avfilter/af_firequalizer: switch to TX from lavu

This commit is contained in:
Paul B Mahol 2022-11-12 12:02:08 +01:00
parent 59b16355ec
commit 4f6c06e8ff
2 changed files with 133 additions and 122 deletions

3
configure vendored
View File

@ -3671,8 +3671,6 @@ elbg_filter_deps="avcodec"
eq_filter_deps="gpl" eq_filter_deps="gpl"
erosion_opencl_filter_deps="opencl" erosion_opencl_filter_deps="opencl"
find_rect_filter_deps="avcodec avformat gpl" find_rect_filter_deps="avcodec avformat gpl"
firequalizer_filter_deps="avcodec"
firequalizer_filter_select="rdft"
flip_vulkan_filter_deps="vulkan spirv_compiler" flip_vulkan_filter_deps="vulkan spirv_compiler"
flite_filter_deps="libflite" flite_filter_deps="libflite"
framerate_filter_select="scene_sad" framerate_filter_select="scene_sad"
@ -7464,7 +7462,6 @@ enabled cover_rect_filter && prepend avfilter_deps "avformat avcodec"
enabled ebur128_filter && enabled swresample && prepend avfilter_deps "swresample" enabled ebur128_filter && enabled swresample && prepend avfilter_deps "swresample"
enabled elbg_filter && prepend avfilter_deps "avcodec" enabled elbg_filter && prepend avfilter_deps "avcodec"
enabled find_rect_filter && prepend avfilter_deps "avformat avcodec" enabled find_rect_filter && prepend avfilter_deps "avformat avcodec"
enabled firequalizer_filter && prepend avfilter_deps "avcodec"
enabled mcdeint_filter && prepend avfilter_deps "avcodec" enabled mcdeint_filter && prepend avfilter_deps "avcodec"
enabled movie_filter && prepend avfilter_deps "avformat avcodec" enabled movie_filter && prepend avfilter_deps "avformat avcodec"
enabled pan_filter && prepend avfilter_deps "swresample" enabled pan_filter && prepend avfilter_deps "swresample"

View File

@ -23,7 +23,7 @@
#include "libavutil/opt.h" #include "libavutil/opt.h"
#include "libavutil/eval.h" #include "libavutil/eval.h"
#include "libavutil/avassert.h" #include "libavutil/avassert.h"
#include "libavcodec/avfft.h" #include "libavutil/tx.h"
#include "avfilter.h" #include "avfilter.h"
#include "internal.h" #include "internal.h"
#include "audio.h" #include "audio.h"
@ -67,22 +67,33 @@ typedef struct OverlapIndex {
typedef struct FIREqualizerContext { typedef struct FIREqualizerContext {
const AVClass *class; const AVClass *class;
RDFTContext *analysis_rdft; AVTXContext *analysis_rdft;
RDFTContext *analysis_irdft; av_tx_fn analysis_rdft_fn;
RDFTContext *rdft; AVTXContext *analysis_irdft;
RDFTContext *irdft; av_tx_fn analysis_irdft_fn;
FFTContext *fft_ctx; AVTXContext *rdft;
RDFTContext *cepstrum_rdft; av_tx_fn rdft_fn;
RDFTContext *cepstrum_irdft; AVTXContext *irdft;
av_tx_fn irdft_fn;
AVTXContext *fft_ctx;
av_tx_fn fft_fn;
AVTXContext *cepstrum_rdft;
av_tx_fn cepstrum_rdft_fn;
AVTXContext *cepstrum_irdft;
av_tx_fn cepstrum_irdft_fn;
int analysis_rdft_len; int analysis_rdft_len;
int rdft_len; int rdft_len;
int cepstrum_len; int cepstrum_len;
float *analysis_buf; float *analysis_buf;
float *analysis_tbuf;
float *dump_buf; float *dump_buf;
float *kernel_tmp_buf; float *kernel_tmp_buf;
float *kernel_tmp_tbuf;
float *kernel_buf; float *kernel_buf;
float *tx_buf;
float *cepstrum_buf; float *cepstrum_buf;
float *cepstrum_tbuf;
float *conv_buf; float *conv_buf;
OverlapIndex *conv_idx; OverlapIndex *conv_idx;
int fir_len; int fir_len;
@ -151,23 +162,27 @@ AVFILTER_DEFINE_CLASS(firequalizer);
static void common_uninit(FIREqualizerContext *s) static void common_uninit(FIREqualizerContext *s)
{ {
av_rdft_end(s->analysis_rdft); av_tx_uninit(&s->analysis_rdft);
av_rdft_end(s->analysis_irdft); av_tx_uninit(&s->analysis_irdft);
av_rdft_end(s->rdft); av_tx_uninit(&s->rdft);
av_rdft_end(s->irdft); av_tx_uninit(&s->irdft);
av_fft_end(s->fft_ctx); av_tx_uninit(&s->fft_ctx);
av_rdft_end(s->cepstrum_rdft); av_tx_uninit(&s->cepstrum_rdft);
av_rdft_end(s->cepstrum_irdft); av_tx_uninit(&s->cepstrum_irdft);
s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL; s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL;
s->fft_ctx = NULL; s->fft_ctx = NULL;
s->cepstrum_rdft = NULL; s->cepstrum_rdft = NULL;
s->cepstrum_irdft = NULL; s->cepstrum_irdft = NULL;
av_freep(&s->analysis_buf); av_freep(&s->analysis_buf);
av_freep(&s->analysis_tbuf);
av_freep(&s->dump_buf); av_freep(&s->dump_buf);
av_freep(&s->kernel_tmp_buf); av_freep(&s->kernel_tmp_buf);
av_freep(&s->kernel_tmp_tbuf);
av_freep(&s->kernel_buf); av_freep(&s->kernel_buf);
av_freep(&s->tx_buf);
av_freep(&s->cepstrum_buf); av_freep(&s->cepstrum_buf);
av_freep(&s->cepstrum_tbuf);
av_freep(&s->conv_buf); av_freep(&s->conv_buf);
av_freep(&s->conv_idx); av_freep(&s->conv_idx);
} }
@ -187,22 +202,21 @@ static void fast_convolute(FIREqualizerContext *av_restrict s, const float *av_r
if (nsamples <= s->nsamples_max) { if (nsamples <= s->nsamples_max) {
float *buf = conv_buf + idx->buf_idx * s->rdft_len; float *buf = conv_buf + idx->buf_idx * s->rdft_len;
float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
float *tbuf = s->tx_buf;
int center = s->fir_len/2; int center = s->fir_len/2;
int k; int k;
memset(buf, 0, center * sizeof(*data)); memset(buf, 0, center * sizeof(*data));
memcpy(buf + center, data, nsamples * sizeof(*data)); memcpy(buf + center, data, nsamples * sizeof(*data));
memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data)); memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data));
av_rdft_calc(s->rdft, buf); s->rdft_fn(s->rdft, tbuf, buf, sizeof(float));
buf[0] *= kernel_buf[0]; for (k = 0; k <= s->rdft_len/2; k++) {
buf[1] *= kernel_buf[s->rdft_len/2]; tbuf[2*k] *= kernel_buf[k];
for (k = 1; k < s->rdft_len/2; k++) { tbuf[2*k+1] *= kernel_buf[k];
buf[2*k] *= kernel_buf[k];
buf[2*k+1] *= kernel_buf[k];
} }
av_rdft_calc(s->irdft, buf); s->irdft_fn(s->irdft, buf, tbuf, sizeof(AVComplexFloat));
for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
buf[k] += obuf[k]; buf[k] += obuf[k];
memcpy(data, buf, nsamples * sizeof(*data)); memcpy(data, buf, nsamples * sizeof(*data));
@ -226,23 +240,22 @@ static void fast_convolute_nonlinear(FIREqualizerContext *av_restrict s, const f
if (nsamples <= s->nsamples_max) { if (nsamples <= s->nsamples_max) {
float *buf = conv_buf + idx->buf_idx * s->rdft_len; float *buf = conv_buf + idx->buf_idx * s->rdft_len;
float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
float *tbuf = s->tx_buf;
int k; int k;
memcpy(buf, data, nsamples * sizeof(*data)); memcpy(buf, data, nsamples * sizeof(*data));
memset(buf + nsamples, 0, (s->rdft_len - nsamples) * sizeof(*data)); memset(buf + nsamples, 0, (s->rdft_len - nsamples) * sizeof(*data));
av_rdft_calc(s->rdft, buf); s->rdft_fn(s->rdft, tbuf, buf, sizeof(float));
buf[0] *= kernel_buf[0]; for (k = 0; k < s->rdft_len + 2; k += 2) {
buf[1] *= kernel_buf[1];
for (k = 2; k < s->rdft_len; k += 2) {
float re, im; float re, im;
re = buf[k] * kernel_buf[k] - buf[k+1] * kernel_buf[k+1]; re = tbuf[k] * kernel_buf[k] - tbuf[k+1] * kernel_buf[k+1];
im = buf[k] * kernel_buf[k+1] + buf[k+1] * kernel_buf[k]; im = tbuf[k] * kernel_buf[k+1] + tbuf[k+1] * kernel_buf[k];
buf[k] = re; tbuf[k] = re;
buf[k+1] = im; tbuf[k+1] = im;
} }
av_rdft_calc(s->irdft, buf); s->irdft_fn(s->irdft, buf, tbuf, sizeof(AVComplexFloat));
for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) for (k = 0; k < s->rdft_len - idx->overlap_idx; k++)
buf[k] += obuf[k]; buf[k] += obuf[k];
memcpy(data, buf, nsamples * sizeof(*data)); memcpy(data, buf, nsamples * sizeof(*data));
@ -259,12 +272,13 @@ static void fast_convolute_nonlinear(FIREqualizerContext *av_restrict s, const f
} }
} }
static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, FFTComplex *av_restrict conv_buf, static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_restrict kernel_buf, AVComplexFloat *av_restrict conv_buf,
OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples) OverlapIndex *av_restrict idx, float *av_restrict data0, float *av_restrict data1, int nsamples)
{ {
if (nsamples <= s->nsamples_max) { if (nsamples <= s->nsamples_max) {
FFTComplex *buf = conv_buf + idx->buf_idx * s->rdft_len; AVComplexFloat *buf = conv_buf + idx->buf_idx * s->rdft_len;
FFTComplex *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; AVComplexFloat *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx;
AVComplexFloat *tbuf = (AVComplexFloat *)s->tx_buf;
int center = s->fir_len/2; int center = s->fir_len/2;
int k; int k;
float tmp; float tmp;
@ -275,29 +289,27 @@ static void fast_convolute2(FIREqualizerContext *av_restrict s, const float *av_
buf[center+k].im = data1[k]; buf[center+k].im = data1[k];
} }
memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf)); memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf));
av_fft_permute(s->fft_ctx, buf); s->fft_fn(s->fft_ctx, tbuf, buf, sizeof(AVComplexFloat));
av_fft_calc(s->fft_ctx, buf);
/* swap re <-> im, do backward fft using forward fft_ctx */ /* swap re <-> im, do backward fft using forward fft_ctx */
/* normalize with 0.5f */ /* normalize with 0.5f */
tmp = buf[0].re; tmp = tbuf[0].re;
buf[0].re = 0.5f * kernel_buf[0] * buf[0].im; tbuf[0].re = 0.5f * kernel_buf[0] * tbuf[0].im;
buf[0].im = 0.5f * kernel_buf[0] * tmp; tbuf[0].im = 0.5f * kernel_buf[0] * tmp;
for (k = 1; k < s->rdft_len/2; k++) { for (k = 1; k < s->rdft_len/2; k++) {
int m = s->rdft_len - k; int m = s->rdft_len - k;
tmp = buf[k].re; tmp = tbuf[k].re;
buf[k].re = 0.5f * kernel_buf[k] * buf[k].im; tbuf[k].re = 0.5f * kernel_buf[k] * tbuf[k].im;
buf[k].im = 0.5f * kernel_buf[k] * tmp; tbuf[k].im = 0.5f * kernel_buf[k] * tmp;
tmp = buf[m].re; tmp = tbuf[m].re;
buf[m].re = 0.5f * kernel_buf[k] * buf[m].im; tbuf[m].re = 0.5f * kernel_buf[k] * tbuf[m].im;
buf[m].im = 0.5f * kernel_buf[k] * tmp; tbuf[m].im = 0.5f * kernel_buf[k] * tmp;
} }
tmp = buf[k].re; tmp = tbuf[k].re;
buf[k].re = 0.5f * kernel_buf[k] * buf[k].im; tbuf[k].re = 0.5f * kernel_buf[k] * tbuf[k].im;
buf[k].im = 0.5f * kernel_buf[k] * tmp; tbuf[k].im = 0.5f * kernel_buf[k] * tmp;
av_fft_permute(s->fft_ctx, buf); s->fft_fn(s->fft_ctx, buf, tbuf, sizeof(AVComplexFloat));
av_fft_calc(s->fft_ctx, buf);
for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) { for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) {
buf[k].re += obuf[k].re; buf[k].re += obuf[k].re;
@ -361,17 +373,17 @@ static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch)
fprintf(fp, "%15.10f %15.10f\n", (double)x / rate, (double) s->analysis_buf[x]); fprintf(fp, "%15.10f %15.10f\n", (double)x / rate, (double) s->analysis_buf[x]);
} }
av_rdft_calc(s->analysis_rdft, s->analysis_buf); s->analysis_rdft_fn(s->analysis_rdft, s->analysis_tbuf, s->analysis_buf, sizeof(float));
fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch); fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch);
for (x = 0; x <= s->analysis_rdft_len/2; x++) { for (x = 0; x <= s->analysis_rdft_len/2; x++) {
int i = (x == s->analysis_rdft_len/2) ? 1 : 2 * x; int i = 2 * x;
vx = (double)x * rate / s->analysis_rdft_len; vx = (double)x * rate / s->analysis_rdft_len;
if (xlog) if (xlog)
vx = log2(0.05*vx); vx = log2(0.05*vx);
ya = s->dump_buf[i]; ya = s->dump_buf[i];
yb = s->min_phase && (i > 1) ? hypotf(s->analysis_buf[i], s->analysis_buf[i+1]) : s->analysis_buf[i]; yb = s->min_phase ? hypotf(s->analysis_tbuf[i], s->analysis_tbuf[i+1]) : s->analysis_tbuf[i];
if (s->min_phase) if (s->min_phase)
yb = fabs(yb); yb = fabs(yb);
if (ylog) { if (ylog) {
@ -530,45 +542,40 @@ static void generate_min_phase_kernel(FIREqualizerContext *s, float *rdft_buf)
double minval = 1e-7 / rdft_len; double minval = 1e-7 / rdft_len;
memset(s->cepstrum_buf, 0, cepstrum_len * sizeof(*s->cepstrum_buf)); memset(s->cepstrum_buf, 0, cepstrum_len * sizeof(*s->cepstrum_buf));
memset(s->cepstrum_tbuf, 0, (cepstrum_len + 2) * sizeof(*s->cepstrum_tbuf));
memcpy(s->cepstrum_buf, rdft_buf, rdft_len/2 * sizeof(*rdft_buf)); memcpy(s->cepstrum_buf, rdft_buf, rdft_len/2 * sizeof(*rdft_buf));
memcpy(s->cepstrum_buf + cepstrum_len - rdft_len/2, rdft_buf + rdft_len/2, rdft_len/2 * sizeof(*rdft_buf)); memcpy(s->cepstrum_buf + cepstrum_len - rdft_len/2, rdft_buf + rdft_len/2, rdft_len/2 * sizeof(*rdft_buf));
av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf); s->cepstrum_rdft_fn(s->cepstrum_rdft, s->cepstrum_tbuf, s->cepstrum_buf, sizeof(float));
s->cepstrum_buf[0] = log(FFMAX(s->cepstrum_buf[0], minval)); for (k = 0; k < cepstrum_len + 2; k += 2) {
s->cepstrum_buf[1] = log(FFMAX(s->cepstrum_buf[1], minval)); s->cepstrum_tbuf[k] = log(FFMAX(s->cepstrum_tbuf[k], minval));
s->cepstrum_tbuf[k+1] = 0;
for (k = 2; k < cepstrum_len; k += 2) {
s->cepstrum_buf[k] = log(FFMAX(s->cepstrum_buf[k], minval));
s->cepstrum_buf[k+1] = 0;
} }
av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf); s->cepstrum_irdft_fn(s->cepstrum_irdft, s->cepstrum_buf, s->cepstrum_tbuf, sizeof(AVComplexFloat));
memset(s->cepstrum_buf + cepstrum_len/2 + 1, 0, (cepstrum_len/2 - 1) * sizeof(*s->cepstrum_buf)); memset(s->cepstrum_buf + cepstrum_len/2 + 1, 0, (cepstrum_len/2 - 1) * sizeof(*s->cepstrum_buf));
for (k = 1; k < cepstrum_len/2; k++) for (k = 1; k <= cepstrum_len/2; k++)
s->cepstrum_buf[k] *= 2; s->cepstrum_buf[k] *= 2;
av_rdft_calc(s->cepstrum_rdft, s->cepstrum_buf); s->cepstrum_rdft_fn(s->cepstrum_rdft, s->cepstrum_tbuf, s->cepstrum_buf, sizeof(float));
s->cepstrum_buf[0] = exp(s->cepstrum_buf[0] * norm) * norm; for (k = 0; k < cepstrum_len + 2; k += 2) {
s->cepstrum_buf[1] = exp(s->cepstrum_buf[1] * norm) * norm; double mag = exp(s->cepstrum_tbuf[k] * norm) * norm;
for (k = 2; k < cepstrum_len; k += 2) { double ph = s->cepstrum_tbuf[k+1] * norm;
double mag = exp(s->cepstrum_buf[k] * norm) * norm; s->cepstrum_tbuf[k] = mag * cos(ph);
double ph = s->cepstrum_buf[k+1] * norm; s->cepstrum_tbuf[k+1] = mag * sin(ph);
s->cepstrum_buf[k] = mag * cos(ph);
s->cepstrum_buf[k+1] = mag * sin(ph);
} }
av_rdft_calc(s->cepstrum_irdft, s->cepstrum_buf); s->cepstrum_irdft_fn(s->cepstrum_irdft, s->cepstrum_buf, s->cepstrum_tbuf, sizeof(AVComplexFloat));
memset(rdft_buf, 0, s->rdft_len * sizeof(*rdft_buf)); memset(rdft_buf, 0, s->rdft_len * sizeof(*rdft_buf));
memcpy(rdft_buf, s->cepstrum_buf, s->fir_len * sizeof(*rdft_buf)); memcpy(rdft_buf, s->cepstrum_buf, s->fir_len * sizeof(*rdft_buf));
if (s->dumpfile) { if (s->dumpfile) {
memset(s->analysis_buf, 0, s->analysis_rdft_len * sizeof(*s->analysis_buf)); memset(s->analysis_buf, 0, (s->analysis_rdft_len + 2) * sizeof(*s->analysis_buf));
memcpy(s->analysis_buf, s->cepstrum_buf, s->fir_len * sizeof(*s->analysis_buf)); memcpy(s->analysis_buf, s->cepstrum_buf, s->fir_len * sizeof(*s->analysis_buf));
} }
} }
static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry) static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry)
@ -613,35 +620,25 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g
inlink->ch_layout.u.mask : 0; inlink->ch_layout.u.mask : 0;
vars[VAR_SR] = inlink->sample_rate; vars[VAR_SR] = inlink->sample_rate;
for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
float *rdft_buf = s->kernel_tmp_buf + ch * s->rdft_len; float *rdft_buf = s->kernel_tmp_buf + ch * (s->rdft_len * 2);
float *rdft_tbuf = s->kernel_tmp_tbuf;
double result; double result;
vars[VAR_CH] = ch; vars[VAR_CH] = ch;
vars[VAR_CHID] = av_channel_layout_channel_from_index(&inlink->ch_layout, ch); vars[VAR_CHID] = av_channel_layout_channel_from_index(&inlink->ch_layout, ch);
vars[VAR_F] = 0.0;
if (xlog)
vars[VAR_F] = log2(0.05 * vars[VAR_F]);
result = av_expr_eval(gain_expr, vars, ctx);
s->analysis_buf[0] = ylog ? pow(10.0, 0.05 * result) : result;
vars[VAR_F] = 0.5 * inlink->sample_rate; for (k = 0; k <= s->analysis_rdft_len/2; k++) {
if (xlog)
vars[VAR_F] = log2(0.05 * vars[VAR_F]);
result = av_expr_eval(gain_expr, vars, ctx);
s->analysis_buf[1] = ylog ? pow(10.0, 0.05 * result) : result;
for (k = 1; k < s->analysis_rdft_len/2; k++) {
vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len); vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len);
if (xlog) if (xlog)
vars[VAR_F] = log2(0.05 * vars[VAR_F]); vars[VAR_F] = log2(0.05 * vars[VAR_F]);
result = av_expr_eval(gain_expr, vars, ctx); result = av_expr_eval(gain_expr, vars, ctx);
s->analysis_buf[2*k] = ylog ? pow(10.0, 0.05 * result) : s->min_phase ? fabs(result) : result; s->analysis_tbuf[2*k] = ylog ? pow(10.0, 0.05 * result) : s->min_phase ? fabs(result) : result;
s->analysis_buf[2*k+1] = 0.0; s->analysis_tbuf[2*k+1] = 0.0;
} }
if (s->dump_buf) if (s->dump_buf)
memcpy(s->dump_buf, s->analysis_buf, s->analysis_rdft_len * sizeof(*s->analysis_buf)); memcpy(s->dump_buf, s->analysis_tbuf, (s->analysis_rdft_len + 2) * sizeof(*s->analysis_tbuf));
av_rdft_calc(s->analysis_irdft, s->analysis_buf); s->analysis_irdft_fn(s->analysis_irdft, s->analysis_buf, s->analysis_tbuf, sizeof(AVComplexFloat));
center = s->fir_len / 2; center = s->fir_len / 2;
for (k = 0; k <= center; k++) { for (k = 0; k <= center; k++) {
@ -687,13 +684,13 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g
} }
memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf)); memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf));
memcpy(rdft_buf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf)); memcpy(rdft_tbuf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf));
memcpy(rdft_buf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf)); memcpy(rdft_tbuf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf));
if (s->min_phase) if (s->min_phase)
generate_min_phase_kernel(s, rdft_buf); generate_min_phase_kernel(s, rdft_tbuf);
av_rdft_calc(s->rdft, rdft_buf); s->rdft_fn(s->rdft, rdft_buf, rdft_tbuf, sizeof(float));
for (k = 0; k < s->rdft_len; k++) { for (k = 0; k < s->rdft_len + 2; k++) {
if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) { if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) {
av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n"); av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n");
av_expr_free(gain_expr); av_expr_free(gain_expr);
@ -704,10 +701,8 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g
} }
if (!s->min_phase) { if (!s->min_phase) {
rdft_buf[s->rdft_len-1] = rdft_buf[1]; for (k = 0; k <= s->rdft_len/2; k++)
for (k = 0; k < s->rdft_len/2; k++)
rdft_buf[k] = rdft_buf[2*k]; rdft_buf[k] = rdft_buf[2*k];
rdft_buf[s->rdft_len/2] = rdft_buf[s->rdft_len-1];
} }
if (dump_fp) if (dump_fp)
@ -717,7 +712,7 @@ static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *g
break; break;
} }
memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->ch_layout.nb_channels : 1) * s->rdft_len * sizeof(*s->kernel_buf)); memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->ch_layout.nb_channels : 1) * (s->rdft_len * 2) * sizeof(*s->kernel_buf));
av_expr_free(gain_expr); av_expr_free(gain_expr);
if (dump_fp) if (dump_fp)
fclose(dump_fp); fclose(dump_fp);
@ -731,7 +726,8 @@ static int config_input(AVFilterLink *inlink)
{ {
AVFilterContext *ctx = inlink->dst; AVFilterContext *ctx = inlink->dst;
FIREqualizerContext *s = ctx->priv; FIREqualizerContext *s = ctx->priv;
int rdft_bits; float iscale, scale = 1.f;
int rdft_bits, ret;
common_uninit(s); common_uninit(s);
@ -753,11 +749,15 @@ static int config_input(AVFilterLink *inlink)
return AVERROR(EINVAL); return AVERROR(EINVAL);
} }
if (!(s->rdft = av_rdft_init(rdft_bits, DFT_R2C)) || !(s->irdft = av_rdft_init(rdft_bits, IDFT_C2R))) iscale = 0.5f;
return AVERROR(ENOMEM); if (((ret = av_tx_init(&s->rdft, &s->rdft_fn, AV_TX_FLOAT_RDFT, 0, 1 << rdft_bits, &scale, 0)) < 0) ||
((ret = av_tx_init(&s->irdft, &s->irdft_fn, AV_TX_FLOAT_RDFT, 1, 1 << rdft_bits, &iscale, 0)) < 0))
return ret;
if (s->fft2 && !s->multi && inlink->ch_layout.nb_channels > 1 && !(s->fft_ctx = av_fft_init(rdft_bits, 0))) scale = 1.f;
return AVERROR(ENOMEM); if (s->fft2 && !s->multi && inlink->ch_layout.nb_channels > 1 &&
((ret = av_tx_init(&s->fft_ctx, &s->fft_fn, AV_TX_FLOAT_FFT, 0, 1 << rdft_bits, &scale, 0)) < 0))
return ret;
if (s->min_phase) { if (s->min_phase) {
int cepstrum_bits = rdft_bits + 2; int cepstrum_bits = rdft_bits + 2;
@ -767,15 +767,23 @@ static int config_input(AVFilterLink *inlink)
} }
cepstrum_bits = FFMIN(RDFT_BITS_MAX, cepstrum_bits + 1); cepstrum_bits = FFMIN(RDFT_BITS_MAX, cepstrum_bits + 1);
s->cepstrum_rdft = av_rdft_init(cepstrum_bits, DFT_R2C); scale = 1.f;
s->cepstrum_irdft = av_rdft_init(cepstrum_bits, IDFT_C2R); ret = av_tx_init(&s->cepstrum_rdft, &s->cepstrum_rdft_fn, AV_TX_FLOAT_RDFT, 0, 1 << cepstrum_bits, &scale, 0);
if (!s->cepstrum_rdft || !s->cepstrum_irdft) if (ret < 0)
return AVERROR(ENOMEM); return ret;
iscale = 0.5f;
ret = av_tx_init(&s->cepstrum_irdft, &s->cepstrum_irdft_fn, AV_TX_FLOAT_RDFT, 1, 1 << cepstrum_bits, &iscale, 0);
if (ret < 0)
return ret;
s->cepstrum_len = 1 << cepstrum_bits; s->cepstrum_len = 1 << cepstrum_bits;
s->cepstrum_buf = av_malloc_array(s->cepstrum_len, sizeof(*s->cepstrum_buf)); s->cepstrum_buf = av_malloc_array(s->cepstrum_len, sizeof(*s->cepstrum_buf));
if (!s->cepstrum_buf) if (!s->cepstrum_buf)
return AVERROR(ENOMEM); return AVERROR(ENOMEM);
s->cepstrum_tbuf = av_malloc_array(s->cepstrum_len + 2, sizeof(*s->cepstrum_tbuf));
if (!s->cepstrum_tbuf)
return AVERROR(ENOMEM);
} }
for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) { for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) {
@ -789,20 +797,26 @@ static int config_input(AVFilterLink *inlink)
return AVERROR(EINVAL); return AVERROR(EINVAL);
} }
if (!(s->analysis_irdft = av_rdft_init(rdft_bits, IDFT_C2R))) iscale = 0.5f;
return AVERROR(ENOMEM); if ((ret = av_tx_init(&s->analysis_irdft, &s->analysis_irdft_fn, AV_TX_FLOAT_RDFT, 1, 1 << rdft_bits, &iscale, 0)) < 0)
return ret;
if (s->dumpfile) { if (s->dumpfile) {
s->analysis_rdft = av_rdft_init(rdft_bits, DFT_R2C); scale = 1.f;
s->dump_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->dump_buf)); if ((ret = av_tx_init(&s->analysis_rdft, &s->analysis_rdft_fn, AV_TX_FLOAT_RDFT, 0, 1 << rdft_bits, &scale, 0)) < 0)
return ret;
s->dump_buf = av_malloc_array(s->analysis_rdft_len + 2, sizeof(*s->dump_buf));
} }
s->analysis_buf = av_malloc_array(s->analysis_rdft_len, sizeof(*s->analysis_buf)); s->analysis_buf = av_malloc_array((s->analysis_rdft_len + 2), sizeof(*s->analysis_buf));
s->kernel_tmp_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->ch_layout.nb_channels : 1), sizeof(*s->kernel_tmp_buf)); s->analysis_tbuf = av_malloc_array(s->analysis_rdft_len + 2, sizeof(*s->analysis_tbuf));
s->kernel_buf = av_malloc_array(s->rdft_len * (s->multi ? inlink->ch_layout.nb_channels : 1), sizeof(*s->kernel_buf)); s->kernel_tmp_buf = av_malloc_array((s->rdft_len * 2) * (s->multi ? inlink->ch_layout.nb_channels : 1), sizeof(*s->kernel_tmp_buf));
s->kernel_tmp_tbuf = av_malloc_array(s->rdft_len, sizeof(*s->kernel_tmp_tbuf));
s->kernel_buf = av_malloc_array((s->rdft_len * 2) * (s->multi ? inlink->ch_layout.nb_channels : 1), sizeof(*s->kernel_buf));
s->tx_buf = av_malloc_array(2 * (s->rdft_len + 2), sizeof(*s->kernel_buf));
s->conv_buf = av_calloc(2 * s->rdft_len * inlink->ch_layout.nb_channels, sizeof(*s->conv_buf)); s->conv_buf = av_calloc(2 * s->rdft_len * inlink->ch_layout.nb_channels, sizeof(*s->conv_buf));
s->conv_idx = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->conv_idx)); s->conv_idx = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->conv_idx));
if (!s->analysis_buf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx) if (!s->analysis_buf || !s->analysis_tbuf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx || !s->kernel_tmp_tbuf || !s->tx_buf)
return AVERROR(ENOMEM); return AVERROR(ENOMEM);
av_log(ctx, AV_LOG_DEBUG, "sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n", av_log(ctx, AV_LOG_DEBUG, "sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n",
@ -822,19 +836,19 @@ static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
if (!s->min_phase) { if (!s->min_phase) {
for (ch = 0; ch + 1 < inlink->ch_layout.nb_channels && s->fft_ctx; ch += 2) { for (ch = 0; ch + 1 < inlink->ch_layout.nb_channels && s->fft_ctx; ch += 2) {
fast_convolute2(s, s->kernel_buf, (FFTComplex *)(s->conv_buf + 2 * ch * s->rdft_len), fast_convolute2(s, s->kernel_buf, (AVComplexFloat *)(s->conv_buf + 2 * ch * s->rdft_len),
s->conv_idx + ch, (float *) frame->extended_data[ch], s->conv_idx + ch, (float *) frame->extended_data[ch],
(float *) frame->extended_data[ch+1], frame->nb_samples); (float *) frame->extended_data[ch+1], frame->nb_samples);
} }
for ( ; ch < inlink->ch_layout.nb_channels; ch++) { for ( ; ch < inlink->ch_layout.nb_channels; ch++) {
fast_convolute(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0), fast_convolute(s, s->kernel_buf + (s->multi ? ch * (s->rdft_len * 2) : 0),
s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch, s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
(float *) frame->extended_data[ch], frame->nb_samples); (float *) frame->extended_data[ch], frame->nb_samples);
} }
} else { } else {
for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
fast_convolute_nonlinear(s, s->kernel_buf + (s->multi ? ch * s->rdft_len : 0), fast_convolute_nonlinear(s, s->kernel_buf + (s->multi ? ch * (s->rdft_len * 2) : 0),
s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch, s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch,
(float *) frame->extended_data[ch], frame->nb_samples); (float *) frame->extended_data[ch], frame->nb_samples);
} }