avfilter: add bilateral_cuda filter

GSoC 2022

Signed-off-by: Mohamed Khaled <mohamed.elbassiony00@eng-st.cu.edu.eg>
Signed-off-by: Timo Rothenpieler <timo@rothenpieler.org>
This commit is contained in:
Mohamed Khaled Mohamed 2022-08-30 21:13:27 +02:00 committed by Timo Rothenpieler
parent d1513e7f9c
commit 1a5cd79f51
9 changed files with 716 additions and 1 deletions

View File

@ -37,6 +37,7 @@ version 5.1:
- PHM image format support
- remap_opencl filter
- added chromakey_cuda filter
- added bilateral_cuda filter
version 5.0:

View File

@ -182,6 +182,7 @@ static inline __device__ float fabsf(float a) { return __builtin_fabsf(a); }
static inline __device__ float fabs(float a) { return __builtin_fabsf(a); }
static inline __device__ double fabs(double a) { return __builtin_fabs(a); }
static inline __device__ float sqrtf(float a) { return __builtin_sqrtf(a); }
static inline __device__ float powf(float a, float y) { return __builtin_powf(a,y); }
static inline __device__ float __saturatef(float a) { return __nvvm_saturate_f(a); }
static inline __device__ float __sinf(float a) { return __nvvm_sin_approx_f(a); }

2
configure vendored
View File

@ -3151,6 +3151,8 @@ v4l2_m2m_deps="linux_videodev2_h sem_timedwait"
chromakey_cuda_filter_deps="ffnvcodec"
chromakey_cuda_filter_deps_any="cuda_nvcc cuda_llvm"
bilateral_cuda_filter_deps="ffnvcodec"
bilateral_cuda_filter_deps_any="cuda_nvcc cuda_llvm"
hwupload_cuda_filter_deps="ffnvcodec"
scale_npp_filter_deps="ffnvcodec libnpp"
scale2ref_npp_filter_deps="ffnvcodec libnpp"

View File

@ -7980,6 +7980,45 @@ Set planes to filter. Default is first only.
This filter supports the all above options as @ref{commands}.
@section bilateral_cuda
CUDA accelerated bilateral filter, an edge preserving filter.
This filter is mathematically accurate thanks to the use of GPU acceleration.
For best output quality, use one to one chroma subsampling, i.e. yuv444p format.
The filter accepts the following options:
@table @option
@item sigmaS
Set sigma of gaussian function to calculate spatial weight, also called sigma space.
Allowed range is 0.1 to 512. Default is 0.1.
@item sigmaR
Set sigma of gaussian function to calculate color range weight, also called sigma color.
Allowed range is 0.1 to 512. Default is 0.1.
@item window_size
Set window size of the bilateral function to determine the number of neighbours to loop on.
If the number entered is even, one will be added automatically.
Allowed range is 1 to 255. Default is 1.
@end table
@subsection Examples
@itemize
@item
Apply the bilateral filter on a video.
@example
./ffmpeg -v verbose \
-hwaccel cuda -hwaccel_output_format cuda -i input.mp4 \
-init_hw_device cuda \
-filter_complex \
" \
[0:v]scale_cuda=format=yuv444p[scaled_video];
[scaled_video]bilateral_cuda=window_size=9:sigmaS=3.0:sigmaR=50.0" \
-an -sn -c:v h264_nvenc -cq 20 out.mp4
@end example
@end itemize
@section bitplanenoise
Show and measure bit plane noise.

View File

@ -194,6 +194,7 @@ OBJS-$(CONFIG_AVGBLUR_VULKAN_FILTER) += vf_avgblur_vulkan.o vulkan.o vul
OBJS-$(CONFIG_BBOX_FILTER) += bbox.o vf_bbox.o
OBJS-$(CONFIG_BENCH_FILTER) += f_bench.o
OBJS-$(CONFIG_BILATERAL_FILTER) += vf_bilateral.o
OBJS-$(CONFIG_BILATERAL_CUDA_FILTER) += vf_bilateral_cuda.o vf_bilateral_cuda.ptx.o
OBJS-$(CONFIG_BITPLANENOISE_FILTER) += vf_bitplanenoise.o
OBJS-$(CONFIG_BLACKDETECT_FILTER) += vf_blackdetect.o
OBJS-$(CONFIG_BLACKFRAME_FILTER) += vf_blackframe.o

View File

@ -180,6 +180,7 @@ extern const AVFilter ff_vf_avgblur_vulkan;
extern const AVFilter ff_vf_bbox;
extern const AVFilter ff_vf_bench;
extern const AVFilter ff_vf_bilateral;
extern const AVFilter ff_vf_bilateral_cuda;
extern const AVFilter ff_vf_bitplanenoise;
extern const AVFilter ff_vf_blackdetect;
extern const AVFilter ff_vf_blackframe;

View File

@ -31,7 +31,7 @@
#include "version_major.h"
#define LIBAVFILTER_VERSION_MINOR 47
#define LIBAVFILTER_VERSION_MINOR 48
#define LIBAVFILTER_VERSION_MICRO 100

View File

@ -0,0 +1,479 @@
/*
* Copyright (c) 2022 Mohamed Khaled <Mohamed_Khaled_Kamal@outlook.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include <stdio.h>
#include <string.h>
#include "libavutil/avstring.h"
#include "libavutil/common.h"
#include "libavutil/hwcontext.h"
#include "libavutil/hwcontext_cuda_internal.h"
#include "libavutil/cuda_check.h"
#include "libavutil/internal.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "cuda/load_helper.h"
static const enum AVPixelFormat supported_formats[] = {
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_NV12,
AV_PIX_FMT_YUV444P
};
#define DIV_UP(a, b) ( ((a) + (b) - 1) / (b) )
#define BLOCKX 32
#define BLOCKY 16
#define CHECK_CU(x) FF_CUDA_CHECK_DL(ctx, s->hwctx->internal->cuda_dl, x)
typedef struct CUDABilateralContext {
const AVClass *class;
AVCUDADeviceContext *hwctx;
enum AVPixelFormat in_fmt, out_fmt;
const AVPixFmtDescriptor *in_desc, *out_desc;
int in_planes, out_planes;
int in_plane_depths[4];
int in_plane_channels[4];
int window_size;
float sigmaS;
float sigmaR;
AVBufferRef *frames_ctx;
AVFrame *frame;
AVFrame *tmp_frame;
CUcontext cu_ctx;
CUmodule cu_module;
CUfunction cu_func;
CUfunction cu_func_uv;
CUstream cu_stream;
} CUDABilateralContext;
static av_cold int cudabilateral_init(AVFilterContext *ctx)
{
CUDABilateralContext *s = ctx->priv;
s->frame = av_frame_alloc();
if (!s->frame)
return AVERROR(ENOMEM);
s->tmp_frame = av_frame_alloc();
if (!s->tmp_frame)
return AVERROR(ENOMEM);
return 0;
}
static av_cold void cudabilateral_uninit(AVFilterContext *ctx)
{
CUDABilateralContext *s = ctx->priv;
if (s->hwctx && s->cu_module) {
CudaFunctions *cu = s->hwctx->internal->cuda_dl;
CUcontext bilateral;
CHECK_CU(cu->cuCtxPushCurrent(s->hwctx->cuda_ctx));
CHECK_CU(cu->cuModuleUnload(s->cu_module));
s->cu_module = NULL;
CHECK_CU(cu->cuCtxPopCurrent(&bilateral));
}
av_frame_free(&s->frame);
av_buffer_unref(&s->frames_ctx);
av_frame_free(&s->tmp_frame);
}
static av_cold int init_hwframe_ctx(CUDABilateralContext *s, AVBufferRef *device_ctx, int width, int height)
{
AVBufferRef *out_ref = NULL;
AVHWFramesContext *out_ctx;
int ret;
out_ref = av_hwframe_ctx_alloc(device_ctx);
if (!out_ref)
return AVERROR(ENOMEM);
out_ctx = (AVHWFramesContext*)out_ref->data;
out_ctx->format = AV_PIX_FMT_CUDA;
out_ctx->sw_format = s->out_fmt;
out_ctx->width = width;
out_ctx->height = height;
ret = av_hwframe_ctx_init(out_ref);
if (ret < 0)
goto fail;
av_frame_unref(s->frame);
ret = av_hwframe_get_buffer(out_ref, s->frame, 0);
if (ret < 0)
goto fail;
av_buffer_unref(&s->frames_ctx);
s->frames_ctx = out_ref;
return 0;
fail:
av_buffer_unref(&out_ref);
return ret;
}
static int format_is_supported(enum AVPixelFormat fmt)
{
int i;
for (i = 0; i < FF_ARRAY_ELEMS(supported_formats); i++)
if (supported_formats[i] == fmt)
return 1;
return 0;
}
static av_cold void set_format_info(AVFilterContext *ctx, enum AVPixelFormat in_format, enum AVPixelFormat out_format)
{
CUDABilateralContext *s = ctx->priv;
int i, p, d;
s->in_fmt = in_format;
s->out_fmt = out_format;
s->in_desc = av_pix_fmt_desc_get(s->in_fmt);
s->out_desc = av_pix_fmt_desc_get(s->out_fmt);
s->in_planes = av_pix_fmt_count_planes(s->in_fmt);
s->out_planes = av_pix_fmt_count_planes(s->out_fmt);
// find maximum step of each component of each plane
// For our subset of formats, this should accurately tell us how many channels CUDA needs
// i.e. 1 for Y plane, 2 for UV plane of NV12, 4 for single plane of RGB0 formats
for (i = 0; i < s->in_desc->nb_components; i++) {
d = (s->in_desc->comp[i].depth + 7) / 8;
p = s->in_desc->comp[i].plane;
s->in_plane_channels[p] = FFMAX(s->in_plane_channels[p], s->in_desc->comp[i].step / d);
s->in_plane_depths[p] = s->in_desc->comp[i].depth;
}
}
static av_cold int init_processing_chain(AVFilterContext *ctx, int width, int height)
{
CUDABilateralContext *s = ctx->priv;
AVHWFramesContext *in_frames_ctx;
int ret;
/* check that we have a hw context */
if (!ctx->inputs[0]->hw_frames_ctx) {
av_log(ctx, AV_LOG_ERROR, "No hw context provided on input\n");
return AVERROR(EINVAL);
}
in_frames_ctx = (AVHWFramesContext*)ctx->inputs[0]->hw_frames_ctx->data;
if (!format_is_supported(in_frames_ctx->sw_format)) {
av_log(ctx, AV_LOG_ERROR, "Unsupported format: %s\n", av_get_pix_fmt_name(in_frames_ctx->sw_format));
return AVERROR(ENOSYS);
}
set_format_info(ctx, in_frames_ctx->sw_format, in_frames_ctx->sw_format);
ret = init_hwframe_ctx(s, in_frames_ctx->device_ref, width, height);
if (ret < 0)
return ret;
ctx->outputs[0]->hw_frames_ctx = av_buffer_ref(s->frames_ctx);
if (!ctx->outputs[0]->hw_frames_ctx)
return AVERROR(ENOMEM);
return 0;
}
static av_cold int cuda_bilateral_load_functions(AVFilterContext *ctx)
{
CUDABilateralContext *s = ctx->priv;
CUcontext bilateral, cuda_ctx = s->hwctx->cuda_ctx;
CudaFunctions *cu = s->hwctx->internal->cuda_dl;
int ret;
extern const unsigned char ff_vf_bilateral_cuda_ptx_data[];
extern const unsigned int ff_vf_bilateral_cuda_ptx_len;
ret = CHECK_CU(cu->cuCtxPushCurrent(cuda_ctx));
if (ret < 0)
return ret;
ret = ff_cuda_load_module(ctx, s->hwctx, &s->cu_module,
ff_vf_bilateral_cuda_ptx_data, ff_vf_bilateral_cuda_ptx_len);
if (ret < 0)
goto fail;
ret = CHECK_CU(cu->cuModuleGetFunction(&s->cu_func, s->cu_module, "Process_uchar"));
if (ret < 0) {
av_log(ctx, AV_LOG_FATAL, "Failed loading Process_uchar\n");
goto fail;
}
ret = CHECK_CU(cu->cuModuleGetFunction(&s->cu_func_uv, s->cu_module, "Process_uchar2"));
if (ret < 0) {
av_log(ctx, AV_LOG_FATAL, "Failed loading Process_uchar2\n");
goto fail;
}
fail:
CHECK_CU(cu->cuCtxPopCurrent(&bilateral));
return ret;
}
static av_cold int cuda_bilateral_config_props(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = outlink->src->inputs[0];
CUDABilateralContext *s = ctx->priv;
AVHWFramesContext *frames_ctx = (AVHWFramesContext*)inlink->hw_frames_ctx->data;
AVCUDADeviceContext *device_hwctx = frames_ctx->device_ctx->hwctx;
int ret;
s->hwctx = device_hwctx;
s->cu_stream = s->hwctx->stream;
ret = init_processing_chain(ctx, inlink->w, inlink->h);
if (ret < 0)
return ret;
outlink->sample_aspect_ratio = inlink->sample_aspect_ratio;
// the window_size makes more sense when it is odd, so add 1 if even
s->window_size= (s->window_size%2) ? s->window_size : s->window_size+1;
ret = cuda_bilateral_load_functions(ctx);
if (ret < 0)
return ret;
return 0;
}
static int call_cuda_kernel(AVFilterContext *ctx, CUfunction func,
CUtexObject src_tex[3], AVFrame *out_frame,
int width, int height, int pitch,
int width_uv, int height_uv, int pitch_uv,
int window_size, float sigmaS, float sigmaR)
{
CUDABilateralContext *s = ctx->priv;
CudaFunctions *cu = s->hwctx->internal->cuda_dl;
int ret;
CUdeviceptr dst_devptr[3] = {
(CUdeviceptr)out_frame->data[0], (CUdeviceptr)out_frame->data[1], (CUdeviceptr)out_frame->data[2]
};
void *args_uchar[] = {
&src_tex[0], &src_tex[1], &src_tex[2],
&dst_devptr[0], &dst_devptr[1], &dst_devptr[2],
&width, &height, &pitch,
&width_uv, &height_uv, &pitch_uv,
&window_size, &sigmaS, &sigmaR
};
ret = CHECK_CU(cu->cuLaunchKernel(func,
DIV_UP(width, BLOCKX), DIV_UP(height, BLOCKY), 1,
BLOCKX, BLOCKY, 1, 0, s->cu_stream, args_uchar, NULL));
if (ret < 0)
return ret;
return ret;
}
static int cuda_bilateral_process_internal(AVFilterContext *ctx,
AVFrame *out, AVFrame *in)
{
CUDABilateralContext *s = ctx->priv;
CudaFunctions *cu = s->hwctx->internal->cuda_dl;
CUcontext bilateral, cuda_ctx = s->hwctx->cuda_ctx;
int i, ret;
CUtexObject tex[3] = { 0, 0, 0 };
ret = CHECK_CU(cu->cuCtxPushCurrent(cuda_ctx));
if (ret < 0)
return ret;
for (i = 0; i < s->in_planes; i++) {
CUDA_TEXTURE_DESC tex_desc = {
.filterMode = CU_TR_FILTER_MODE_LINEAR,
.flags = 0, // CU_TRSF_READ_AS_INTEGER to get raw ints instead of normalized floats from tex2D
};
CUDA_RESOURCE_DESC res_desc = {
.resType = CU_RESOURCE_TYPE_PITCH2D,
.res.pitch2D.format = CU_AD_FORMAT_UNSIGNED_INT8,
.res.pitch2D.numChannels = s->in_plane_channels[i],
.res.pitch2D.pitchInBytes = in->linesize[i],
.res.pitch2D.devPtr = (CUdeviceptr)in->data[i],
};
if (i == 1 || i == 2) {
res_desc.res.pitch2D.width = AV_CEIL_RSHIFT(in->width, s->in_desc->log2_chroma_w);
res_desc.res.pitch2D.height = AV_CEIL_RSHIFT(in->height, s->in_desc->log2_chroma_h);
} else {
res_desc.res.pitch2D.width = in->width;
res_desc.res.pitch2D.height = in->height;
}
ret = CHECK_CU(cu->cuTexObjectCreate(&tex[i], &res_desc, &tex_desc, NULL));
if (ret < 0)
goto exit;
}
ret = call_cuda_kernel(ctx, (s->in_plane_channels[1] > 1) ? s->cu_func_uv : s->cu_func,
tex, out,
out->width, out->height, out->linesize[0],
AV_CEIL_RSHIFT(out->width, s->out_desc->log2_chroma_w),
AV_CEIL_RSHIFT(out->height, s->out_desc->log2_chroma_h),
out->linesize[1] >> ((s->in_plane_channels[1] > 1) ? 1 : 0),
s->window_size, s->sigmaS, s->sigmaR);
if (ret < 0)
goto exit;
exit:
for (i = 0; i < s->in_planes; i++)
if (tex[i])
CHECK_CU(cu->cuTexObjectDestroy(tex[i]));
CHECK_CU(cu->cuCtxPopCurrent(&bilateral));
return ret;
}
static int cuda_bilateral_process(AVFilterContext *ctx, AVFrame *out, AVFrame *in)
{
CUDABilateralContext *s = ctx->priv;
AVFrame *src = in;
int ret;
ret = cuda_bilateral_process_internal(ctx, s->frame, src);
if (ret < 0)
return ret;
src = s->frame;
ret = av_hwframe_get_buffer(src->hw_frames_ctx, s->tmp_frame, 0);
if (ret < 0)
return ret;
av_frame_move_ref(out, s->frame);
av_frame_move_ref(s->frame, s->tmp_frame);
ret = av_frame_copy_props(out, in);
if (ret < 0)
return ret;
return 0;
}
static int cuda_bilateral_filter_frame(AVFilterLink *link, AVFrame *in)
{
AVFilterContext *ctx = link->dst;
CUDABilateralContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
CudaFunctions *cu = s->hwctx->internal->cuda_dl;
AVFrame *out = NULL;
CUcontext bilateral;
int ret = 0;
out = av_frame_alloc();
if (!out) {
ret = AVERROR(ENOMEM);
goto fail;
}
ret = CHECK_CU(cu->cuCtxPushCurrent(s->hwctx->cuda_ctx));
if (ret < 0)
goto fail;
ret = cuda_bilateral_process(ctx, out, in);
CHECK_CU(cu->cuCtxPopCurrent(&bilateral));
if (ret < 0)
goto fail;
av_frame_free(&in);
return ff_filter_frame(outlink, out);
fail:
av_frame_free(&in);
av_frame_free(&out);
return ret;
}
#define OFFSET(x) offsetof(CUDABilateralContext, x)
#define FLAGS (AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM)
static const AVOption options[] = {
{ "sigmaS", "set spatial sigma", OFFSET(sigmaS), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.1, 512, FLAGS },
{ "sigmaR", "set range sigma", OFFSET(sigmaR), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.1, 512, FLAGS },
{ "window_size", "set neighbours window_size", OFFSET(window_size), AV_OPT_TYPE_INT, {.i64=1}, 1, 255, FLAGS },
{ NULL }
};
static const AVClass cuda_bilateral_class = {
.class_name = "cudabilateral",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static const AVFilterPad cuda_bilateral_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = cuda_bilateral_filter_frame,
},
};
static const AVFilterPad cuda_bilateral_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = cuda_bilateral_config_props,
},
};
const AVFilter ff_vf_bilateral_cuda = {
.name = "bilateral_cuda",
.description = NULL_IF_CONFIG_SMALL("GPU accelerated bilateral filter"),
.init = cudabilateral_init,
.uninit = cudabilateral_uninit,
.priv_size = sizeof(CUDABilateralContext),
.priv_class = &cuda_bilateral_class,
FILTER_INPUTS(cuda_bilateral_inputs),
FILTER_OUTPUTS(cuda_bilateral_outputs),
FILTER_SINGLE_PIXFMT(AV_PIX_FMT_CUDA),
.flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE,
};

View File

@ -0,0 +1,191 @@
/*
* Copyright (c) 2022 Mohamed Khaled <Mohamed_Khaled_Kamal@outlook.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "cuda/vector_helpers.cuh"
extern "C"
{
/**
* @brief calculated squared norm difference between two 3-dimension vecors ||first_vector-second_vector||^2
* used float4 for better performance
*
* @param first_yuv first color vector
* @param second_yuv second color vecotr
* @return answer of squared norm difference
*/
__device__ static inline float norm_squared(float4 first_yuv, float4 second_yuv)
{
float ans = 0;
ans += powf(first_yuv.x - second_yuv.x, 2);
ans += powf(first_yuv.y - second_yuv.y, 2);
ans += powf(first_yuv.z - second_yuv.z, 2);
return ans;
}
/**
* @brief calculate w as stated in bilateral filter research paper
*
* @param first_yuv first color vector
* @param second_yuv second color vecotr
* @return the calculated w
*/
__device__ static inline float calculate_w(int x, int y, int r, int c,
float4 pixel_value, float4 neighbor_value,
float sigma_space, float sigma_color)
{
float first_term, second_term;
first_term = (powf(x - r, 2) + powf(y - c, 2)) / (2 * sigma_space * sigma_space);
second_term = norm_squared(pixel_value, neighbor_value) / (2 * sigma_color * sigma_color);
return __expf(-first_term - second_term);
}
/**
* @brief apply the bilateral filter on the pixel sent
*
* @param src_tex_Y Y channel of source image
* @param src_tex U channel of source image if yuv, or UV channels if format is nv12
* @param src_tex_V V channel of source image
* @param dst_Y Y channel of destination image
* @param dst_U U channel of destination image if format is in yuv
* @param dst_V V channel of destination image if format is in yuv
* @param dst_UV UV channels of destination image if format is in nv12
* @param width width of Y channel
* @param height height of Y channel
* @param width_uv width of UV channels
* @param height_uv height of UV channels
* @param pitch pitch of Y channel
* @param pitch_uv pitch of UV channels
* @param x x coordinate of pixel to be filtered
* @param y y coordinate of pixel to be filtered
* @param sigma_space sigma space parameter
* @param sigma_color sigma color parameter
* @param window_size window size parameter
* @return void
*/
__device__ static inline void apply_biltaeral(
cudaTextureObject_t src_tex_Y, cudaTextureObject_t src_tex, cudaTextureObject_t src_tex_V,
uchar *dst_Y, uchar *dst_U, uchar *dst_V, uchar2 *dst_UV,
int width, int height, int width_uv, int height_uv, int pitch, int pitch_uv,
int x, int y,
float sigma_space, float sigma_color, int window_size)
{
int start_r = x - window_size / 2;
int start_c = y - window_size / 2;
float4 neighbor_pixel = make_float4(0.f, 0.f, 0.f, 0.f);
float Wp = 0.f;
float4 new_pixel_value = make_float4(0.f, 0.f, 0.f, 0.f);
float w = 0.f;
int channel_ratio = width / width_uv; // ratio between Y channel and UV channels
float4 currrent_pixel;
if (!src_tex_V) { // format is in nv12
float2 temp_uv = tex2D<float2>(src_tex, x/channel_ratio, y/channel_ratio) * 255.f;
currrent_pixel.x = tex2D<float>(src_tex_Y, x, y) * 255.f;
currrent_pixel.y = temp_uv.x;
currrent_pixel.z = temp_uv.y;
currrent_pixel.w = 0.f;
} else { // format is fully planar
currrent_pixel = make_float4(tex2D<float>(src_tex_Y, x, y) * 255.f,
tex2D<float>(src_tex, x/channel_ratio, y/channel_ratio) * 255.f,
tex2D<float>(src_tex_V, x/channel_ratio, y/channel_ratio) * 255.f,
0.f);
}
for (int i=0; i < window_size; i++)
{
for (int j=0; j < window_size; j++)
{
int r=start_r+i;
int c=start_c+j;
bool in_bounds=r>=0 && r<width && c>=0 && c<height;
if (in_bounds)
{
if (!src_tex_V){
float2 temp_uv = tex2D<float2>(src_tex, r/channel_ratio, c/channel_ratio);
neighbor_pixel=make_float4(tex2D<float>(src_tex_Y, r, c) * 255.f,
temp_uv.x * 255.f,
temp_uv.y * 255.f, 0.f);
} else {
neighbor_pixel=make_float4(tex2D<float>(src_tex_Y, r, c) * 255.f,
tex2D<float>(src_tex, r/channel_ratio, c/channel_ratio) * 255.f,
tex2D<float>(src_tex_V, r/channel_ratio, c/channel_ratio) * 255.f, 0.f);
}
w=calculate_w(x,y,r,c,currrent_pixel,neighbor_pixel,sigma_space,sigma_color);
Wp+=w;
new_pixel_value+= neighbor_pixel*w;
}
}
}
new_pixel_value = new_pixel_value / Wp;
dst_Y[y*pitch + x] = new_pixel_value.x;
if (!src_tex_V) {
dst_UV[(y/channel_ratio) * pitch_uv + (x/channel_ratio)] = make_uchar2(new_pixel_value.y, new_pixel_value.z);
} else {
dst_U[(y/channel_ratio) * pitch_uv + (x/channel_ratio)] = new_pixel_value.y;
dst_V[(y/channel_ratio) * pitch_uv + (x/channel_ratio)] = new_pixel_value.z;
}
return;
}
__global__ void Process_uchar(cudaTextureObject_t src_tex_Y, cudaTextureObject_t src_tex_U, cudaTextureObject_t src_tex_V,
uchar *dst_Y, uchar *dst_U, uchar *dst_V,
int width, int height, int pitch,
int width_uv, int height_uv, int pitch_uv,
int window_size, float sigmaS, float sigmaR)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y >= height || x >= width)
return;
apply_biltaeral(src_tex_Y, src_tex_U, src_tex_V,
dst_Y, dst_U, dst_V, (uchar2*)nullptr,
width, height, width_uv, height_uv, pitch, pitch_uv,
x, y,
sigmaS, sigmaR, window_size);
}
__global__ void Process_uchar2(cudaTextureObject_t src_tex_Y, cudaTextureObject_t src_tex_UV, cudaTextureObject_t unused1,
uchar *dst_Y, uchar2 *dst_UV, uchar *unused2,
int width, int height, int pitch,
int width_uv, int height_uv, int pitch_uv,
int window_size, float sigmaS, float sigmaR)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y >= height || x >= width)
return;
apply_biltaeral(src_tex_Y, src_tex_UV, (cudaTextureObject_t)nullptr,
dst_Y, (uchar*)nullptr, (uchar*)nullptr, dst_UV,
width, height, width_uv, height_uv, pitch, pitch_uv,
x, y,
sigmaS, sigmaR, window_size);
}
}