buffers.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
This commit is contained in:
Andreas Rheinhardt 2020-08-25 15:35:23 +02:00
parent f5e1d38b87
commit d883bca0f0

View File

@ -371,8 +371,6 @@ static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
int nb_irs = s->nb_irs;
int nb_input_channels = ctx->inputs[0]->channels;
float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10);
FFTComplex *data_hrtf_l = NULL;
FFTComplex *data_hrtf_r = NULL;
FFTComplex *fft_in_l = NULL;
FFTComplex *fft_in_r = NULL;
int offset = 0, ret = 0;
@ -439,9 +437,9 @@ static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
goto fail;
}
} else {
data_hrtf_l = av_calloc(n_fft, sizeof(*data_hrtf_l) * nb_irs);
data_hrtf_r = av_calloc(n_fft, sizeof(*data_hrtf_r) * nb_irs);
if (!data_hrtf_r || !data_hrtf_l) {
s->data_hrtf[0] = av_calloc(n_fft, sizeof(*s->data_hrtf[0]) * nb_irs);
s->data_hrtf[1] = av_calloc(n_fft, sizeof(*s->data_hrtf[1]) * nb_irs);
if (!s->data_hrtf[0] || !s->data_hrtf[1]) {
ret = AVERROR(ENOMEM);
goto fail;
}
@ -488,10 +486,10 @@ static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
av_fft_permute(s->fft[0], fft_in_l);
av_fft_calc(s->fft[0], fft_in_l);
memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
memcpy(s->data_hrtf[0] + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
av_fft_permute(s->fft[0], fft_in_r);
av_fft_calc(s->fft[0], fft_in_r);
memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
memcpy(s->data_hrtf[1] + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
}
} else {
int I, N = ctx->inputs[1]->channels;
@ -529,10 +527,10 @@ static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
av_fft_permute(s->fft[0], fft_in_l);
av_fft_calc(s->fft[0], fft_in_l);
memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
memcpy(s->data_hrtf[0] + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
av_fft_permute(s->fft[0], fft_in_r);
av_fft_calc(s->fft[0], fft_in_r);
memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
memcpy(s->data_hrtf[1] + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
}
}
}
@ -540,20 +538,6 @@ static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
av_frame_free(&s->in[i + 1].frame);
}
if (s->type == FREQUENCY_DOMAIN) {
s->data_hrtf[0] = av_calloc(n_fft * s->nb_irs, sizeof(FFTComplex));
s->data_hrtf[1] = av_calloc(n_fft * s->nb_irs, sizeof(FFTComplex));
if (!s->data_hrtf[0] || !s->data_hrtf[1]) {
ret = AVERROR(ENOMEM);
goto fail;
}
memcpy(s->data_hrtf[0], data_hrtf_l,
sizeof(FFTComplex) * nb_irs * n_fft);
memcpy(s->data_hrtf[1], data_hrtf_r,
sizeof(FFTComplex) * nb_irs * n_fft);
}
s->have_hrirs = 1;
fail:
@ -561,9 +545,6 @@ fail:
for (i = 0; i < s->nb_inputs - 1; i++)
av_frame_free(&s->in[i + 1].frame);
av_freep(&data_hrtf_l);
av_freep(&data_hrtf_r);
av_freep(&fft_in_l);
av_freep(&fft_in_r);