// SPDX-FileCopyrightText: 2011 Google, Inc. // SPDX-FileContributor: Geoff Pike // SPDX-FileContributor: Jyrki Alakuijala // SPDX-License-Identifier: MIT // CityHash, by Geoff Pike and Jyrki Alakuijala // // This file provides CityHash64() and related functions. // // It's probably possible to create even faster hash functions by // writing a program that systematically explores some of the space of // possible hash functions, by using SIMD instructions, or by // compromising on hash quality. #include #include #include #include "common/cityhash.h" #include "common/swap.h" // #include "config.h" #ifdef __GNUC__ #define HAVE_BUILTIN_EXPECT 1 #endif #ifdef COMMON_BIG_ENDIAN #define WORDS_BIGENDIAN 1 #endif using namespace std; namespace Common { static u64 unaligned_load64(const char* p) { u64 result; std::memcpy(&result, p, sizeof(result)); return result; } static u32 unaligned_load32(const char* p) { u32 result; std::memcpy(&result, p, sizeof(result)); return result; } #ifdef WORDS_BIGENDIAN #define uint32_in_expected_order(x) (swap32(x)) #define uint64_in_expected_order(x) (swap64(x)) #else #define uint32_in_expected_order(x) (x) #define uint64_in_expected_order(x) (x) #endif #if !defined(LIKELY) #if HAVE_BUILTIN_EXPECT #define LIKELY(x) (__builtin_expect(!!(x), 1)) #else #define LIKELY(x) (x) #endif #endif static u64 Fetch64(const char* p) { return uint64_in_expected_order(unaligned_load64(p)); } static u32 Fetch32(const char* p) { return uint32_in_expected_order(unaligned_load32(p)); } // Some primes between 2^63 and 2^64 for various uses. static constexpr u64 k0 = 0xc3a5c85c97cb3127ULL; static constexpr u64 k1 = 0xb492b66fbe98f273ULL; static constexpr u64 k2 = 0x9ae16a3b2f90404fULL; // Bitwise right rotate. Normally this will compile to a single // instruction, especially if the shift is a manifest constant. static u64 Rotate(u64 val, int shift) { // Avoid shifting by 64: doing so yields an undefined result. return shift == 0 ? val : ((val >> shift) | (val << (64 - shift))); } static u64 ShiftMix(u64 val) { return val ^ (val >> 47); } static u64 HashLen16(u64 u, u64 v) { return Hash128to64(u128{u, v}); } static u64 HashLen16(u64 u, u64 v, u64 mul) { // Murmur-inspired hashing. u64 a = (u ^ v) * mul; a ^= (a >> 47); u64 b = (v ^ a) * mul; b ^= (b >> 47); b *= mul; return b; } static u64 HashLen0to16(const char* s, size_t len) { if (len >= 8) { u64 mul = k2 + len * 2; u64 a = Fetch64(s) + k2; u64 b = Fetch64(s + len - 8); u64 c = Rotate(b, 37) * mul + a; u64 d = (Rotate(a, 25) + b) * mul; return HashLen16(c, d, mul); } if (len >= 4) { u64 mul = k2 + len * 2; u64 a = Fetch32(s); return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul); } if (len > 0) { u8 a = s[0]; u8 b = s[len >> 1]; u8 c = s[len - 1]; u32 y = static_cast(a) + (static_cast(b) << 8); u32 z = static_cast(len) + (static_cast(c) << 2); return ShiftMix(y * k2 ^ z * k0) * k2; } return k2; } // This probably works well for 16-byte strings as well, but it may be overkill // in that case. static u64 HashLen17to32(const char* s, size_t len) { u64 mul = k2 + len * 2; u64 a = Fetch64(s) * k1; u64 b = Fetch64(s + 8); u64 c = Fetch64(s + len - 8) * mul; u64 d = Fetch64(s + len - 16) * k2; return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d, a + Rotate(b + k2, 18) + c, mul); } // Return a 16-byte hash for 48 bytes. Quick and dirty. // Callers do best to use "random-looking" values for a and b. static pair WeakHashLen32WithSeeds(u64 w, u64 x, u64 y, u64 z, u64 a, u64 b) { a += w; b = Rotate(b + a + z, 21); u64 c = a; a += x; a += y; b += Rotate(a, 44); return make_pair(a + z, b + c); } // Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty. static pair WeakHashLen32WithSeeds(const char* s, u64 a, u64 b) { return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16), Fetch64(s + 24), a, b); } // Return an 8-byte hash for 33 to 64 bytes. static u64 HashLen33to64(const char* s, size_t len) { u64 mul = k2 + len * 2; u64 a = Fetch64(s) * k2; u64 b = Fetch64(s + 8); u64 c = Fetch64(s + len - 24); u64 d = Fetch64(s + len - 32); u64 e = Fetch64(s + 16) * k2; u64 f = Fetch64(s + 24) * 9; u64 g = Fetch64(s + len - 8); u64 h = Fetch64(s + len - 16) * mul; u64 u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9; u64 v = ((a + g) ^ d) + f + 1; u64 w = swap64((u + v) * mul) + h; u64 x = Rotate(e + f, 42) + c; u64 y = (swap64((v + w) * mul) + g) * mul; u64 z = e + f + c; a = swap64((x + z) * mul + y) + b; b = ShiftMix((z + a) * mul + d + h) * mul; return b + x; } u64 CityHash64(const char* s, size_t len) { if (len <= 32) { if (len <= 16) { return HashLen0to16(s, len); } else { return HashLen17to32(s, len); } } else if (len <= 64) { return HashLen33to64(s, len); } // For strings over 64 bytes we hash the end first, and then as we // loop we keep 56 bytes of state: v, w, x, y, and z. u64 x = Fetch64(s + len - 40); u64 y = Fetch64(s + len - 16) + Fetch64(s + len - 56); u64 z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24)); pair v = WeakHashLen32WithSeeds(s + len - 64, len, z); pair w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x); x = x * k1 + Fetch64(s); // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks. len = (len - 1) & ~static_cast(63); do { x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; x ^= w.second; y += v.first + Fetch64(s + 40); z = Rotate(z + w.first, 33) * k1; v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); std::swap(z, x); s += 64; len -= 64; } while (len != 0); return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z, HashLen16(v.second, w.second) + x); } u64 CityHash64WithSeed(const char* s, size_t len, u64 seed) { return CityHash64WithSeeds(s, len, k2, seed); } u64 CityHash64WithSeeds(const char* s, size_t len, u64 seed0, u64 seed1) { return HashLen16(CityHash64(s, len) - seed0, seed1); } // A subroutine for CityHash128(). Returns a decent 128-bit hash for strings // of any length representable in signed long. Based on City and Murmur. static u128 CityMurmur(const char* s, size_t len, u128 seed) { u64 a = seed[0]; u64 b = seed[1]; u64 c = 0; u64 d = 0; signed long l = static_cast(len) - 16; if (l <= 0) { // len <= 16 a = ShiftMix(a * k1) * k1; c = b * k1 + HashLen0to16(s, len); d = ShiftMix(a + (len >= 8 ? Fetch64(s) : c)); } else { // len > 16 c = HashLen16(Fetch64(s + len - 8) + k1, a); d = HashLen16(b + len, c + Fetch64(s + len - 16)); a += d; do { a ^= ShiftMix(Fetch64(s) * k1) * k1; a *= k1; b ^= a; c ^= ShiftMix(Fetch64(s + 8) * k1) * k1; c *= k1; d ^= c; s += 16; l -= 16; } while (l > 0); } a = HashLen16(a, c); b = HashLen16(d, b); return u128{a ^ b, HashLen16(b, a)}; } u128 CityHash128WithSeed(const char* s, size_t len, u128 seed) { if (len < 128) { return CityMurmur(s, len, seed); } // We expect len >= 128 to be the common case. Keep 56 bytes of state: // v, w, x, y, and z. pair v, w; u64 x = seed[0]; u64 y = seed[1]; u64 z = len * k1; v.first = Rotate(y ^ k1, 49) * k1 + Fetch64(s); v.second = Rotate(v.first, 42) * k1 + Fetch64(s + 8); w.first = Rotate(y + z, 35) * k1 + x; w.second = Rotate(x + Fetch64(s + 88), 53) * k1; // This is the same inner loop as CityHash64(), manually unrolled. do { x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; x ^= w.second; y += v.first + Fetch64(s + 40); z = Rotate(z + w.first, 33) * k1; v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); std::swap(z, x); s += 64; x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1; y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1; x ^= w.second; y += v.first + Fetch64(s + 40); z = Rotate(z + w.first, 33) * k1; v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first); w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16)); std::swap(z, x); s += 64; len -= 128; } while (LIKELY(len >= 128)); x += Rotate(v.first + z, 49) * k0; y = y * k0 + Rotate(w.second, 37); z = z * k0 + Rotate(w.first, 27); w.first *= 9; v.first *= k0; // If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s. for (size_t tail_done = 0; tail_done < len;) { tail_done += 32; y = Rotate(x + y, 42) * k0 + v.second; w.first += Fetch64(s + len - tail_done + 16); x = x * k0 + w.first; z += w.second + Fetch64(s + len - tail_done); w.second += v.first; v = WeakHashLen32WithSeeds(s + len - tail_done, v.first + z, v.second); v.first *= k0; } // At this point our 56 bytes of state should contain more than // enough information for a strong 128-bit hash. We use two // different 56-byte-to-8-byte hashes to get a 16-byte final result. x = HashLen16(x, v.first); y = HashLen16(y + z, w.first); return u128{HashLen16(x + v.second, w.second) + y, HashLen16(x + w.second, y + v.second)}; } u128 CityHash128(const char* s, size_t len) { return len >= 16 ? CityHash128WithSeed(s + 16, len - 16, u128{Fetch64(s), Fetch64(s + 8) + k0}) : CityHash128WithSeed(s, len, u128{k0, k1}); } } // namespace Common