1
mirror of https://git.videolan.org/git/ffmpeg.git synced 2024-08-07 18:14:16 +02:00

Trivial, Cosmetics

Originally committed as revision 15904 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Reynaldo H. Verdejo Pinochet 2008-11-22 00:27:26 +00:00
parent e178d7fd0f
commit 1b321c5c96

View File

@ -56,7 +56,8 @@ static void weighted_vector_sumf(float *out, const float *in_a,
* *
* TIA/EIA/IS-733 2.4.9 * TIA/EIA/IS-733 2.4.9
*/ */
static av_cold int qcelp_decode_init(AVCodecContext *avctx) { static av_cold int qcelp_decode_init(AVCodecContext *avctx)
{
QCELPContext *q = avctx->priv_data; QCELPContext *q = avctx->priv_data;
int i; int i;
@ -79,22 +80,24 @@ static av_cold int qcelp_decode_init(AVCodecContext *avctx) {
* *
* TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3 * TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
*/ */
static int decode_lspf(QCELPContext *q, static int decode_lspf(QCELPContext *q, float *lspf)
float *lspf) { {
int i; int i;
float tmp_lspf; float tmp_lspf;
if (q->bitrate == RATE_OCTAVE || if(q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q)
q->bitrate == I_F_Q) { {
float smooth; float smooth;
const float *predictors = (q->prev_bitrate != RATE_OCTAVE && const float *predictors = (q->prev_bitrate != RATE_OCTAVE &&
q->prev_bitrate != I_F_Q ? q->prev_lspf q->prev_bitrate != I_F_Q ? q->prev_lspf
: q->predictor_lspf); : q->predictor_lspf);
if (q->bitrate == RATE_OCTAVE) { if(q->bitrate == RATE_OCTAVE)
{
q->octave_count++; q->octave_count++;
for (i = 0; i < 10; i++) { for(i=0; i<10; i++)
{
q->predictor_lspf[i] = q->predictor_lspf[i] =
lspf[i] = (q->lspv[i] ? QCELP_LSP_SPREAD_FACTOR lspf[i] = (q->lspv[i] ? QCELP_LSP_SPREAD_FACTOR
: -QCELP_LSP_SPREAD_FACTOR) : -QCELP_LSP_SPREAD_FACTOR)
@ -102,15 +105,17 @@ static int decode_lspf(QCELPContext *q,
+ (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR)/11); + (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR)/11);
} }
smooth = (q->octave_count < 10 ? .875 : 0.1); smooth = (q->octave_count < 10 ? .875 : 0.1);
} else { }else
{
float erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR; float erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
assert(q->bitrate == I_F_Q); assert(q->bitrate == I_F_Q);
if (q->erasure_count > 1) if(q->erasure_count > 1)
erasure_coeff *= (q->erasure_count < 4 ? 0.9 : 0.7); erasure_coeff *= (q->erasure_count < 4 ? 0.9 : 0.7);
for (i = 0; i < 10; i++) { for(i=0; i<10; i++)
{
q->predictor_lspf[i] = q->predictor_lspf[i] =
lspf[i] = (i + 1) * ( 1 - erasure_coeff)/11 lspf[i] = (i + 1) * ( 1 - erasure_coeff)/11
+ erasure_coeff * predictors[i]; + erasure_coeff * predictors[i];
@ -120,35 +125,39 @@ static int decode_lspf(QCELPContext *q,
// Check the stability of the LSP frequencies. // Check the stability of the LSP frequencies.
lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR); lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
for (i = 1; i < 10; i++) for(i=1; i<10; i++)
lspf[i] = FFMAX(lspf[i], (lspf[i-1] + QCELP_LSP_SPREAD_FACTOR)); lspf[i] = FFMAX(lspf[i], (lspf[i-1] + QCELP_LSP_SPREAD_FACTOR));
lspf[9] = FFMIN(lspf[9], (1.0 - QCELP_LSP_SPREAD_FACTOR)); lspf[9] = FFMIN(lspf[9], (1.0 - QCELP_LSP_SPREAD_FACTOR));
for (i = 9; i > 0; i--) for(i=9; i>0; i--)
lspf[i-1] = FFMIN(lspf[i-1], (lspf[i] - QCELP_LSP_SPREAD_FACTOR)); lspf[i-1] = FFMIN(lspf[i-1], (lspf[i] - QCELP_LSP_SPREAD_FACTOR));
// Low-pass filter the LSP frequencies. // Low-pass filter the LSP frequencies.
weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0 - smooth, 10); weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0-smooth, 10);
} else { }else
{
q->octave_count = 0; q->octave_count = 0;
tmp_lspf = 0.; tmp_lspf = 0.;
for (i = 0; i < 5 ; i++) { for(i=0; i<5 ; i++)
{
lspf[2*i+0] = tmp_lspf += qcelp_lspvq[i][q->lspv[i]][0] * 0.0001; lspf[2*i+0] = tmp_lspf += qcelp_lspvq[i][q->lspv[i]][0] * 0.0001;
lspf[2*i+1] = tmp_lspf += qcelp_lspvq[i][q->lspv[i]][1] * 0.0001; lspf[2*i+1] = tmp_lspf += qcelp_lspvq[i][q->lspv[i]][1] * 0.0001;
} }
// Check for badly received packets. // Check for badly received packets.
if (q->bitrate == RATE_QUARTER) { if(q->bitrate == RATE_QUARTER)
if (lspf[9] <= .70 || lspf[9] >= .97) {
if(lspf[9] <= .70 || lspf[9] >= .97)
return -1; return -1;
for (i = 3; i < 10; i++) for(i=3; i<10; i++)
if (fabs(lspf[i] - lspf[i-2]) < .08) if(fabs(lspf[i] - lspf[i-2]) < .08)
return -1; return -1;
} else { }else
if (lspf[9] <= .66 || lspf[9] >= .985) {
if(lspf[9] <= .66 || lspf[9] >= .985)
return -1; return -1;
for (i = 4; i < 10; i++) for(i=4; i<10; i++)
if (fabs(lspf[i] - lspf[i-4]) < .0931) if (fabs(lspf[i] - lspf[i-4]) < .0931)
return -1; return -1;
} }
@ -157,23 +166,26 @@ static int decode_lspf(QCELPContext *q,
} }
/** /**
* If the received packet is Rate 1/4 a further sanity check is made of the codebook gain. * If the received packet is Rate 1/4 a further sanity check is made of the
* codebook gain.
* *
* @param cbgain the unpacked cbgain array * @param cbgain the unpacked cbgain array
* @return -1 if the sanity check fails, 0 otherwise * @return -1 if the sanity check fails, 0 otherwise
* *
* TIA/EIA/IS-733 2.4.8.7.3 * TIA/EIA/IS-733 2.4.8.7.3
*/ */
static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain) { static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
{
int i, prev_diff=0; int i, prev_diff=0;
for (i = 1; i < 5; i++) { for(i=1; i<5; i++)
int diff = cbgain[i] - cbgain[i-1]; {
if (FFABS(diff) > 10) int diff = cbgain[i] - cbgain[i-1];
return -1; if(FFABS(diff) > 10)
else if (FFABS(diff - prev_diff) > 12) return -1;
return -1; else if(FFABS(diff - prev_diff) > 12)
prev_diff = diff; return -1;
prev_diff = diff;
} }
return 0; return 0;
} }
@ -199,72 +211,81 @@ static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain) {
* @param gain array holding the 4 pitch subframe gain values * @param gain array holding the 4 pitch subframe gain values
* @param cdn_vector array for the generated scaled codebook vector * @param cdn_vector array for the generated scaled codebook vector
*/ */
static void compute_svector(const QCELPContext *q, static void compute_svector(const QCELPContext *q, const float *gain,
const float *gain, float *cdn_vector)
float *cdn_vector) { {
int i, j, k; int i, j, k;
uint16_t cbseed, cindex; uint16_t cbseed, cindex;
float *rnd, tmp_gain, fir_filter_value; float *rnd, tmp_gain, fir_filter_value;
switch (q->bitrate) { switch(q->bitrate)
case RATE_FULL: {
for (i = 0; i < 16; i++) { case RATE_FULL:
tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO; for(i=0; i<16; i++)
cindex = -q->cindex[i]; {
for (j = 0; j < 10; j++) tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
*cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127]; cindex = -q->cindex[i];
} for(j=0; j<10; j++)
*cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127];
}
break; break;
case RATE_HALF: case RATE_HALF:
for (i = 0; i < 4; i++) { for(i=0; i<4; i++)
tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO; {
cindex = -q->cindex[i]; tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
for (j = 0; j < 40; j++) cindex = -q->cindex[i];
for (j = 0; j < 40; j++)
*cdn_vector++ = tmp_gain * qcelp_rate_half_codebook[cindex++ & 127]; *cdn_vector++ = tmp_gain * qcelp_rate_half_codebook[cindex++ & 127];
}
break;
case RATE_QUARTER:
cbseed = (0x0003 & q->lspv[4])<<14 |
(0x003F & q->lspv[3])<< 8 |
(0x0060 & q->lspv[2])<< 1 |
(0x0007 & q->lspv[1])<< 3 |
(0x0038 & q->lspv[0])>> 3 ;
rnd = q->rnd_fir_filter_mem + 20;
for (i = 0; i < 8; i++) {
tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
for (k = 0; k < 20; k++) {
cbseed = 521 * cbseed + 259;
*rnd = (int16_t)cbseed;
// FIR filter
fir_filter_value = 0.0;
for (j = 0; j < 10; j++)
fir_filter_value += qcelp_rnd_fir_coefs[j ] * (rnd[-j ] + rnd[-20+j]);
fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
*cdn_vector++ = tmp_gain * fir_filter_value;
rnd++;
} }
}
memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160, 20 * sizeof(float));
break; break;
case RATE_OCTAVE: case RATE_QUARTER:
cbseed = q->first16bits; cbseed = (0x0003 & q->lspv[4])<<14 |
for (i = 0; i < 8; i++) { (0x003F & q->lspv[3])<< 8 |
tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0); (0x0060 & q->lspv[2])<< 1 |
for (j = 0; j < 20; j++) { (0x0007 & q->lspv[1])<< 3 |
cbseed = 521 * cbseed + 259; (0x0038 & q->lspv[0])>> 3 ;
*cdn_vector++ = tmp_gain * (int16_t)cbseed; rnd = q->rnd_fir_filter_mem + 20;
for(i=0; i<8; i++)
{
tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
for(k=0; k<20; k++)
{
cbseed = 521 * cbseed + 259;
*rnd = (int16_t)cbseed;
// FIR filter
fir_filter_value = 0.0;
for(j=0; j<10; j++)
fir_filter_value += qcelp_rnd_fir_coefs[j ]
* (rnd[-j ] + rnd[-20+j]);
fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
*cdn_vector++ = tmp_gain * fir_filter_value;
rnd++;
}
} }
} memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160, 20 * sizeof(float));
break; break;
case I_F_Q: case RATE_OCTAVE:
cbseed = -44; // random codebook index cbseed = q->first16bits;
for (i = 0; i < 4; i++) { for(i=0; i<8; i++)
tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO; {
for (j = 0; j < 40; j++) tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
*cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127]; for(j=0; j<20; j++)
} {
cbseed = 521 * cbseed + 259;
*cdn_vector++ = tmp_gain * (int16_t)cbseed;
}
}
break;
case I_F_Q:
cbseed = -44; // random codebook index
for(i=0; i<4; i++)
{
tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
for(j=0; j<40; j++)
*cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127];
}
break; break;
} }
} }
@ -282,19 +303,21 @@ static void compute_svector(const QCELPContext *q,
* *
* TIA/EIA/IS-733 2.4.8.3-2/3/4/5, 2.4.8.6 * TIA/EIA/IS-733 2.4.8.3-2/3/4/5, 2.4.8.6
*/ */
static void apply_gain_ctrl(float *v_out, static void apply_gain_ctrl(float *v_out, const float *v_ref,
const float *v_ref, const float *v_in)
const float *v_in) { {
int i, j, len; int i, j, len;
float scalefactor; float scalefactor;
for (i = 0, j = 0; i < 4; i++) { for(i=0, j=0; i<4; i++)
{
scalefactor = ff_dot_productf(v_in + j, v_in + j, 40); scalefactor = ff_dot_productf(v_in + j, v_in + j, 40);
if (scalefactor) if(scalefactor)
scalefactor = sqrt(ff_dot_productf(v_ref + j, v_ref + j, 40) / scalefactor); scalefactor = sqrt(ff_dot_productf(v_ref + j, v_ref + j, 40)
/ scalefactor);
else else
av_log_missing_feature(NULL, "Zero energy for gain control", 1); av_log_missing_feature(NULL, "Zero energy for gain control", 1);
for (len = j + 40; j < len; j++) for(len=j+40; j<len; j++)
v_out[j] = scalefactor * v_in[j]; v_out[j] = scalefactor * v_in[j];
} }
} }
@ -311,7 +334,8 @@ static void apply_gain_ctrl(float *v_out,
* @param lag per-subframe lag array, each element is * @param lag per-subframe lag array, each element is
* - between 16 and 143 if its corresponding pfrac is 0, * - between 16 and 143 if its corresponding pfrac is 0,
* - between 16 and 139 otherwise * - between 16 and 139 otherwise
* @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0 otherwise * @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
* otherwise
* *
* @return filter output vector * @return filter output vector
*/ */