ac3dec: cosmetics: pretty-printing

Signed-off-by: Justin Ruggles <justin.ruggles@gmail.com>
This commit is contained in:
Chris Berov 2011-12-02 17:46:01 +02:00 committed by Justin Ruggles
parent a4e21baa74
commit 541d083a40
1 changed files with 261 additions and 248 deletions

View File

@ -44,7 +44,6 @@
*/
static uint8_t ungroup_3_in_7_bits_tab[128][3];
/** tables for ungrouping mantissas */
static int b1_mantissas[32][3];
static int b2_mantissas[128][3];
@ -124,7 +123,7 @@ static av_cold void ac3_tables_init(void)
/* generate table for ungrouping 3 values in 7 bits
reference: Section 7.1.3 Exponent Decoding */
for(i=0; i<128; i++) {
for (i = 0; i < 128; i++) {
ungroup_3_in_7_bits_tab[i][0] = i / 25;
ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
@ -132,13 +131,13 @@ static av_cold void ac3_tables_init(void)
/* generate grouped mantissa tables
reference: Section 7.3.5 Ungrouping of Mantissas */
for(i=0; i<32; i++) {
for (i = 0; i < 32; i++) {
/* bap=1 mantissas */
b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
}
for(i=0; i<128; i++) {
for (i = 0; i < 128; i++) {
/* bap=2 mantissas */
b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
@ -150,24 +149,23 @@ static av_cold void ac3_tables_init(void)
}
/* generate ungrouped mantissa tables
reference: Tables 7.21 and 7.23 */
for(i=0; i<7; i++) {
for (i = 0; i < 7; i++) {
/* bap=3 mantissas */
b3_mantissas[i] = symmetric_dequant(i, 7);
}
for(i=0; i<15; i++) {
for (i = 0; i < 15; i++) {
/* bap=5 mantissas */
b5_mantissas[i] = symmetric_dequant(i, 15);
}
/* generate dynamic range table
reference: Section 7.7.1 Dynamic Range Control */
for(i=0; i<256; i++) {
for (i = 0; i < 256; i++) {
int v = (i >> 5) - ((i >> 7) << 3) - 5;
dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
}
}
/**
* AVCodec initialization
*/
@ -250,7 +248,7 @@ static int ac3_parse_header(AC3DecodeContext *s)
i = get_bits(gbc, 6);
do {
skip_bits(gbc, 8);
} while(i--);
} while (i--);
}
return 0;
@ -265,7 +263,7 @@ static int parse_frame_header(AC3DecodeContext *s)
int err;
err = avpriv_ac3_parse_header(&s->gbc, &hdr);
if(err)
if (err)
return err;
/* get decoding parameters from header info */
@ -287,9 +285,9 @@ static int parse_frame_header(AC3DecodeContext *s)
s->frame_type = hdr.frame_type;
s->substreamid = hdr.substreamid;
if(s->lfe_on) {
s->start_freq[s->lfe_ch] = 0;
s->end_freq[s->lfe_ch] = 7;
if (s->lfe_on) {
s->start_freq[s->lfe_ch] = 0;
s->end_freq[s->lfe_ch] = 7;
s->num_exp_groups[s->lfe_ch] = 2;
s->channel_in_cpl[s->lfe_ch] = 0;
}
@ -326,38 +324,39 @@ static void set_downmix_coeffs(AC3DecodeContext *s)
float smix = gain_levels[surround_levels[s->surround_mix_level]];
float norm0, norm1;
for(i=0; i<s->fbw_channels; i++) {
for (i = 0; i < s->fbw_channels; i++) {
s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
}
if(s->channel_mode > 1 && s->channel_mode & 1) {
if (s->channel_mode > 1 && s->channel_mode & 1) {
s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
}
if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
if (s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
int nf = s->channel_mode - 2;
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
}
if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
if (s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
int nf = s->channel_mode - 4;
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
}
/* renormalize */
norm0 = norm1 = 0.0;
for(i=0; i<s->fbw_channels; i++) {
for (i = 0; i < s->fbw_channels; i++) {
norm0 += s->downmix_coeffs[i][0];
norm1 += s->downmix_coeffs[i][1];
}
norm0 = 1.0f / norm0;
norm1 = 1.0f / norm1;
for(i=0; i<s->fbw_channels; i++) {
for (i = 0; i < s->fbw_channels; i++) {
s->downmix_coeffs[i][0] *= norm0;
s->downmix_coeffs[i][1] *= norm1;
}
if(s->output_mode == AC3_CHMODE_MONO) {
for(i=0; i<s->fbw_channels; i++)
s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
if (s->output_mode == AC3_CHMODE_MONO) {
for (i = 0; i < s->fbw_channels; i++)
s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] +
s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
}
}
@ -374,7 +373,7 @@ static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
/* unpack groups */
group_size = exp_strategy + (exp_strategy == EXP_D45);
for(grp=0,i=0; grp<ngrps; grp++) {
for (grp = 0, i = 0; grp < ngrps; grp++) {
expacc = get_bits(gbc, 7);
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
@ -383,15 +382,15 @@ static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
/* convert to absolute exps and expand groups */
prevexp = absexp;
for(i=0,j=0; i<ngrps*3; i++) {
for (i = 0, j = 0; i < ngrps * 3; i++) {
prevexp += dexp[i] - 2;
if (prevexp > 24U)
return -1;
switch (group_size) {
case 4: dexps[j++] = prevexp;
dexps[j++] = prevexp;
case 2: dexps[j++] = prevexp;
case 1: dexps[j++] = prevexp;
case 4: dexps[j++] = prevexp;
dexps[j++] = prevexp;
case 2: dexps[j++] = prevexp;
case 1: dexps[j++] = prevexp;
}
}
return 0;
@ -414,7 +413,8 @@ static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
if (s->channel_in_cpl[ch]) {
int cpl_coord = s->cpl_coords[ch][band] << 5;
for (bin = band_start; bin < band_end; bin++) {
s->fixed_coeffs[ch][bin] = MULH(s->fixed_coeffs[CPL_CH][bin] << 4, cpl_coord);
s->fixed_coeffs[ch][bin] =
MULH(s->fixed_coeffs[CPL_CH][bin] << 4, cpl_coord);
}
if (ch == 2 && s->phase_flags[band]) {
for (bin = band_start; bin < band_end; bin++)
@ -445,73 +445,70 @@ typedef struct {
static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
{
int start_freq = s->start_freq[ch_index];
int end_freq = s->end_freq[ch_index];
uint8_t *baps = s->bap[ch_index];
int8_t *exps = s->dexps[ch_index];
int *coeffs = s->fixed_coeffs[ch_index];
int dither = (ch_index == CPL_CH) || s->dither_flag[ch_index];
int end_freq = s->end_freq[ch_index];
uint8_t *baps = s->bap[ch_index];
int8_t *exps = s->dexps[ch_index];
int *coeffs = s->fixed_coeffs[ch_index];
int dither = (ch_index == CPL_CH) || s->dither_flag[ch_index];
GetBitContext *gbc = &s->gbc;
int freq;
for(freq = start_freq; freq < end_freq; freq++){
for (freq = start_freq; freq < end_freq; freq++) {
int bap = baps[freq];
int mantissa;
switch(bap){
case 0:
if (dither)
mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
else
mantissa = 0;
break;
case 1:
if(m->b1){
m->b1--;
mantissa = m->b1_mant[m->b1];
}
else{
int bits = get_bits(gbc, 5);
mantissa = b1_mantissas[bits][0];
m->b1_mant[1] = b1_mantissas[bits][1];
m->b1_mant[0] = b1_mantissas[bits][2];
m->b1 = 2;
}
break;
case 2:
if(m->b2){
m->b2--;
mantissa = m->b2_mant[m->b2];
}
else{
int bits = get_bits(gbc, 7);
mantissa = b2_mantissas[bits][0];
m->b2_mant[1] = b2_mantissas[bits][1];
m->b2_mant[0] = b2_mantissas[bits][2];
m->b2 = 2;
}
break;
case 3:
mantissa = b3_mantissas[get_bits(gbc, 3)];
break;
case 4:
if(m->b4){
m->b4 = 0;
mantissa = m->b4_mant;
}
else{
int bits = get_bits(gbc, 7);
mantissa = b4_mantissas[bits][0];
m->b4_mant = b4_mantissas[bits][1];
m->b4 = 1;
}
break;
case 5:
mantissa = b5_mantissas[get_bits(gbc, 4)];
break;
default: /* 6 to 15 */
/* Shift mantissa and sign-extend it. */
mantissa = get_sbits(gbc, quantization_tab[bap]);
mantissa <<= 24 - quantization_tab[bap];
break;
switch (bap) {
case 0:
if (dither)
mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
else
mantissa = 0;
break;
case 1:
if (m->b1) {
m->b1--;
mantissa = m->b1_mant[m->b1];
} else {
int bits = get_bits(gbc, 5);
mantissa = b1_mantissas[bits][0];
m->b1_mant[1] = b1_mantissas[bits][1];
m->b1_mant[0] = b1_mantissas[bits][2];
m->b1 = 2;
}
break;
case 2:
if (m->b2) {
m->b2--;
mantissa = m->b2_mant[m->b2];
} else {
int bits = get_bits(gbc, 7);
mantissa = b2_mantissas[bits][0];
m->b2_mant[1] = b2_mantissas[bits][1];
m->b2_mant[0] = b2_mantissas[bits][2];
m->b2 = 2;
}
break;
case 3:
mantissa = b3_mantissas[get_bits(gbc, 3)];
break;
case 4:
if (m->b4) {
m->b4 = 0;
mantissa = m->b4_mant;
} else {
int bits = get_bits(gbc, 7);
mantissa = b4_mantissas[bits][0];
m->b4_mant = b4_mantissas[bits][1];
m->b4 = 1;
}
break;
case 5:
mantissa = b5_mantissas[get_bits(gbc, 4)];
break;
default: /* 6 to 15 */
/* Shift mantissa and sign-extend it. */
mantissa = get_sbits(gbc, quantization_tab[bap]);
mantissa <<= 24 - quantization_tab[bap];
break;
}
coeffs[freq] = mantissa >> exps[freq];
}
@ -525,10 +522,10 @@ static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, ma
static void remove_dithering(AC3DecodeContext *s) {
int ch, i;
for(ch=1; ch<=s->fbw_channels; ch++) {
if(!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
for(i = s->start_freq[CPL_CH]; i<s->end_freq[CPL_CH]; i++) {
if(!s->bap[CPL_CH][i])
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
for (i = s->start_freq[CPL_CH]; i < s->end_freq[CPL_CH]; i++) {
if (!s->bap[CPL_CH][i])
s->fixed_coeffs[ch][i] = 0;
}
}
@ -536,7 +533,7 @@ static void remove_dithering(AC3DecodeContext *s) {
}
static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
mant_groups *m)
mant_groups *m)
{
if (!s->channel_uses_aht[ch]) {
ac3_decode_transform_coeffs_ch(s, ch, m);
@ -580,7 +577,7 @@ static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
}
do
s->fixed_coeffs[ch][end] = 0;
while(++end < 256);
while (++end < 256);
}
/* zero the dithered coefficients for appropriate channels */
@ -598,10 +595,10 @@ static void do_rematrixing(AC3DecodeContext *s)
end = FFMIN(s->end_freq[1], s->end_freq[2]);
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
if(s->rematrixing_flags[bnd]) {
bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) {
if (s->rematrixing_flags[bnd]) {
bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd + 1]);
for (i = ff_ac3_rematrix_band_tab[bnd]; i < bndend; i++) {
int tmp0 = s->fixed_coeffs[1][i];
s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i];
s->fixed_coeffs[2][i] = tmp0 - s->fixed_coeffs[2][i];
@ -619,21 +616,23 @@ static inline void do_imdct(AC3DecodeContext *s, int channels)
{
int ch;
for (ch=1; ch<=channels; ch++) {
for (ch = 1; ch <= channels; ch++) {
if (s->block_switch[ch]) {
int i;
float *x = s->tmp_output+128;
for(i=0; i<128; i++)
x[i] = s->transform_coeffs[ch][2*i];
float *x = s->tmp_output + 128;
for (i = 0; i < 128; i++)
x[i] = s->transform_coeffs[ch][2 * i];
s->imdct_256.imdct_half(&s->imdct_256, s->tmp_output, x);
s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, 128);
for(i=0; i<128; i++)
x[i] = s->transform_coeffs[ch][2*i+1];
s->imdct_256.imdct_half(&s->imdct_256, s->delay[ch-1], x);
s->dsp.vector_fmul_window(s->output[ch - 1], s->delay[ch - 1],
s->tmp_output, s->window, 128);
for (i = 0; i < 128; i++)
x[i] = s->transform_coeffs[ch][2 * i + 1];
s->imdct_256.imdct_half(&s->imdct_256, s->delay[ch - 1], x);
} else {
s->imdct_512.imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, 128);
memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
s->dsp.vector_fmul_window(s->output[ch - 1], s->delay[ch - 1],
s->tmp_output, s->window, 128);
memcpy(s->delay[ch - 1], s->tmp_output + 128, 128 * sizeof(float));
}
}
}
@ -641,24 +640,25 @@ static inline void do_imdct(AC3DecodeContext *s, int channels)
/**
* Downmix the output to mono or stereo.
*/
void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2],
int out_ch, int in_ch, int len)
{
int i, j;
float v0, v1;
if(out_ch == 2) {
for(i=0; i<len; i++) {
if (out_ch == 2) {
for (i = 0; i < len; i++) {
v0 = v1 = 0.0f;
for(j=0; j<in_ch; j++) {
for (j = 0; j < in_ch; j++) {
v0 += samples[j][i] * matrix[j][0];
v1 += samples[j][i] * matrix[j][1];
}
samples[0][i] = v0;
samples[1][i] = v1;
}
} else if(out_ch == 1) {
for(i=0; i<len; i++) {
} else if (out_ch == 1) {
for (i = 0; i < len; i++) {
v0 = 0.0f;
for(j=0; j<in_ch; j++)
for (j = 0; j < in_ch; j++)
v0 += samples[j][i] * matrix[j][0];
samples[0][i] = v0;
}
@ -671,25 +671,25 @@ void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int
static void ac3_upmix_delay(AC3DecodeContext *s)
{
int channel_data_size = sizeof(s->delay[0]);
switch(s->channel_mode) {
case AC3_CHMODE_DUALMONO:
case AC3_CHMODE_STEREO:
/* upmix mono to stereo */
memcpy(s->delay[1], s->delay[0], channel_data_size);
break;
case AC3_CHMODE_2F2R:
memset(s->delay[3], 0, channel_data_size);
case AC3_CHMODE_2F1R:
memset(s->delay[2], 0, channel_data_size);
break;
case AC3_CHMODE_3F2R:
memset(s->delay[4], 0, channel_data_size);
case AC3_CHMODE_3F1R:
memset(s->delay[3], 0, channel_data_size);
case AC3_CHMODE_3F:
memcpy(s->delay[2], s->delay[1], channel_data_size);
memset(s->delay[1], 0, channel_data_size);
break;
switch (s->channel_mode) {
case AC3_CHMODE_DUALMONO:
case AC3_CHMODE_STEREO:
/* upmix mono to stereo */
memcpy(s->delay[1], s->delay[0], channel_data_size);
break;
case AC3_CHMODE_2F2R:
memset(s->delay[3], 0, channel_data_size);
case AC3_CHMODE_2F1R:
memset(s->delay[2], 0, channel_data_size);
break;
case AC3_CHMODE_3F2R:
memset(s->delay[4], 0, channel_data_size);
case AC3_CHMODE_3F1R:
memset(s->delay[3], 0, channel_data_size);
case AC3_CHMODE_3F:
memcpy(s->delay[2], s->delay[1], channel_data_size);
memset(s->delay[1], 0, channel_data_size);
break;
}
}
@ -742,7 +742,7 @@ static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
bnd_sz[0] = ecpl ? 6 : 12;
for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
if (band_struct[subbnd-1]) {
if (band_struct[subbnd - 1]) {
n_bands--;
bnd_sz[bnd] += subbnd_size;
} else {
@ -779,7 +779,7 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
if (s->block_switch_syntax) {
for (ch = 1; ch <= fbw_channels; ch++) {
s->block_switch[ch] = get_bits1(gbc);
if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
if (ch > 1 && s->block_switch[ch] != s->block_switch[1])
different_transforms = 1;
}
}
@ -794,13 +794,13 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
/* dynamic range */
i = !(s->channel_mode);
do {
if(get_bits1(gbc)) {
s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
s->drc_scale)+1.0;
} else if(blk == 0) {
if (get_bits1(gbc)) {
s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)] - 1.0) *
s->drc_scale) + 1.0;
} else if (blk == 0) {
s->dynamic_range[i] = 1.0f;
}
} while(i--);
} while (i--);
/* spectral extension strategy */
if (s->eac3 && (!blk || get_bits1(gbc))) {
@ -881,7 +881,8 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
bandsize = s->spx_band_sizes[bnd];
nratio = ((float)((bin + (bandsize >> 1))) / s->spx_dst_end_freq) - spx_blend;
nratio = av_clipf(nratio, 0.0f, 1.0f);
nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3) to give unity variance
nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3)
// to give unity variance
sblend = sqrtf(1.0f - nratio);
bin += bandsize;
@ -891,7 +892,7 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
if (spx_coord_exp == 15) spx_coord_mant <<= 1;
else spx_coord_mant += 4;
spx_coord_mant <<= (25 - spx_coord_exp - master_spx_coord);
spx_coord = spx_coord_mant * (1.0f/(1<<23));
spx_coord = spx_coord_mant * (1.0f / (1 << 23));
/* multiply noise and signal blending factors by spx coordinate */
s->spx_noise_blend [ch][bnd] = nblend * spx_coord;
@ -964,8 +965,9 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
s->phase_flags_in_use = 0;
}
} else if (!s->eac3) {
if(!blk) {
av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
if (!blk) {
av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must "
"be present in block 0\n");
return -1;
} else {
s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
@ -994,7 +996,8 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
}
} else if (!blk) {
av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must "
"be present in block 0\n");
return -1;
}
} else {
@ -1019,10 +1022,11 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
} else if (s->spx_in_use && s->spx_src_start_freq <= 61) {
s->num_rematrixing_bands--;
}
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++)
s->rematrixing_flags[bnd] = get_bits1(gbc);
} else if (!blk) {
av_log(s->avctx, AV_LOG_WARNING, "Warning: new rematrixing strategy not present in block 0\n");
av_log(s->avctx, AV_LOG_WARNING, "Warning: "
"new rematrixing strategy not present in block 0\n");
s->num_rematrixing_bands = 0;
}
}
@ -1031,7 +1035,7 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
if (!s->eac3)
s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
if(s->exp_strategy[blk][ch] != EXP_REUSE)
if (s->exp_strategy[blk][ch] != EXP_REUSE)
bit_alloc_stages[ch] = 3;
}
@ -1054,8 +1058,8 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
s->end_freq[ch] = bandwidth_code * 3 + 73;
}
group_size = 3 << (s->exp_strategy[blk][ch] - 1);
s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
if(blk > 0 && s->end_freq[ch] != prev)
s->num_exp_groups[ch] = (s->end_freq[ch] + group_size-4) / group_size;
if (blk > 0 && s->end_freq[ch] != prev)
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
}
}
@ -1074,7 +1078,7 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
return -1;
}
if(ch != CPL_CH && ch != s->lfe_ch)
if (ch != CPL_CH && ch != s->lfe_ch)
skip_bits(gbc, 2); /* skip gainrng */
}
}
@ -1087,17 +1091,18 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
for(ch=!cpl_in_use; ch<=s->channels; ch++)
for (ch = !cpl_in_use; ch <= s->channels; ch++)
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
} else if (!blk) {
av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must "
"be present in block 0\n");
return -1;
}
}
/* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
if(!s->eac3 || !blk){
if(s->snr_offset_strategy && get_bits1(gbc)) {
if (!s->eac3 || !blk) {
if (s->snr_offset_strategy && get_bits1(gbc)) {
int snr = 0;
int csnr;
csnr = (get_bits(gbc, 6) - 15) << 4;
@ -1106,7 +1111,7 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
if (ch == i || s->snr_offset_strategy == 2)
snr = (csnr + get_bits(gbc, 4)) << 2;
/* run at least last bit allocation stage if snr offset changes */
if(blk && s->snr_offset[ch] != snr) {
if (blk && s->snr_offset[ch] != snr) {
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
}
s->snr_offset[ch] = snr;
@ -1116,7 +1121,7 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
int prev = s->fast_gain[ch];
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
/* run last 2 bit allocation stages if fast gain changes */
if(blk && prev != s->fast_gain[ch])
if (blk && prev != s->fast_gain[ch])
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
}
}
@ -1132,7 +1137,7 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
int prev = s->fast_gain[ch];
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
/* run last 2 bit allocation stages if fast gain changes */
if(blk && prev != s->fast_gain[ch])
if (blk && prev != s->fast_gain[ch])
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
}
} else if (s->eac3 && !blk) {
@ -1152,14 +1157,15 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
int sl = get_bits(gbc, 3);
/* run last 2 bit allocation stages for coupling channel if
coupling leak changes */
if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
sl != s->bit_alloc_params.cpl_slow_leak)) {
if (blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
sl != s->bit_alloc_params.cpl_slow_leak)) {
bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
}
s->bit_alloc_params.cpl_fast_leak = fl;
s->bit_alloc_params.cpl_slow_leak = sl;
} else if (!s->eac3 && !blk) {
av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must "
"be present in block 0\n");
return -1;
}
s->first_cpl_leak = 0;
@ -1183,40 +1189,40 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
for (seg = 0; seg < s->dba_nsegs[ch]; seg++) {
s->dba_offsets[ch][seg] = get_bits(gbc, 5);
s->dba_lengths[ch][seg] = get_bits(gbc, 4);
s->dba_values[ch][seg] = get_bits(gbc, 3);
s->dba_values[ch][seg] = get_bits(gbc, 3);
}
/* run last 2 bit allocation stages if new dba values */
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
}
}
} else if(blk == 0) {
for(ch=0; ch<=s->channels; ch++) {
} else if (blk == 0) {
for (ch = 0; ch <= s->channels; ch++) {
s->dba_mode[ch] = DBA_NONE;
}
}
/* Bit allocation */
for(ch=!cpl_in_use; ch<=s->channels; ch++) {
if(bit_alloc_stages[ch] > 2) {
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
if (bit_alloc_stages[ch] > 2) {
/* Exponent mapping into PSD and PSD integration */
ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
s->start_freq[ch], s->end_freq[ch],
s->psd[ch], s->band_psd[ch]);
}
if(bit_alloc_stages[ch] > 1) {
if (bit_alloc_stages[ch] > 1) {
/* Compute excitation function, Compute masking curve, and
Apply delta bit allocation */
if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
s->start_freq[ch], s->end_freq[ch],
s->fast_gain[ch], (ch == s->lfe_ch),
s->dba_mode[ch], s->dba_nsegs[ch],
s->start_freq[ch], s->end_freq[ch],
s->fast_gain[ch], (ch == s->lfe_ch),
s->dba_mode[ch], s->dba_nsegs[ch],
s->dba_offsets[ch], s->dba_lengths[ch],
s->dba_values[ch], s->mask[ch])) {
s->dba_values[ch], s->mask[ch])) {
av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
return -1;
}
}
if(bit_alloc_stages[ch] > 0) {
if (bit_alloc_stages[ch] > 0) {
/* Compute bit allocation */
const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
ff_eac3_hebap_tab : ff_ac3_bap_tab;
@ -1231,7 +1237,7 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
/* unused dummy data */
if (s->skip_syntax && get_bits1(gbc)) {
int skipl = get_bits(gbc, 9);
while(skipl--)
while (skipl--)
skip_bits(gbc, 8);
}
@ -1242,18 +1248,19 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
/* TODO: generate enhanced coupling coordinates and uncouple */
/* recover coefficients if rematrixing is in use */
if(s->channel_mode == AC3_CHMODE_STEREO)
if (s->channel_mode == AC3_CHMODE_STEREO)
do_rematrixing(s);
/* apply scaling to coefficients (headroom, dynrng) */
for(ch=1; ch<=s->channels; ch++) {
for (ch = 1; ch <= s->channels; ch++) {
float gain = s->mul_bias / 4194304.0f;
if(s->channel_mode == AC3_CHMODE_DUALMONO) {
gain *= s->dynamic_range[2-ch];
if (s->channel_mode == AC3_CHMODE_DUALMONO) {
gain *= s->dynamic_range[2 - ch];
} else {
gain *= s->dynamic_range[0];
}
s->fmt_conv.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
s->fmt_conv.int32_to_float_fmul_scalar(s->transform_coeffs[ch],
s->fixed_coeffs[ch], gain, 256);
}
/* apply spectral extension to high frequency bins */
@ -1267,27 +1274,30 @@ static int decode_audio_block(AC3DecodeContext *s, int blk)
downmix_output = s->channels != s->out_channels &&
!((s->output_mode & AC3_OUTPUT_LFEON) &&
s->fbw_channels == s->out_channels);
if(different_transforms) {
if (different_transforms) {
/* the delay samples have already been downmixed, so we upmix the delay
samples in order to reconstruct all channels before downmixing. */
if(s->downmixed) {
if (s->downmixed) {
s->downmixed = 0;
ac3_upmix_delay(s);
}
do_imdct(s, s->channels);
if(downmix_output) {
s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
if (downmix_output) {
s->dsp.ac3_downmix(s->output, s->downmix_coeffs,
s->out_channels, s->fbw_channels, 256);
}
} else {
if(downmix_output) {
s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
if (downmix_output) {
s->dsp.ac3_downmix(s->transform_coeffs + 1, s->downmix_coeffs,
s->out_channels, s->fbw_channels, 256);
}
if(downmix_output && !s->downmixed) {
if (downmix_output && !s->downmixed) {
s->downmixed = 1;
s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels,
s->fbw_channels, 128);
}
do_imdct(s, s->out_channels);
@ -1327,33 +1337,34 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data,
err = parse_frame_header(s);
if (err) {
switch(err) {
case AAC_AC3_PARSE_ERROR_SYNC:
av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
return -1;
case AAC_AC3_PARSE_ERROR_BSID:
av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
break;
case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
break;
case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
break;
case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
/* skip frame if CRC is ok. otherwise use error concealment. */
/* TODO: add support for substreams and dependent frames */
if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
*got_frame_ptr = 0;
return s->frame_size;
} else {
av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
}
break;
default:
av_log(avctx, AV_LOG_ERROR, "invalid header\n");
break;
switch (err) {
case AAC_AC3_PARSE_ERROR_SYNC:
av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
return -1;
case AAC_AC3_PARSE_ERROR_BSID:
av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
break;
case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
break;
case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
break;
case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
/* skip frame if CRC is ok. otherwise use error concealment. */
/* TODO: add support for substreams and dependent frames */
if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
av_log(avctx, AV_LOG_ERROR, "unsupported frame type : "
"skipping frame\n");
*got_frame_ptr = 0;
return s->frame_size;
} else {
av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
}
break;
default:
av_log(avctx, AV_LOG_ERROR, "invalid header\n");
break;
}
} else {
/* check that reported frame size fits in input buffer */
@ -1362,7 +1373,8 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data,
err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
} else if (avctx->err_recognition & AV_EF_CRCCHECK) {
/* check for crc mismatch */
if (av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
if (av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2],
s->frame_size - 2)) {
av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
err = AAC_AC3_PARSE_ERROR_CRC;
}
@ -1372,12 +1384,12 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data,
/* if frame is ok, set audio parameters */
if (!err) {
avctx->sample_rate = s->sample_rate;
avctx->bit_rate = s->bit_rate;
avctx->bit_rate = s->bit_rate;
/* channel config */
s->out_channels = s->channels;
s->output_mode = s->channel_mode;
if(s->lfe_on)
s->output_mode = s->channel_mode;
if (s->lfe_on)
s->output_mode |= AC3_OUTPUT_LFEON;
if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
avctx->request_channels < s->channels) {
@ -1385,17 +1397,17 @@ static int ac3_decode_frame(AVCodecContext * avctx, void *data,
s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode];
}
avctx->channels = s->out_channels;
avctx->channels = s->out_channels;
avctx->channel_layout = s->channel_layout;
/* set downmixing coefficients if needed */
if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
if (s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
s->fbw_channels == s->out_channels)) {
set_downmix_coeffs(s);
}
} else if (!s->out_channels) {
s->out_channels = avctx->channels;
if(s->out_channels < s->channels)
if (s->out_channels < s->channels)
s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
}
/* set audio service type based on bitstream mode for AC-3 */
@ -1465,19 +1477,19 @@ static const AVClass ac3_decoder_class = {
};
AVCodec ff_ac3_decoder = {
.name = "ac3",
.type = AVMEDIA_TYPE_AUDIO,
.id = CODEC_ID_AC3,
.name = "ac3",
.type = AVMEDIA_TYPE_AUDIO,
.id = CODEC_ID_AC3,
.priv_data_size = sizeof (AC3DecodeContext),
.init = ac3_decode_init,
.close = ac3_decode_end,
.decode = ac3_decode_frame,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
.sample_fmts = (const enum AVSampleFormat[]) {
AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
},
.priv_class = &ac3_decoder_class,
.init = ac3_decode_init,
.close = ac3_decode_end,
.decode = ac3_decode_frame,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
AV_SAMPLE_FMT_S16,
AV_SAMPLE_FMT_NONE },
.priv_class = &ac3_decoder_class,
};
#if CONFIG_EAC3_DECODER
@ -1487,19 +1499,20 @@ static const AVClass eac3_decoder_class = {
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_eac3_decoder = {
.name = "eac3",
.type = AVMEDIA_TYPE_AUDIO,
.id = CODEC_ID_EAC3,
.name = "eac3",
.type = AVMEDIA_TYPE_AUDIO,
.id = CODEC_ID_EAC3,
.priv_data_size = sizeof (AC3DecodeContext),
.init = ac3_decode_init,
.close = ac3_decode_end,
.decode = ac3_decode_frame,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
.sample_fmts = (const enum AVSampleFormat[]) {
AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
},
.priv_class = &eac3_decoder_class,
.init = ac3_decode_init,
.close = ac3_decode_end,
.decode = ac3_decode_frame,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
AV_SAMPLE_FMT_S16,
AV_SAMPLE_FMT_NONE },
.priv_class = &eac3_decoder_class,
};
#endif