yuzu/src/video_core/renderer_vulkan/vk_rasterizer.cpp

1332 lines
52 KiB
C++
Raw Normal View History

// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <memory>
#include <mutex>
#include <vector>
#include <boost/container/static_vector.hpp>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "core/core.h"
#include "core/settings.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/renderer_vulkan/fixed_pipeline_state.h"
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/renderer_vulkan.h"
#include "video_core/renderer_vulkan/vk_buffer_cache.h"
#include "video_core/renderer_vulkan/vk_compute_pass.h"
#include "video_core/renderer_vulkan/vk_compute_pipeline.h"
#include "video_core/renderer_vulkan/vk_descriptor_pool.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_graphics_pipeline.h"
#include "video_core/renderer_vulkan/vk_pipeline_cache.h"
#include "video_core/renderer_vulkan/vk_rasterizer.h"
#include "video_core/renderer_vulkan/vk_renderpass_cache.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
#include "video_core/renderer_vulkan/vk_sampler_cache.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_state_tracker.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/renderer_vulkan/vk_update_descriptor.h"
2020-03-27 05:33:21 +01:00
#include "video_core/renderer_vulkan/wrapper.h"
namespace Vulkan {
using Maxwell = Tegra::Engines::Maxwell3D::Regs;
MICROPROFILE_DEFINE(Vulkan_WaitForWorker, "Vulkan", "Wait for worker", MP_RGB(255, 192, 192));
MICROPROFILE_DEFINE(Vulkan_Drawing, "Vulkan", "Record drawing", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Compute, "Vulkan", "Record compute", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Clearing, "Vulkan", "Record clearing", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Geometry, "Vulkan", "Setup geometry", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_ConstBuffers, "Vulkan", "Setup constant buffers", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_GlobalBuffers, "Vulkan", "Setup global buffers", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_RenderTargets, "Vulkan", "Setup render targets", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Textures, "Vulkan", "Setup textures", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_Images, "Vulkan", "Setup images", MP_RGB(192, 128, 128));
MICROPROFILE_DEFINE(Vulkan_PipelineCache, "Vulkan", "Pipeline cache", MP_RGB(192, 128, 128));
namespace {
constexpr auto ComputeShaderIndex = static_cast<std::size_t>(Tegra::Engines::ShaderType::Compute);
2020-03-27 05:33:21 +01:00
VkViewport GetViewportState(const VKDevice& device, const Maxwell& regs, std::size_t index) {
const auto& src = regs.viewport_transform[index];
const float width = src.scale_x * 2.0f;
const float height = src.scale_y * 2.0f;
2020-03-27 05:33:21 +01:00
VkViewport viewport;
viewport.x = src.translate_x - src.scale_x;
viewport.y = src.translate_y - src.scale_y;
viewport.width = width != 0.0f ? width : 1.0f;
viewport.height = height != 0.0f ? height : 1.0f;
const float reduce_z = regs.depth_mode == Maxwell::DepthMode::MinusOneToOne ? 1.0f : 0.0f;
2020-03-27 05:33:21 +01:00
viewport.minDepth = src.translate_z - src.scale_z * reduce_z;
viewport.maxDepth = src.translate_z + src.scale_z;
if (!device.IsExtDepthRangeUnrestrictedSupported()) {
2020-03-27 05:33:21 +01:00
viewport.minDepth = std::clamp(viewport.minDepth, 0.0f, 1.0f);
viewport.maxDepth = std::clamp(viewport.maxDepth, 0.0f, 1.0f);
}
2020-03-27 05:33:21 +01:00
return viewport;
}
2020-03-27 05:33:21 +01:00
VkRect2D GetScissorState(const Maxwell& regs, std::size_t index) {
const auto& src = regs.scissor_test[index];
VkRect2D scissor;
if (src.enable) {
scissor.offset.x = static_cast<s32>(src.min_x);
scissor.offset.y = static_cast<s32>(src.min_y);
scissor.extent.width = src.max_x - src.min_x;
scissor.extent.height = src.max_y - src.min_y;
} else {
scissor.offset.x = 0;
scissor.offset.y = 0;
scissor.extent.width = std::numeric_limits<s32>::max();
scissor.extent.height = std::numeric_limits<s32>::max();
}
2020-03-27 05:33:21 +01:00
return scissor;
}
std::array<GPUVAddr, Maxwell::MaxShaderProgram> GetShaderAddresses(
const std::array<Shader, Maxwell::MaxShaderProgram>& shaders) {
std::array<GPUVAddr, Maxwell::MaxShaderProgram> addresses;
for (std::size_t i = 0; i < std::size(addresses); ++i) {
addresses[i] = shaders[i] ? shaders[i]->GetGpuAddr() : 0;
}
return addresses;
}
2020-03-27 05:33:21 +01:00
void TransitionImages(const std::vector<ImageView>& views, VkPipelineStageFlags pipeline_stage,
VkAccessFlags access) {
for (auto& [view, layout] : views) {
view->Transition(*layout, pipeline_stage, access);
}
}
template <typename Engine, typename Entry>
Tegra::Texture::FullTextureInfo GetTextureInfo(const Engine& engine, const Entry& entry,
std::size_t stage, std::size_t index = 0) {
const auto stage_type = static_cast<Tegra::Engines::ShaderType>(stage);
if (entry.is_bindless) {
const auto tex_handle = engine.AccessConstBuffer32(stage_type, entry.buffer, entry.offset);
return engine.GetTextureInfo(tex_handle);
}
const auto& gpu_profile = engine.AccessGuestDriverProfile();
const u32 entry_offset = static_cast<u32>(index * gpu_profile.GetTextureHandlerSize());
const u32 offset = entry.offset + entry_offset;
if constexpr (std::is_same_v<Engine, Tegra::Engines::Maxwell3D>) {
return engine.GetStageTexture(stage_type, offset);
} else {
return engine.GetTexture(offset);
}
}
} // Anonymous namespace
class BufferBindings final {
public:
void AddVertexBinding(VkBuffer buffer, VkDeviceSize offset) {
vertex.buffers[vertex.num_buffers] = buffer;
vertex.offsets[vertex.num_buffers] = offset;
++vertex.num_buffers;
}
void SetIndexBinding(VkBuffer buffer, VkDeviceSize offset, VkIndexType type) {
index.buffer = buffer;
index.offset = offset;
index.type = type;
}
void Bind(VKScheduler& scheduler) const {
// Use this large switch case to avoid dispatching more memory in the record lambda than
// what we need. It looks horrible, but it's the best we can do on standard C++.
switch (vertex.num_buffers) {
case 0:
return BindStatic<0>(scheduler);
case 1:
return BindStatic<1>(scheduler);
case 2:
return BindStatic<2>(scheduler);
case 3:
return BindStatic<3>(scheduler);
case 4:
return BindStatic<4>(scheduler);
case 5:
return BindStatic<5>(scheduler);
case 6:
return BindStatic<6>(scheduler);
case 7:
return BindStatic<7>(scheduler);
case 8:
return BindStatic<8>(scheduler);
case 9:
return BindStatic<9>(scheduler);
case 10:
return BindStatic<10>(scheduler);
case 11:
return BindStatic<11>(scheduler);
case 12:
return BindStatic<12>(scheduler);
case 13:
return BindStatic<13>(scheduler);
case 14:
return BindStatic<14>(scheduler);
case 15:
return BindStatic<15>(scheduler);
case 16:
return BindStatic<16>(scheduler);
case 17:
return BindStatic<17>(scheduler);
case 18:
return BindStatic<18>(scheduler);
case 19:
return BindStatic<19>(scheduler);
case 20:
return BindStatic<20>(scheduler);
case 21:
return BindStatic<21>(scheduler);
case 22:
return BindStatic<22>(scheduler);
case 23:
return BindStatic<23>(scheduler);
case 24:
return BindStatic<24>(scheduler);
case 25:
return BindStatic<25>(scheduler);
case 26:
return BindStatic<26>(scheduler);
case 27:
return BindStatic<27>(scheduler);
case 28:
return BindStatic<28>(scheduler);
case 29:
return BindStatic<29>(scheduler);
case 30:
return BindStatic<30>(scheduler);
case 31:
return BindStatic<31>(scheduler);
2020-01-18 01:40:01 +01:00
case 32:
return BindStatic<32>(scheduler);
}
UNREACHABLE();
}
private:
// Some of these fields are intentionally left uninitialized to avoid initializing them twice.
struct {
std::size_t num_buffers = 0;
std::array<VkBuffer, Maxwell::NumVertexArrays> buffers;
2020-03-27 05:33:21 +01:00
std::array<VkDeviceSize, Maxwell::NumVertexArrays> offsets;
} vertex;
struct {
VkBuffer buffer = nullptr;
2020-03-27 05:33:21 +01:00
VkDeviceSize offset;
VkIndexType type;
} index;
template <std::size_t N>
void BindStatic(VKScheduler& scheduler) const {
if (index.buffer) {
BindStatic<N, true>(scheduler);
} else {
BindStatic<N, false>(scheduler);
}
}
template <std::size_t N, bool is_indexed>
void BindStatic(VKScheduler& scheduler) const {
static_assert(N <= Maxwell::NumVertexArrays);
if constexpr (N == 0) {
return;
}
2020-03-27 05:33:21 +01:00
std::array<VkBuffer, N> buffers;
std::array<VkDeviceSize, N> offsets;
std::copy(vertex.buffers.begin(), vertex.buffers.begin() + N, buffers.begin());
std::copy(vertex.offsets.begin(), vertex.offsets.begin() + N, offsets.begin());
if constexpr (is_indexed) {
// Indexed draw
scheduler.Record([buffers, offsets, index = index](vk::CommandBuffer cmdbuf) {
cmdbuf.BindIndexBuffer(index.buffer, index.offset, index.type);
2020-03-27 05:33:21 +01:00
cmdbuf.BindVertexBuffers(0, static_cast<u32>(N), buffers.data(), offsets.data());
});
} else {
// Array draw
2020-03-27 05:33:21 +01:00
scheduler.Record([buffers, offsets](vk::CommandBuffer cmdbuf) {
cmdbuf.BindVertexBuffers(0, static_cast<u32>(N), buffers.data(), offsets.data());
});
}
}
};
2020-03-27 05:33:21 +01:00
void RasterizerVulkan::DrawParameters::Draw(vk::CommandBuffer cmdbuf) const {
if (is_indexed) {
2020-03-27 05:33:21 +01:00
cmdbuf.DrawIndexed(num_vertices, num_instances, 0, base_vertex, base_instance);
} else {
2020-03-27 05:33:21 +01:00
cmdbuf.Draw(num_vertices, num_instances, base_vertex, base_instance);
}
}
RasterizerVulkan::RasterizerVulkan(Core::System& system, Core::Frontend::EmuWindow& renderer,
VKScreenInfo& screen_info, const VKDevice& device,
VKResourceManager& resource_manager,
VKMemoryManager& memory_manager, StateTracker& state_tracker,
VKScheduler& scheduler)
: RasterizerAccelerated{system.Memory()}, system{system}, render_window{renderer},
screen_info{screen_info}, device{device}, resource_manager{resource_manager},
memory_manager{memory_manager}, state_tracker{state_tracker}, scheduler{scheduler},
staging_pool(device, memory_manager, scheduler), descriptor_pool(device),
update_descriptor_queue(device, scheduler), renderpass_cache(device),
quad_array_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue),
quad_indexed_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue),
uint8_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue),
texture_cache(system, *this, device, resource_manager, memory_manager, scheduler,
staging_pool),
pipeline_cache(system, *this, device, scheduler, descriptor_pool, update_descriptor_queue,
renderpass_cache),
buffer_cache(*this, system, device, memory_manager, scheduler, staging_pool),
sampler_cache(device),
fence_manager(system, *this, device, scheduler, texture_cache, buffer_cache, query_cache),
query_cache(system, *this, device, scheduler), wfi_event{device.GetLogical().CreateEvent()} {
scheduler.SetQueryCache(query_cache);
}
RasterizerVulkan::~RasterizerVulkan() = default;
void RasterizerVulkan::Draw(bool is_indexed, bool is_instanced) {
MICROPROFILE_SCOPE(Vulkan_Drawing);
FlushWork();
query_cache.UpdateCounters();
const auto& gpu = system.GPU().Maxwell3D();
GraphicsPipelineCacheKey key;
key.fixed_state.Fill(gpu.regs);
buffer_cache.Map(CalculateGraphicsStreamBufferSize(is_indexed));
BufferBindings buffer_bindings;
const DrawParameters draw_params =
SetupGeometry(key.fixed_state, buffer_bindings, is_indexed, is_instanced);
update_descriptor_queue.Acquire();
sampled_views.clear();
image_views.clear();
const auto shaders = pipeline_cache.GetShaders();
key.shaders = GetShaderAddresses(shaders);
SetupShaderDescriptors(shaders);
buffer_cache.Unmap();
const Texceptions texceptions = UpdateAttachments();
SetupImageTransitions(texceptions, color_attachments, zeta_attachment);
key.renderpass_params = GetRenderPassParams(texceptions);
key.padding = 0;
auto& pipeline = pipeline_cache.GetGraphicsPipeline(key);
scheduler.BindGraphicsPipeline(pipeline.GetHandle());
const auto renderpass = pipeline.GetRenderPass();
const auto [framebuffer, render_area] = ConfigureFramebuffers(renderpass);
2020-03-27 05:33:21 +01:00
scheduler.RequestRenderpass(renderpass, framebuffer, render_area);
UpdateDynamicStates();
buffer_bindings.Bind(scheduler);
BeginTransformFeedback();
const auto pipeline_layout = pipeline.GetLayout();
const auto descriptor_set = pipeline.CommitDescriptorSet();
2020-03-27 05:33:21 +01:00
scheduler.Record([pipeline_layout, descriptor_set, draw_params](vk::CommandBuffer cmdbuf) {
if (descriptor_set) {
2020-03-27 05:33:21 +01:00
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout,
DESCRIPTOR_SET, descriptor_set, {});
}
2020-03-27 05:33:21 +01:00
draw_params.Draw(cmdbuf);
});
EndTransformFeedback();
system.GPU().TickWork();
}
void RasterizerVulkan::Clear() {
MICROPROFILE_SCOPE(Vulkan_Clearing);
const auto& gpu = system.GPU().Maxwell3D();
if (!system.GPU().Maxwell3D().ShouldExecute()) {
return;
}
sampled_views.clear();
image_views.clear();
query_cache.UpdateCounters();
const auto& regs = gpu.regs;
const bool use_color = regs.clear_buffers.R || regs.clear_buffers.G || regs.clear_buffers.B ||
regs.clear_buffers.A;
const bool use_depth = regs.clear_buffers.Z;
const bool use_stencil = regs.clear_buffers.S;
if (!use_color && !use_depth && !use_stencil) {
return;
}
[[maybe_unused]] const auto texceptions = UpdateAttachments();
DEBUG_ASSERT(texceptions.none());
SetupImageTransitions(0, color_attachments, zeta_attachment);
2020-03-27 05:33:21 +01:00
const VkRenderPass renderpass = renderpass_cache.GetRenderPass(GetRenderPassParams(0));
const auto [framebuffer, render_area] = ConfigureFramebuffers(renderpass);
2020-03-27 05:33:21 +01:00
scheduler.RequestRenderpass(renderpass, framebuffer, render_area);
2020-03-27 05:33:21 +01:00
VkClearRect clear_rect;
clear_rect.baseArrayLayer = regs.clear_buffers.layer;
clear_rect.layerCount = 1;
clear_rect.rect = GetScissorState(regs, 0);
clear_rect.rect.extent.width = std::min(clear_rect.rect.extent.width, render_area.width);
clear_rect.rect.extent.height = std::min(clear_rect.rect.extent.height, render_area.height);
if (use_color) {
2020-03-27 05:33:21 +01:00
VkClearValue clear_value;
std::memcpy(clear_value.color.float32, regs.clear_color, sizeof(regs.clear_color));
const u32 color_attachment = regs.clear_buffers.RT;
2020-03-27 05:33:21 +01:00
scheduler.Record([color_attachment, clear_value, clear_rect](vk::CommandBuffer cmdbuf) {
VkClearAttachment attachment;
attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
attachment.colorAttachment = color_attachment;
attachment.clearValue = clear_value;
cmdbuf.ClearAttachments(attachment, clear_rect);
});
}
if (!use_depth && !use_stencil) {
return;
}
2020-03-27 05:33:21 +01:00
VkImageAspectFlags aspect_flags = 0;
if (use_depth) {
2020-03-27 05:33:21 +01:00
aspect_flags |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (use_stencil) {
2020-03-27 05:33:21 +01:00
aspect_flags |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
scheduler.Record([clear_depth = regs.clear_depth, clear_stencil = regs.clear_stencil,
2020-03-27 05:33:21 +01:00
clear_rect, aspect_flags](vk::CommandBuffer cmdbuf) {
VkClearValue clear_value;
clear_value.depthStencil.depth = clear_depth;
clear_value.depthStencil.stencil = clear_stencil;
VkClearAttachment attachment;
attachment.aspectMask = aspect_flags;
attachment.colorAttachment = 0;
attachment.clearValue.depthStencil.depth = clear_depth;
attachment.clearValue.depthStencil.stencil = clear_stencil;
cmdbuf.ClearAttachments(attachment, clear_rect);
});
}
void RasterizerVulkan::DispatchCompute(GPUVAddr code_addr) {
MICROPROFILE_SCOPE(Vulkan_Compute);
update_descriptor_queue.Acquire();
sampled_views.clear();
image_views.clear();
query_cache.UpdateCounters();
const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
ComputePipelineCacheKey key;
key.shader = code_addr;
key.shared_memory_size = launch_desc.shared_alloc;
key.workgroup_size = {launch_desc.block_dim_x, launch_desc.block_dim_y,
launch_desc.block_dim_z};
auto& pipeline = pipeline_cache.GetComputePipeline(key);
// Compute dispatches can't be executed inside a renderpass
scheduler.RequestOutsideRenderPassOperationContext();
buffer_cache.Map(CalculateComputeStreamBufferSize());
const auto& entries = pipeline.GetEntries();
SetupComputeConstBuffers(entries);
SetupComputeGlobalBuffers(entries);
SetupComputeTexelBuffers(entries);
SetupComputeTextures(entries);
SetupComputeImages(entries);
buffer_cache.Unmap();
2020-03-27 05:33:21 +01:00
TransitionImages(sampled_views, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT);
TransitionImages(image_views, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT);
scheduler.Record([grid_x = launch_desc.grid_dim_x, grid_y = launch_desc.grid_dim_y,
grid_z = launch_desc.grid_dim_z, pipeline_handle = pipeline.GetHandle(),
layout = pipeline.GetLayout(),
2020-03-27 05:33:21 +01:00
descriptor_set = pipeline.CommitDescriptorSet()](vk::CommandBuffer cmdbuf) {
cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, pipeline_handle);
cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, layout, DESCRIPTOR_SET,
descriptor_set, {});
cmdbuf.Dispatch(grid_x, grid_y, grid_z);
});
}
void RasterizerVulkan::ResetCounter(VideoCore::QueryType type) {
query_cache.ResetCounter(type);
}
void RasterizerVulkan::Query(GPUVAddr gpu_addr, VideoCore::QueryType type,
std::optional<u64> timestamp) {
query_cache.Query(gpu_addr, type, timestamp);
}
void RasterizerVulkan::FlushAll() {}
void RasterizerVulkan::FlushRegion(VAddr addr, u64 size) {
2020-04-08 19:34:59 +02:00
if (addr == 0 || size == 0) {
return;
}
texture_cache.FlushRegion(addr, size);
buffer_cache.FlushRegion(addr, size);
query_cache.FlushRegion(addr, size);
}
bool RasterizerVulkan::MustFlushRegion(VAddr addr, u64 size) {
if (!Settings::IsGPULevelHigh()) {
return buffer_cache.MustFlushRegion(addr, size);
}
return texture_cache.MustFlushRegion(addr, size) || buffer_cache.MustFlushRegion(addr, size);
}
void RasterizerVulkan::InvalidateRegion(VAddr addr, u64 size) {
2020-04-08 19:34:59 +02:00
if (addr == 0 || size == 0) {
return;
}
texture_cache.InvalidateRegion(addr, size);
pipeline_cache.InvalidateRegion(addr, size);
buffer_cache.InvalidateRegion(addr, size);
query_cache.InvalidateRegion(addr, size);
}
void RasterizerVulkan::OnCPUWrite(VAddr addr, u64 size) {
2020-04-16 18:29:53 +02:00
if (addr == 0 || size == 0) {
return;
}
texture_cache.OnCPUWrite(addr, size);
pipeline_cache.OnCPUWrite(addr, size);
buffer_cache.OnCPUWrite(addr, size);
}
void RasterizerVulkan::SyncGuestHost() {
texture_cache.SyncGuestHost();
buffer_cache.SyncGuestHost();
pipeline_cache.SyncGuestHost();
}
void RasterizerVulkan::SignalSemaphore(GPUVAddr addr, u32 value) {
auto& gpu{system.GPU()};
if (!gpu.IsAsync()) {
gpu.MemoryManager().Write<u32>(addr, value);
return;
}
fence_manager.SignalSemaphore(addr, value);
}
void RasterizerVulkan::SignalSyncPoint(u32 value) {
auto& gpu{system.GPU()};
if (!gpu.IsAsync()) {
gpu.IncrementSyncPoint(value);
return;
}
fence_manager.SignalSyncPoint(value);
}
void RasterizerVulkan::ReleaseFences() {
auto& gpu{system.GPU()};
if (!gpu.IsAsync()) {
return;
}
fence_manager.WaitPendingFences();
}
void RasterizerVulkan::FlushAndInvalidateRegion(VAddr addr, u64 size) {
if (Settings::IsGPULevelExtreme()) {
FlushRegion(addr, size);
}
InvalidateRegion(addr, size);
}
void RasterizerVulkan::WaitForIdle() {
// Everything but wait pixel operations. This intentionally includes FRAGMENT_SHADER_BIT because
// fragment shaders can still write storage buffers.
VkPipelineStageFlags flags =
VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT | VK_PIPELINE_STAGE_VERTEX_INPUT_BIT |
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT |
VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT |
VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT;
if (device.IsExtTransformFeedbackSupported()) {
flags |= VK_PIPELINE_STAGE_TRANSFORM_FEEDBACK_BIT_EXT;
}
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([event = *wfi_event, flags](vk::CommandBuffer cmdbuf) {
cmdbuf.SetEvent(event, flags);
cmdbuf.WaitEvents(event, flags, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, {}, {}, {});
});
}
void RasterizerVulkan::FlushCommands() {
if (draw_counter > 0) {
draw_counter = 0;
scheduler.Flush();
}
}
void RasterizerVulkan::TickFrame() {
draw_counter = 0;
update_descriptor_queue.TickFrame();
buffer_cache.TickFrame();
staging_pool.TickFrame();
}
bool RasterizerVulkan::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src,
const Tegra::Engines::Fermi2D::Regs::Surface& dst,
const Tegra::Engines::Fermi2D::Config& copy_config) {
texture_cache.DoFermiCopy(src, dst, copy_config);
return true;
}
bool RasterizerVulkan::AccelerateDisplay(const Tegra::FramebufferConfig& config,
VAddr framebuffer_addr, u32 pixel_stride) {
if (!framebuffer_addr) {
return false;
}
const auto surface{texture_cache.TryFindFramebufferSurface(framebuffer_addr)};
if (!surface) {
return false;
}
// Verify that the cached surface is the same size and format as the requested framebuffer
const auto& params{surface->GetSurfaceParams()};
ASSERT_MSG(params.width == config.width, "Framebuffer width is different");
ASSERT_MSG(params.height == config.height, "Framebuffer height is different");
screen_info.image = &surface->GetImage();
screen_info.width = params.width;
screen_info.height = params.height;
screen_info.is_srgb = surface->GetSurfaceParams().srgb_conversion;
return true;
}
void RasterizerVulkan::SetupDirtyFlags() {
state_tracker.Initialize();
}
void RasterizerVulkan::FlushWork() {
2020-01-18 01:40:01 +01:00
static constexpr u32 DRAWS_TO_DISPATCH = 4096;
// Only check multiples of 8 draws
static_assert(DRAWS_TO_DISPATCH % 8 == 0);
if ((++draw_counter & 7) != 7) {
return;
}
2020-01-18 01:40:01 +01:00
if (draw_counter < DRAWS_TO_DISPATCH) {
// Send recorded tasks to the worker thread
scheduler.DispatchWork();
2020-01-18 01:40:01 +01:00
return;
}
2020-01-18 01:40:01 +01:00
// Otherwise (every certain number of draws) flush execution.
// This submits commands to the Vulkan driver.
scheduler.Flush();
draw_counter = 0;
}
RasterizerVulkan::Texceptions RasterizerVulkan::UpdateAttachments() {
MICROPROFILE_SCOPE(Vulkan_RenderTargets);
auto& dirty = system.GPU().Maxwell3D().dirty.flags;
const bool update_rendertargets = dirty[VideoCommon::Dirty::RenderTargets];
dirty[VideoCommon::Dirty::RenderTargets] = false;
texture_cache.GuardRenderTargets(true);
Texceptions texceptions;
for (std::size_t rt = 0; rt < Maxwell::NumRenderTargets; ++rt) {
if (update_rendertargets) {
color_attachments[rt] = texture_cache.GetColorBufferSurface(rt, true);
}
if (color_attachments[rt] && WalkAttachmentOverlaps(*color_attachments[rt])) {
texceptions[rt] = true;
}
}
if (update_rendertargets) {
zeta_attachment = texture_cache.GetDepthBufferSurface(true);
}
if (zeta_attachment && WalkAttachmentOverlaps(*zeta_attachment)) {
texceptions[ZETA_TEXCEPTION_INDEX] = true;
}
texture_cache.GuardRenderTargets(false);
return texceptions;
}
bool RasterizerVulkan::WalkAttachmentOverlaps(const CachedSurfaceView& attachment) {
bool overlap = false;
for (auto& [view, layout] : sampled_views) {
if (!attachment.IsSameSurface(*view)) {
continue;
}
overlap = true;
2020-03-27 05:33:21 +01:00
*layout = VK_IMAGE_LAYOUT_GENERAL;
}
return overlap;
}
2020-03-27 05:33:21 +01:00
std::tuple<VkFramebuffer, VkExtent2D> RasterizerVulkan::ConfigureFramebuffers(
VkRenderPass renderpass) {
2020-01-18 01:40:01 +01:00
FramebufferCacheKey key{renderpass, std::numeric_limits<u32>::max(),
std::numeric_limits<u32>::max(), std::numeric_limits<u32>::max()};
const auto try_push = [&key](const View& view) {
if (!view) {
return false;
}
2020-01-18 01:40:01 +01:00
key.views.push_back(view->GetHandle());
key.width = std::min(key.width, view->GetWidth());
key.height = std::min(key.height, view->GetHeight());
key.layers = std::min(key.layers, view->GetNumLayers());
return true;
};
const auto& regs = system.GPU().Maxwell3D().regs;
const std::size_t num_attachments = static_cast<std::size_t>(regs.rt_control.count);
for (std::size_t index = 0; index < num_attachments; ++index) {
if (try_push(color_attachments[index])) {
texture_cache.MarkColorBufferInUse(index);
}
}
if (try_push(zeta_attachment)) {
texture_cache.MarkDepthBufferInUse();
}
2020-01-18 01:40:01 +01:00
const auto [fbentry, is_cache_miss] = framebuffer_cache.try_emplace(key);
auto& framebuffer = fbentry->second;
if (is_cache_miss) {
2020-03-27 05:33:21 +01:00
VkFramebufferCreateInfo framebuffer_ci;
framebuffer_ci.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebuffer_ci.pNext = nullptr;
framebuffer_ci.flags = 0;
framebuffer_ci.renderPass = key.renderpass;
framebuffer_ci.attachmentCount = static_cast<u32>(key.views.size());
framebuffer_ci.pAttachments = key.views.data();
framebuffer_ci.width = key.width;
framebuffer_ci.height = key.height;
framebuffer_ci.layers = key.layers;
framebuffer = device.GetLogical().CreateFramebuffer(framebuffer_ci);
}
return {*framebuffer, VkExtent2D{key.width, key.height}};
}
RasterizerVulkan::DrawParameters RasterizerVulkan::SetupGeometry(FixedPipelineState& fixed_state,
BufferBindings& buffer_bindings,
bool is_indexed,
bool is_instanced) {
MICROPROFILE_SCOPE(Vulkan_Geometry);
const auto& gpu = system.GPU().Maxwell3D();
const auto& regs = gpu.regs;
SetupVertexArrays(fixed_state.vertex_input, buffer_bindings);
const u32 base_instance = regs.vb_base_instance;
const u32 num_instances = is_instanced ? gpu.mme_draw.instance_count : 1;
const u32 base_vertex = is_indexed ? regs.vb_element_base : regs.vertex_buffer.first;
const u32 num_vertices = is_indexed ? regs.index_array.count : regs.vertex_buffer.count;
DrawParameters params{base_instance, num_instances, base_vertex, num_vertices, is_indexed};
SetupIndexBuffer(buffer_bindings, params, is_indexed);
return params;
}
void RasterizerVulkan::SetupShaderDescriptors(
const std::array<Shader, Maxwell::MaxShaderProgram>& shaders) {
texture_cache.GuardSamplers(true);
for (std::size_t stage = 0; stage < Maxwell::MaxShaderStage; ++stage) {
// Skip VertexA stage
const auto& shader = shaders[stage + 1];
if (!shader) {
continue;
}
const auto& entries = shader->GetEntries();
SetupGraphicsConstBuffers(entries, stage);
SetupGraphicsGlobalBuffers(entries, stage);
SetupGraphicsTexelBuffers(entries, stage);
SetupGraphicsTextures(entries, stage);
SetupGraphicsImages(entries, stage);
}
texture_cache.GuardSamplers(false);
}
void RasterizerVulkan::SetupImageTransitions(
Texceptions texceptions, const std::array<View, Maxwell::NumRenderTargets>& color_attachments,
const View& zeta_attachment) {
2020-03-27 05:33:21 +01:00
TransitionImages(sampled_views, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_ACCESS_SHADER_READ_BIT);
TransitionImages(image_views, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT);
for (std::size_t rt = 0; rt < std::size(color_attachments); ++rt) {
const auto color_attachment = color_attachments[rt];
if (color_attachment == nullptr) {
continue;
}
const auto image_layout =
2020-03-27 05:33:21 +01:00
texceptions[rt] ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
color_attachment->Transition(image_layout, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT);
}
if (zeta_attachment != nullptr) {
const auto image_layout = texceptions[ZETA_TEXCEPTION_INDEX]
2020-03-27 05:33:21 +01:00
? VK_IMAGE_LAYOUT_GENERAL
: VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
zeta_attachment->Transition(image_layout, VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT);
}
}
void RasterizerVulkan::UpdateDynamicStates() {
auto& regs = system.GPU().Maxwell3D().regs;
UpdateViewportsState(regs);
UpdateScissorsState(regs);
UpdateDepthBias(regs);
UpdateBlendConstants(regs);
UpdateDepthBounds(regs);
UpdateStencilFaces(regs);
}
void RasterizerVulkan::BeginTransformFeedback() {
const auto& regs = system.GPU().Maxwell3D().regs;
if (regs.tfb_enabled == 0) {
return;
}
UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationControl) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationEval) ||
regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::Geometry));
UNIMPLEMENTED_IF(regs.tfb_bindings[1].buffer_enable);
UNIMPLEMENTED_IF(regs.tfb_bindings[2].buffer_enable);
UNIMPLEMENTED_IF(regs.tfb_bindings[3].buffer_enable);
const auto& binding = regs.tfb_bindings[0];
UNIMPLEMENTED_IF(binding.buffer_enable == 0);
UNIMPLEMENTED_IF(binding.buffer_offset != 0);
const GPUVAddr gpu_addr = binding.Address();
const std::size_t size = binding.buffer_size;
const auto [buffer, offset] = buffer_cache.UploadMemory(gpu_addr, size, 4, true);
scheduler.Record([buffer = buffer, offset = offset, size](vk::CommandBuffer cmdbuf) {
2020-03-27 05:33:21 +01:00
cmdbuf.BindTransformFeedbackBuffersEXT(0, 1, &buffer, &offset, &size);
cmdbuf.BeginTransformFeedbackEXT(0, 0, nullptr, nullptr);
});
}
void RasterizerVulkan::EndTransformFeedback() {
const auto& regs = system.GPU().Maxwell3D().regs;
if (regs.tfb_enabled == 0) {
return;
}
scheduler.Record(
2020-03-27 05:33:21 +01:00
[](vk::CommandBuffer cmdbuf) { cmdbuf.EndTransformFeedbackEXT(0, 0, nullptr, nullptr); });
}
void RasterizerVulkan::SetupVertexArrays(FixedPipelineState::VertexInput& vertex_input,
BufferBindings& buffer_bindings) {
const auto& regs = system.GPU().Maxwell3D().regs;
for (std::size_t index = 0; index < Maxwell::NumVertexAttributes; ++index) {
const auto& attrib = regs.vertex_attrib_format[index];
if (!attrib.IsValid()) {
vertex_input.SetAttribute(index, false, 0, 0, {}, {});
continue;
}
[[maybe_unused]] const auto& buffer = regs.vertex_array[attrib.buffer];
ASSERT(buffer.IsEnabled());
vertex_input.SetAttribute(index, true, attrib.buffer, attrib.offset, attrib.type.Value(),
attrib.size.Value());
}
for (std::size_t index = 0; index < Maxwell::NumVertexArrays; ++index) {
const auto& vertex_array = regs.vertex_array[index];
if (!vertex_array.IsEnabled()) {
vertex_input.SetBinding(index, false, 0, 0);
continue;
}
vertex_input.SetBinding(
index, true, vertex_array.stride,
regs.instanced_arrays.IsInstancingEnabled(index) ? vertex_array.divisor : 0);
const GPUVAddr start{vertex_array.StartAddress()};
const GPUVAddr end{regs.vertex_array_limit[index].LimitAddress()};
ASSERT(end >= start);
const std::size_t size{end - start};
if (size == 0) {
buffer_bindings.AddVertexBinding(DefaultBuffer(), 0);
continue;
}
const auto [buffer, offset] = buffer_cache.UploadMemory(start, size);
buffer_bindings.AddVertexBinding(buffer, offset);
}
}
void RasterizerVulkan::SetupIndexBuffer(BufferBindings& buffer_bindings, DrawParameters& params,
bool is_indexed) {
if (params.num_vertices == 0) {
return;
}
const auto& regs = system.GPU().Maxwell3D().regs;
switch (regs.draw.topology) {
case Maxwell::PrimitiveTopology::Quads: {
if (!params.is_indexed) {
const auto [buffer, offset] =
quad_array_pass.Assemble(params.num_vertices, params.base_vertex);
2020-03-27 05:33:21 +01:00
buffer_bindings.SetIndexBinding(buffer, offset, VK_INDEX_TYPE_UINT32);
params.base_vertex = 0;
params.num_vertices = params.num_vertices * 6 / 4;
params.is_indexed = true;
break;
}
const GPUVAddr gpu_addr = regs.index_array.IndexStart();
auto [buffer, offset] = buffer_cache.UploadMemory(gpu_addr, CalculateIndexBufferSize());
std::tie(buffer, offset) = quad_indexed_pass.Assemble(
regs.index_array.format, params.num_vertices, params.base_vertex, buffer, offset);
buffer_bindings.SetIndexBinding(buffer, offset, VK_INDEX_TYPE_UINT32);
params.num_vertices = (params.num_vertices / 4) * 6;
params.base_vertex = 0;
break;
}
default: {
if (!is_indexed) {
break;
}
2020-01-18 01:40:01 +01:00
const GPUVAddr gpu_addr = regs.index_array.IndexStart();
auto [buffer, offset] = buffer_cache.UploadMemory(gpu_addr, CalculateIndexBufferSize());
auto format = regs.index_array.format;
const bool is_uint8 = format == Maxwell::IndexFormat::UnsignedByte;
if (is_uint8 && !device.IsExtIndexTypeUint8Supported()) {
std::tie(buffer, offset) = uint8_pass.Assemble(params.num_vertices, buffer, offset);
format = Maxwell::IndexFormat::UnsignedShort;
}
buffer_bindings.SetIndexBinding(buffer, offset, MaxwellToVK::IndexFormat(device, format));
break;
}
}
}
void RasterizerVulkan::SetupGraphicsConstBuffers(const ShaderEntries& entries, std::size_t stage) {
MICROPROFILE_SCOPE(Vulkan_ConstBuffers);
const auto& gpu = system.GPU().Maxwell3D();
const auto& shader_stage = gpu.state.shader_stages[stage];
for (const auto& entry : entries.const_buffers) {
SetupConstBuffer(entry, shader_stage.const_buffers[entry.GetIndex()]);
}
}
void RasterizerVulkan::SetupGraphicsGlobalBuffers(const ShaderEntries& entries, std::size_t stage) {
MICROPROFILE_SCOPE(Vulkan_GlobalBuffers);
auto& gpu{system.GPU()};
const auto cbufs{gpu.Maxwell3D().state.shader_stages[stage]};
for (const auto& entry : entries.global_buffers) {
const auto addr = cbufs.const_buffers[entry.GetCbufIndex()].address + entry.GetCbufOffset();
SetupGlobalBuffer(entry, addr);
}
}
void RasterizerVulkan::SetupGraphicsTexelBuffers(const ShaderEntries& entries, std::size_t stage) {
MICROPROFILE_SCOPE(Vulkan_Textures);
const auto& gpu = system.GPU().Maxwell3D();
for (const auto& entry : entries.texel_buffers) {
const auto image = GetTextureInfo(gpu, entry, stage).tic;
SetupTexelBuffer(image, entry);
}
}
void RasterizerVulkan::SetupGraphicsTextures(const ShaderEntries& entries, std::size_t stage) {
MICROPROFILE_SCOPE(Vulkan_Textures);
const auto& gpu = system.GPU().Maxwell3D();
for (const auto& entry : entries.samplers) {
for (std::size_t i = 0; i < entry.size; ++i) {
const auto texture = GetTextureInfo(gpu, entry, stage, i);
SetupTexture(texture, entry);
}
}
}
void RasterizerVulkan::SetupGraphicsImages(const ShaderEntries& entries, std::size_t stage) {
MICROPROFILE_SCOPE(Vulkan_Images);
const auto& gpu = system.GPU().Maxwell3D();
for (const auto& entry : entries.images) {
const auto tic = GetTextureInfo(gpu, entry, stage).tic;
SetupImage(tic, entry);
}
}
void RasterizerVulkan::SetupComputeConstBuffers(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_ConstBuffers);
const auto& launch_desc = system.GPU().KeplerCompute().launch_description;
for (const auto& entry : entries.const_buffers) {
const auto& config = launch_desc.const_buffer_config[entry.GetIndex()];
const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value();
Tegra::Engines::ConstBufferInfo buffer;
buffer.address = config.Address();
buffer.size = config.size;
buffer.enabled = mask[entry.GetIndex()];
SetupConstBuffer(entry, buffer);
}
}
void RasterizerVulkan::SetupComputeGlobalBuffers(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_GlobalBuffers);
const auto cbufs{system.GPU().KeplerCompute().launch_description.const_buffer_config};
for (const auto& entry : entries.global_buffers) {
const auto addr{cbufs[entry.GetCbufIndex()].Address() + entry.GetCbufOffset()};
SetupGlobalBuffer(entry, addr);
}
}
void RasterizerVulkan::SetupComputeTexelBuffers(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_Textures);
const auto& gpu = system.GPU().KeplerCompute();
for (const auto& entry : entries.texel_buffers) {
const auto image = GetTextureInfo(gpu, entry, ComputeShaderIndex).tic;
SetupTexelBuffer(image, entry);
}
}
void RasterizerVulkan::SetupComputeTextures(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_Textures);
const auto& gpu = system.GPU().KeplerCompute();
for (const auto& entry : entries.samplers) {
for (std::size_t i = 0; i < entry.size; ++i) {
const auto texture = GetTextureInfo(gpu, entry, ComputeShaderIndex, i);
SetupTexture(texture, entry);
}
}
}
void RasterizerVulkan::SetupComputeImages(const ShaderEntries& entries) {
MICROPROFILE_SCOPE(Vulkan_Images);
const auto& gpu = system.GPU().KeplerCompute();
for (const auto& entry : entries.images) {
const auto tic = GetTextureInfo(gpu, entry, ComputeShaderIndex).tic;
SetupImage(tic, entry);
}
}
void RasterizerVulkan::SetupConstBuffer(const ConstBufferEntry& entry,
const Tegra::Engines::ConstBufferInfo& buffer) {
if (!buffer.enabled) {
// Set values to zero to unbind buffers
update_descriptor_queue.AddBuffer(DefaultBuffer(), 0, DEFAULT_BUFFER_SIZE);
return;
}
// Align the size to avoid bad std140 interactions
const std::size_t size =
Common::AlignUp(CalculateConstBufferSize(entry, buffer), 4 * sizeof(float));
ASSERT(size <= MaxConstbufferSize);
const auto [buffer_handle, offset] =
buffer_cache.UploadMemory(buffer.address, size, device.GetUniformBufferAlignment());
update_descriptor_queue.AddBuffer(buffer_handle, offset, size);
}
void RasterizerVulkan::SetupGlobalBuffer(const GlobalBufferEntry& entry, GPUVAddr address) {
auto& memory_manager{system.GPU().MemoryManager()};
const auto actual_addr = memory_manager.Read<u64>(address);
const auto size = memory_manager.Read<u32>(address + 8);
if (size == 0) {
// Sometimes global memory pointers don't have a proper size. Upload a dummy entry
// because Vulkan doesn't like empty buffers.
// Note: Do *not* use DefaultBuffer() here, storage buffers can be written breaking the
// default buffer.
static constexpr std::size_t dummy_size = 4;
const auto buffer = buffer_cache.GetEmptyBuffer(dummy_size);
update_descriptor_queue.AddBuffer(buffer, 0, dummy_size);
return;
}
const auto [buffer, offset] = buffer_cache.UploadMemory(
actual_addr, size, device.GetStorageBufferAlignment(), entry.IsWritten());
update_descriptor_queue.AddBuffer(buffer, offset, size);
}
void RasterizerVulkan::SetupTexelBuffer(const Tegra::Texture::TICEntry& tic,
const TexelBufferEntry& entry) {
2020-01-18 01:40:01 +01:00
const auto view = texture_cache.GetTextureSurface(tic, entry);
ASSERT(view->IsBufferView());
update_descriptor_queue.AddTexelBuffer(view->GetBufferView());
}
void RasterizerVulkan::SetupTexture(const Tegra::Texture::FullTextureInfo& texture,
const SamplerEntry& entry) {
auto view = texture_cache.GetTextureSurface(texture.tic, entry);
ASSERT(!view->IsBufferView());
const auto image_view = view->GetHandle(texture.tic.x_source, texture.tic.y_source,
texture.tic.z_source, texture.tic.w_source);
const auto sampler = sampler_cache.GetSampler(texture.tsc);
update_descriptor_queue.AddSampledImage(sampler, image_view);
const auto image_layout = update_descriptor_queue.GetLastImageLayout();
2020-03-27 05:33:21 +01:00
*image_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
sampled_views.push_back(ImageView{std::move(view), image_layout});
}
void RasterizerVulkan::SetupImage(const Tegra::Texture::TICEntry& tic, const ImageEntry& entry) {
auto view = texture_cache.GetImageSurface(tic, entry);
if (entry.is_written) {
view->MarkAsModified(texture_cache.Tick());
}
UNIMPLEMENTED_IF(tic.IsBuffer());
const auto image_view = view->GetHandle(tic.x_source, tic.y_source, tic.z_source, tic.w_source);
update_descriptor_queue.AddImage(image_view);
const auto image_layout = update_descriptor_queue.GetLastImageLayout();
2020-03-27 05:33:21 +01:00
*image_layout = VK_IMAGE_LAYOUT_GENERAL;
image_views.push_back(ImageView{std::move(view), image_layout});
}
void RasterizerVulkan::UpdateViewportsState(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchViewports()) {
return;
}
const std::array viewports{
GetViewportState(device, regs, 0), GetViewportState(device, regs, 1),
GetViewportState(device, regs, 2), GetViewportState(device, regs, 3),
GetViewportState(device, regs, 4), GetViewportState(device, regs, 5),
GetViewportState(device, regs, 6), GetViewportState(device, regs, 7),
GetViewportState(device, regs, 8), GetViewportState(device, regs, 9),
GetViewportState(device, regs, 10), GetViewportState(device, regs, 11),
GetViewportState(device, regs, 12), GetViewportState(device, regs, 13),
GetViewportState(device, regs, 14), GetViewportState(device, regs, 15)};
2020-03-27 05:33:21 +01:00
scheduler.Record([viewports](vk::CommandBuffer cmdbuf) { cmdbuf.SetViewport(0, viewports); });
}
void RasterizerVulkan::UpdateScissorsState(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchScissors()) {
return;
}
const std::array scissors = {
GetScissorState(regs, 0), GetScissorState(regs, 1), GetScissorState(regs, 2),
GetScissorState(regs, 3), GetScissorState(regs, 4), GetScissorState(regs, 5),
GetScissorState(regs, 6), GetScissorState(regs, 7), GetScissorState(regs, 8),
GetScissorState(regs, 9), GetScissorState(regs, 10), GetScissorState(regs, 11),
GetScissorState(regs, 12), GetScissorState(regs, 13), GetScissorState(regs, 14),
GetScissorState(regs, 15)};
2020-03-27 05:33:21 +01:00
scheduler.Record([scissors](vk::CommandBuffer cmdbuf) { cmdbuf.SetScissor(0, scissors); });
}
void RasterizerVulkan::UpdateDepthBias(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchDepthBias()) {
return;
}
scheduler.Record([constant = regs.polygon_offset_units, clamp = regs.polygon_offset_clamp,
2020-03-27 05:33:21 +01:00
factor = regs.polygon_offset_factor](vk::CommandBuffer cmdbuf) {
cmdbuf.SetDepthBias(constant, clamp, factor / 2.0f);
});
}
void RasterizerVulkan::UpdateBlendConstants(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchBlendConstants()) {
return;
}
const std::array blend_color = {regs.blend_color.r, regs.blend_color.g, regs.blend_color.b,
regs.blend_color.a};
2020-03-27 05:33:21 +01:00
scheduler.Record(
[blend_color](vk::CommandBuffer cmdbuf) { cmdbuf.SetBlendConstants(blend_color.data()); });
}
void RasterizerVulkan::UpdateDepthBounds(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchDepthBounds()) {
return;
}
scheduler.Record([min = regs.depth_bounds[0], max = regs.depth_bounds[1]](
2020-03-27 05:33:21 +01:00
vk::CommandBuffer cmdbuf) { cmdbuf.SetDepthBounds(min, max); });
}
void RasterizerVulkan::UpdateStencilFaces(Tegra::Engines::Maxwell3D::Regs& regs) {
if (!state_tracker.TouchStencilProperties()) {
return;
}
if (regs.stencil_two_side_enable) {
// Separate values per face
scheduler.Record(
[front_ref = regs.stencil_front_func_ref, front_write_mask = regs.stencil_front_mask,
front_test_mask = regs.stencil_front_func_mask, back_ref = regs.stencil_back_func_ref,
back_write_mask = regs.stencil_back_mask,
2020-03-27 05:33:21 +01:00
back_test_mask = regs.stencil_back_func_mask](vk::CommandBuffer cmdbuf) {
// Front face
2020-03-27 05:33:21 +01:00
cmdbuf.SetStencilReference(VK_STENCIL_FACE_FRONT_BIT, front_ref);
cmdbuf.SetStencilWriteMask(VK_STENCIL_FACE_FRONT_BIT, front_write_mask);
cmdbuf.SetStencilCompareMask(VK_STENCIL_FACE_FRONT_BIT, front_test_mask);
// Back face
2020-03-27 05:33:21 +01:00
cmdbuf.SetStencilReference(VK_STENCIL_FACE_BACK_BIT, back_ref);
cmdbuf.SetStencilWriteMask(VK_STENCIL_FACE_BACK_BIT, back_write_mask);
cmdbuf.SetStencilCompareMask(VK_STENCIL_FACE_BACK_BIT, back_test_mask);
});
} else {
// Front face defines both faces
scheduler.Record([ref = regs.stencil_back_func_ref, write_mask = regs.stencil_back_mask,
2020-03-27 05:33:21 +01:00
test_mask = regs.stencil_back_func_mask](vk::CommandBuffer cmdbuf) {
cmdbuf.SetStencilReference(VK_STENCIL_FACE_FRONT_AND_BACK, ref);
cmdbuf.SetStencilWriteMask(VK_STENCIL_FACE_FRONT_AND_BACK, write_mask);
cmdbuf.SetStencilCompareMask(VK_STENCIL_FACE_FRONT_AND_BACK, test_mask);
});
}
}
std::size_t RasterizerVulkan::CalculateGraphicsStreamBufferSize(bool is_indexed) const {
std::size_t size = CalculateVertexArraysSize();
if (is_indexed) {
size = Common::AlignUp(size, 4) + CalculateIndexBufferSize();
}
size += Maxwell::MaxConstBuffers * (MaxConstbufferSize + device.GetUniformBufferAlignment());
return size;
}
std::size_t RasterizerVulkan::CalculateComputeStreamBufferSize() const {
return Tegra::Engines::KeplerCompute::NumConstBuffers *
(Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment());
}
std::size_t RasterizerVulkan::CalculateVertexArraysSize() const {
const auto& regs = system.GPU().Maxwell3D().regs;
std::size_t size = 0;
for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) {
// This implementation assumes that all attributes are used in the shader.
const GPUVAddr start{regs.vertex_array[index].StartAddress()};
const GPUVAddr end{regs.vertex_array_limit[index].LimitAddress()};
DEBUG_ASSERT(end >= start);
size += (end - start) * regs.vertex_array[index].enable;
}
return size;
}
std::size_t RasterizerVulkan::CalculateIndexBufferSize() const {
const auto& regs = system.GPU().Maxwell3D().regs;
return static_cast<std::size_t>(regs.index_array.count) *
static_cast<std::size_t>(regs.index_array.FormatSizeInBytes());
}
std::size_t RasterizerVulkan::CalculateConstBufferSize(
const ConstBufferEntry& entry, const Tegra::Engines::ConstBufferInfo& buffer) const {
if (entry.IsIndirect()) {
// Buffer is accessed indirectly, so upload the entire thing
return buffer.size;
} else {
// Buffer is accessed directly, upload just what we use
return entry.GetSize();
}
}
RenderPassParams RasterizerVulkan::GetRenderPassParams(Texceptions texceptions) const {
const auto& regs = system.GPU().Maxwell3D().regs;
const std::size_t num_attachments = static_cast<std::size_t>(regs.rt_control.count);
RenderPassParams params;
params.color_formats = {};
std::size_t color_texceptions = 0;
std::size_t index = 0;
for (std::size_t rt = 0; rt < num_attachments; ++rt) {
const auto& rendertarget = regs.rt[rt];
if (rendertarget.Address() == 0 || rendertarget.format == Tegra::RenderTargetFormat::NONE) {
continue;
}
params.color_formats[index] = static_cast<u8>(rendertarget.format);
color_texceptions |= (texceptions[rt] ? 1ULL : 0ULL) << index;
++index;
}
params.num_color_attachments = static_cast<u8>(index);
params.texceptions = static_cast<u8>(color_texceptions);
params.zeta_format = regs.zeta_enable ? static_cast<u8>(regs.zeta.format) : 0;
params.zeta_texception = texceptions[ZETA_TEXCEPTION_INDEX];
return params;
}
VkBuffer RasterizerVulkan::DefaultBuffer() {
if (default_buffer) {
return *default_buffer;
}
VkBufferCreateInfo ci;
ci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
ci.pNext = nullptr;
ci.flags = 0;
ci.size = DEFAULT_BUFFER_SIZE;
ci.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT |
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ci.queueFamilyIndexCount = 0;
ci.pQueueFamilyIndices = nullptr;
default_buffer = device.GetLogical().CreateBuffer(ci);
default_buffer_commit = memory_manager.Commit(default_buffer, false);
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([buffer = *default_buffer](vk::CommandBuffer cmdbuf) {
cmdbuf.FillBuffer(buffer, 0, DEFAULT_BUFFER_SIZE, 0);
});
return *default_buffer;
}
} // namespace Vulkan