1
mirror of https://git.videolan.org/git/ffmpeg.git synced 2024-10-05 09:59:52 +02:00

Trivial, Cosmetics, mostly brace placement changes

Originally committed as revision 15984 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Reynaldo H. Verdejo Pinochet 2008-12-02 18:25:17 +00:00
parent 3e16cde430
commit cf13954134

View File

@ -49,25 +49,26 @@ typedef enum
RATE_FULL RATE_FULL
} qcelp_packet_rate; } qcelp_packet_rate;
typedef struct { typedef struct
{
GetBitContext gb; GetBitContext gb;
qcelp_packet_rate bitrate; qcelp_packet_rate bitrate;
QCELPFrame frame; /*!< unpacked data frame */ QCELPFrame frame; /*!< unpacked data frame */
uint8_t erasure_count;
uint8_t octave_count; /*!< count the consecutive RATE_OCTAVE frames */ uint8_t erasure_count;
float prev_lspf[10]; uint8_t octave_count; /*!< count the consecutive RATE_OCTAVE frames */
float predictor_lspf[10]; /*!< LSP predictor, float prev_lspf[10];
only use for RATE_OCTAVE and I_F_Q */ float predictor_lspf[10];/*!< LSP predictor, only use for RATE_OCTAVE and I_F_Q */
float pitch_synthesis_filter_mem[303]; float pitch_synthesis_filter_mem[303];
float pitch_pre_filter_mem[303]; float pitch_pre_filter_mem[303];
float rnd_fir_filter_mem[180]; float rnd_fir_filter_mem[180];
float formant_mem[170]; float formant_mem[170];
float last_codebook_gain; float last_codebook_gain;
int prev_g1[2]; int prev_g1[2];
int prev_bitrate; int prev_bitrate;
float pitch_gain[4]; float pitch_gain[4];
uint8_t pitch_lag[4]; uint8_t pitch_lag[4];
uint16_t first16bits; uint16_t first16bits;
} QCELPContext; } QCELPContext;
/** /**
@ -100,8 +101,8 @@ static av_cold int qcelp_decode_init(AVCodecContext *avctx)
avctx->sample_fmt = SAMPLE_FMT_FLT; avctx->sample_fmt = SAMPLE_FMT_FLT;
for (i = 0; i < 10; i++) for(i=0; i<10; i++)
q->prev_lspf[i] = (i + 1) / 11.; q->prev_lspf[i] = (i+1)/11.;
return 0; return 0;
} }
@ -120,14 +121,14 @@ static av_cold int qcelp_decode_init(AVCodecContext *avctx)
static int decode_lspf(QCELPContext *q, float *lspf) static int decode_lspf(QCELPContext *q, float *lspf)
{ {
int i; int i;
float tmp_lspf; float tmp_lspf, smooth, erasure_coeff;
const float *predictors;
if(q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q) if(q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q)
{ {
float smooth; predictors = (q->prev_bitrate != RATE_OCTAVE &&
const float *predictors = (q->prev_bitrate != RATE_OCTAVE && q->prev_bitrate != I_F_Q ?
q->prev_bitrate != I_F_Q ? q->prev_lspf q->prev_lspf : q->predictor_lspf);
: q->predictor_lspf);
if(q->bitrate == RATE_OCTAVE) if(q->bitrate == RATE_OCTAVE)
{ {
@ -144,7 +145,7 @@ static int decode_lspf(QCELPContext *q, float *lspf)
smooth = (q->octave_count < 10 ? .875 : 0.1); smooth = (q->octave_count < 10 ? .875 : 0.1);
}else }else
{ {
float erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR; erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
assert(q->bitrate == I_F_Q); assert(q->bitrate == I_F_Q);
@ -215,21 +216,26 @@ static void decode_gain_and_index(QCELPContext *q,
int i, subframes_count, g1[16]; int i, subframes_count, g1[16];
float slope; float slope;
if (q->bitrate >= RATE_QUARTER) { if(q->bitrate >= RATE_QUARTER)
switch (q->bitrate) { {
switch(q->bitrate)
{
case RATE_FULL: subframes_count = 16; break; case RATE_FULL: subframes_count = 16; break;
case RATE_HALF: subframes_count = 4; break; case RATE_HALF: subframes_count = 4; break;
default: subframes_count = 5; default: subframes_count = 5;
} }
for (i = 0; i < subframes_count; i++) { for(i=0; i<subframes_count; i++)
{
g1[i] = 4 * q->frame.cbgain[i]; g1[i] = 4 * q->frame.cbgain[i];
if (q->bitrate == RATE_FULL && !((i+1) & 3)) { if(q->bitrate == RATE_FULL && !((i+1) & 3))
{
g1[i] += av_clip((g1[i-1] + g1[i-2] + g1[i-3]) / 3 - 6, 0, 32); g1[i] += av_clip((g1[i-1] + g1[i-2] + g1[i-3]) / 3 - 6, 0, 32);
} }
gain[i] = qcelp_g12ga[g1[i]]; gain[i] = qcelp_g12ga[g1[i]];
if (q->frame.cbsign[i]) { if(q->frame.cbsign[i])
{
gain[i] = -gain[i]; gain[i] = -gain[i];
q->frame.cindex[i] = (q->frame.cindex[i]-89) & 127; q->frame.cindex[i] = (q->frame.cindex[i]-89) & 127;
} }
@ -239,7 +245,8 @@ static void decode_gain_and_index(QCELPContext *q,
q->prev_g1[1] = g1[i-1]; q->prev_g1[1] = g1[i-1];
q->last_codebook_gain = qcelp_g12ga[g1[i-1]]; q->last_codebook_gain = qcelp_g12ga[g1[i-1]];
if (q->bitrate == RATE_QUARTER) { if(q->bitrate == RATE_QUARTER)
{
// Provide smoothing of the unvoiced excitation energy. // Provide smoothing of the unvoiced excitation energy.
gain[7] = gain[4]; gain[7] = gain[4];
gain[6] = 0.4*gain[3] + 0.6*gain[4]; gain[6] = 0.4*gain[3] + 0.6*gain[4];
@ -249,31 +256,35 @@ static void decode_gain_and_index(QCELPContext *q,
gain[2] = gain[1]; gain[2] = gain[1];
gain[1] = 0.6*gain[0] + 0.4*gain[1]; gain[1] = 0.6*gain[0] + 0.4*gain[1];
} }
} else { }else
if (q->bitrate == RATE_OCTAVE) { {
if(q->bitrate == RATE_OCTAVE)
{
g1[0] = 2 * q->frame.cbgain[0] g1[0] = 2 * q->frame.cbgain[0]
+ av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54); + av_clip((q->prev_g1[0] + q->prev_g1[1]) / 2 - 5, 0, 54);
subframes_count = 8; subframes_count = 8;
} else { }else
{
assert(q->bitrate == I_F_Q); assert(q->bitrate == I_F_Q);
g1[0] = q->prev_g1[1]; g1[0] = q->prev_g1[1];
switch (q->erasure_count) { switch(q->erasure_count)
case 1 : break; {
case 2 : g1[0] -= 1; break; case 1 : break;
case 3 : g1[0] -= 2; break; case 2 : g1[0] -= 1; break;
default: g1[0] -= 6; case 3 : g1[0] -= 2; break;
default: g1[0] -= 6;
} }
if (g1[0] < 0) if(g1[0] < 0)
g1[0] = 0; g1[0] = 0;
subframes_count = 4; subframes_count = 4;
} }
// This interpolation is done to produce smoother background noise. // This interpolation is done to produce smoother background noise.
slope = 0.5*(qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count; slope = 0.5*(qcelp_g12ga[g1[0]] - q->last_codebook_gain) / subframes_count;
for (i = 1; i <= subframes_count; i++) for(i=1; i<=subframes_count; i++)
gain[i-1] = q->last_codebook_gain + slope * i; gain[i-1] = q->last_codebook_gain + slope * i;
q->last_codebook_gain = gain[i-2];
q->last_codebook_gain = gain[i-2];
q->prev_g1[0] = q->prev_g1[1]; q->prev_g1[0] = q->prev_g1[1];
q->prev_g1[1] = g1[0]; q->prev_g1[1] = g1[0];
} }
@ -290,11 +301,11 @@ static void decode_gain_and_index(QCELPContext *q,
*/ */
static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain) static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
{ {
int i, prev_diff=0; int i, diff, prev_diff=0;
for(i=1; i<5; i++) for(i=1; i<5; i++)
{ {
int diff = cbgain[i] - cbgain[i-1]; diff = cbgain[i] - cbgain[i-1];
if(FFABS(diff) > 10) if(FFABS(diff) > 10)
return -1; return -1;
else if(FFABS(diff - prev_diff) > 12) else if(FFABS(diff - prev_diff) > 12)
@ -501,46 +512,54 @@ static const float *do_pitchfilter(float memory[303], const float v_in[160],
* @param q the context * @param q the context
* @param cdn_vector the scaled codebook vector * @param cdn_vector the scaled codebook vector
*/ */
static void apply_pitch_filters(QCELPContext *q, static void apply_pitch_filters(QCELPContext *q, float *cdn_vector)
float *cdn_vector) { {
int i; int i;
const float *v_synthesis_filtered, *v_pre_filtered; const float *v_synthesis_filtered, *v_pre_filtered;
if (q->bitrate >= RATE_HALF || if(q->bitrate >= RATE_HALF ||
(q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF))) { (q->bitrate == I_F_Q && (q->prev_bitrate >= RATE_HALF)))
{
if (q->bitrate >= RATE_HALF) { if(q->bitrate >= RATE_HALF)
{
// Compute gain & lag for the whole frame. // Compute gain & lag for the whole frame.
for (i = 0; i < 4; i++) { for(i=0; i<4; i++)
{
q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0; q->pitch_gain[i] = q->frame.plag[i] ? (q->frame.pgain[i] + 1) * 0.25 : 0.0;
q->pitch_lag[i] = q->frame.plag[i] + 16; q->pitch_lag[i] = q->frame.plag[i] + 16;
} }
} else { }else
float max_pitch_gain = q->erasure_count < 3 ? 0.9 - 0.3 * (q->erasure_count - 1) {
: 0.0; float max_pitch_gain = q->erasure_count < 3 ? 0.9 - 0.3 * (q->erasure_count - 1) : 0.0;
for (i = 0; i < 4; i++) for(i=0; i<4; i++)
q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain); q->pitch_gain[i] = FFMIN(q->pitch_gain[i], max_pitch_gain);
memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac)); memset(q->frame.pfrac, 0, sizeof(q->frame.pfrac));
} }
// pitch synthesis filter // pitch synthesis filter
v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem, cdn_vector, v_synthesis_filtered = do_pitchfilter(q->pitch_synthesis_filter_mem,
q->pitch_gain, q->pitch_lag, q->frame.pfrac); cdn_vector, q->pitch_gain,
q->pitch_lag, q->frame.pfrac);
// pitch prefilter update // pitch prefilter update
for (i = 0; i < 4; i++) for(i=0; i<4; i++)
q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0); q->pitch_gain[i] = 0.5 * FFMIN(q->pitch_gain[i], 1.0);
v_pre_filtered = do_pitchfilter(q->pitch_pre_filter_mem, v_synthesis_filtered, v_pre_filtered = do_pitchfilter(q->pitch_pre_filter_mem,
q->pitch_gain, q->pitch_lag, q->frame.pfrac); v_synthesis_filtered,
q->pitch_gain, q->pitch_lag,
q->frame.pfrac);
apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered); apply_gain_ctrl(cdn_vector, v_synthesis_filtered, v_pre_filtered);
} else { }else
memcpy(q->pitch_synthesis_filter_mem, cdn_vector + 17, 143 * sizeof(float)); {
memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float)); memcpy(q->pitch_synthesis_filter_mem, cdn_vector + 17,
143 * sizeof(float));
memcpy(q->pitch_pre_filter_mem, cdn_vector + 17, 143 * sizeof(float));
memset(q->pitch_gain, 0, sizeof(q->pitch_gain)); memset(q->pitch_gain, 0, sizeof(q->pitch_gain));
memset(q->pitch_lag, 0, sizeof(q->pitch_lag)); memset(q->pitch_lag, 0, sizeof(q->pitch_lag));
} }
@ -575,7 +594,8 @@ void interpolate_lpc(QCELPContext *q, const float *curr_lspf, float *lpc,
weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf, weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
weight, 1.0 - weight, 10); weight, 1.0 - weight, 10);
ff_qcelp_lspf2lpc(interpolated_lspf, lpc); ff_qcelp_lspf2lpc(interpolated_lspf, lpc);
}else if(q->bitrate >= RATE_QUARTER || (q->bitrate == I_F_Q && !subframe_num)) }else if(q->bitrate >= RATE_QUARTER ||
(q->bitrate == I_F_Q && !subframe_num))
ff_qcelp_lspf2lpc(curr_lspf, lpc); ff_qcelp_lspf2lpc(curr_lspf, lpc);
} }
@ -583,16 +603,11 @@ static int buf_size2bitrate(const int buf_size)
{ {
switch(buf_size) switch(buf_size)
{ {
case 35: case 35: return RATE_FULL;
return RATE_FULL; case 17: return RATE_HALF;
case 17: case 8: return RATE_QUARTER;
return RATE_HALF; case 4: return RATE_OCTAVE;
case 8: case 1: return SILENCE;
return RATE_QUARTER;
case 4:
return RATE_OCTAVE;
case 1:
return SILENCE;
} }
return -1; return -1;
@ -610,27 +625,34 @@ static int buf_size2bitrate(const int buf_size)
* *
* TIA/EIA/IS-733 2.4.8.7.1 * TIA/EIA/IS-733 2.4.8.7.1
*/ */
static int determine_bitrate(AVCodecContext *avctx, static int determine_bitrate(AVCodecContext *avctx, const int buf_size,
const int buf_size, uint8_t **buf)
uint8_t **buf) { {
qcelp_packet_rate bitrate; qcelp_packet_rate bitrate;
if ((bitrate = buf_size2bitrate(buf_size)) >= 0) { if((bitrate = buf_size2bitrate(buf_size)) >= 0)
if (bitrate > **buf) { {
av_log(avctx, AV_LOG_WARNING, "Claimed bitrate and buffer size mismatch.\n"); if(bitrate > **buf)
{
av_log(avctx, AV_LOG_WARNING,
"Claimed bitrate and buffer size mismatch.\n");
bitrate = **buf; bitrate = **buf;
} else if (bitrate < **buf) { }else if(bitrate < **buf)
av_log(avctx, AV_LOG_ERROR, "Buffer is too small for the claimed bitrate.\n"); {
av_log(avctx, AV_LOG_ERROR,
"Buffer is too small for the claimed bitrate.\n");
return I_F_Q; return I_F_Q;
} }
(*buf)++; (*buf)++;
} else if ((bitrate = buf_size2bitrate(buf_size + 1)) >= 0) { }else if((bitrate = buf_size2bitrate(buf_size + 1)) >= 0)
{
av_log(avctx, AV_LOG_WARNING, av_log(avctx, AV_LOG_WARNING,
"Bitrate byte is missing, guessing the bitrate from packet size.\n"); "Bitrate byte is missing, guessing the bitrate from packet size.\n");
} else }else
return I_F_Q; return I_F_Q;
if (bitrate == SILENCE) { if(bitrate == SILENCE)
{
// FIXME: the decoder should not handle SILENCE frames as I_F_Q frames // FIXME: the decoder should not handle SILENCE frames as I_F_Q frames
av_log_missing_feature(avctx, "Blank frame", 1); av_log_missing_feature(avctx, "Blank frame", 1);
bitrate = I_F_Q; bitrate = I_F_Q;
@ -645,30 +667,31 @@ static void warn_insufficient_frame_quality(AVCodecContext *avctx,
message); message);
} }
static int qcelp_decode_frame(AVCodecContext *avctx, static int qcelp_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
void *data, uint8_t *buf, const int buf_size)
int *data_size, {
uint8_t *buf, QCELPContext *q = avctx->priv_data;
const int buf_size) { float *outbuffer = data;
QCELPContext *q = avctx->priv_data; int i;
float *outbuffer = data; float quantized_lspf[10], lpc[10];
int i; float gain[16];
float quantized_lspf[10], lpc[10]; float *formant_mem;
float gain[16];
float *formant_mem;
if ((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q) { if((q->bitrate = determine_bitrate(avctx, buf_size, &buf)) == I_F_Q)
{
warn_insufficient_frame_quality(avctx, "bitrate cannot be determined."); warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
goto erasure; goto erasure;
} }
if (q->bitrate == RATE_OCTAVE && if(q->bitrate == RATE_OCTAVE &&
(q->first16bits = AV_RB16(buf)) == 0xFFFF) { (q->first16bits = AV_RB16(buf)) == 0xFFFF)
{
warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on."); warn_insufficient_frame_quality(avctx, "Bitrate is 1/8 and first 16 bits are on.");
goto erasure; goto erasure;
} }
if (q->bitrate > SILENCE) { if(q->bitrate > SILENCE)
{
const QCELPBitmap *bitmaps = qcelp_unpacking_bitmaps_per_rate[q->bitrate]; const QCELPBitmap *bitmaps = qcelp_unpacking_bitmaps_per_rate[q->bitrate];
const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate] const QCELPBitmap *bitmaps_end = qcelp_unpacking_bitmaps_per_rate[q->bitrate]
+ qcelp_unpacking_bitmaps_lengths[q->bitrate]; + qcelp_unpacking_bitmaps_lengths[q->bitrate];
@ -678,22 +701,28 @@ static int qcelp_decode_frame(AVCodecContext *avctx,
memset(&q->frame, 0, sizeof(QCELPFrame)); memset(&q->frame, 0, sizeof(QCELPFrame));
for (; bitmaps < bitmaps_end; bitmaps++) for(; bitmaps < bitmaps_end; bitmaps++)
unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos; unpacked_data[bitmaps->index] |= get_bits(&q->gb, bitmaps->bitlen) << bitmaps->bitpos;
// Check for erasures/blanks on rates 1, 1/4 and 1/8. // Check for erasures/blanks on rates 1, 1/4 and 1/8.
if (q->frame.reserved) { if(q->frame.reserved)
{
warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area."); warn_insufficient_frame_quality(avctx, "Wrong data in reserved frame area.");
goto erasure; goto erasure;
} }
if (q->bitrate == RATE_QUARTER && codebook_sanity_check_for_rate_quarter(q->frame.cbgain)) { if(q->bitrate == RATE_QUARTER &&
codebook_sanity_check_for_rate_quarter(q->frame.cbgain))
{
warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed."); warn_insufficient_frame_quality(avctx, "Codebook gain sanity check failed.");
goto erasure; goto erasure;
} }
if (q->bitrate >= RATE_HALF) { if(q->bitrate >= RATE_HALF)
for (i = 0; i < 4; i++) { {
if (q->frame.pfrac[i] && q->frame.plag[i] >= 124) { for(i=0; i<4; i++)
{
if(q->frame.pfrac[i] && q->frame.plag[i] >= 124)
{
warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter."); warn_insufficient_frame_quality(avctx, "Cannot initialize pitch filter.");
goto erasure; goto erasure;
} }
@ -704,7 +733,8 @@ static int qcelp_decode_frame(AVCodecContext *avctx,
decode_gain_and_index(q, gain); decode_gain_and_index(q, gain);
compute_svector(q, gain, outbuffer); compute_svector(q, gain, outbuffer);
if (decode_lspf(q, quantized_lspf) < 0) { if(decode_lspf(q, quantized_lspf) < 0)
{
warn_insufficient_frame_quality(avctx, "Badly received packets in frame."); warn_insufficient_frame_quality(avctx, "Badly received packets in frame.");
goto erasure; goto erasure;
} }
@ -712,7 +742,8 @@ static int qcelp_decode_frame(AVCodecContext *avctx,
apply_pitch_filters(q, outbuffer); apply_pitch_filters(q, outbuffer);
if (q->bitrate == I_F_Q) { if(q->bitrate == I_F_Q)
{
erasure: erasure:
q->bitrate = I_F_Q; q->bitrate = I_F_Q;
q->erasure_count++; q->erasure_count++;
@ -720,13 +751,15 @@ erasure:
compute_svector(q, gain, outbuffer); compute_svector(q, gain, outbuffer);
decode_lspf(q, quantized_lspf); decode_lspf(q, quantized_lspf);
apply_pitch_filters(q, outbuffer); apply_pitch_filters(q, outbuffer);
} else }else
q->erasure_count = 0; q->erasure_count = 0;
formant_mem = q->formant_mem + 10; formant_mem = q->formant_mem + 10;
for (i = 0; i < 4; i++) { for(i=0; i<4; i++)
{
interpolate_lpc(q, quantized_lspf, lpc, i); interpolate_lpc(q, quantized_lspf, lpc, i);
ff_celp_lp_synthesis_filterf(formant_mem, lpc, outbuffer + i * 40, 40, 10); ff_celp_lp_synthesis_filterf(formant_mem, lpc, outbuffer + i * 40, 40,
10);
formant_mem += 40; formant_mem += 40;
} }
memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float)); memcpy(q->formant_mem, q->formant_mem + 160, 10 * sizeof(float));
@ -735,8 +768,9 @@ erasure:
// TIA/EIA/IS-733 2.4.8.6 // TIA/EIA/IS-733 2.4.8.6
formant_mem = q->formant_mem + 10; formant_mem = q->formant_mem + 10;
for (i = 0; i < 160; i++) for(i=0; i<160; i++)
*outbuffer++ = av_clipf(*formant_mem++, QCELP_CLIP_LOWER_BOUND, QCELP_CLIP_UPPER_BOUND); *outbuffer++ = av_clipf(*formant_mem++, QCELP_CLIP_LOWER_BOUND,
QCELP_CLIP_UPPER_BOUND);
memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf)); memcpy(q->prev_lspf, quantized_lspf, sizeof(q->prev_lspf));
q->prev_bitrate = q->bitrate; q->prev_bitrate = q->bitrate;