1
mirror of https://github.com/rclone/rclone synced 2025-01-25 07:47:29 +01:00
Commit Graph

10 Commits

Author SHA1 Message Date
nielash
2bebbfaded bisync: add to integration tests - fixes #7665
This change officially adds bisync to the nightly integration tests for all
backends.

This will be part of giving us the confidence to take bisync out of beta.

A number of fixes have been added to account for features which can differ on
different backends -- for example, hash types / modtime support, empty
directories, unicode normalization, and unimportant differences in log output.
We will likely find that more of these are needed once we start running these
with the full set of remotes.

Additionally, bisync's extremely sensitive tests revealed a few bugs in other
backends that weren't previously covered by other tests. Fixes for those issues
have been submitted on the following separate PRs (and bisync test failures will
be expected until they are merged):

- #7670 memory: fix deadlock in operations.Purge
- #7688 memory: fix incorrect list entries when rooted at subdirectory
- #7690 memory: fix dst mutating src after server-side copy
- #7692 dropbox: fix chunked uploads when size <= chunkSize

Relatedly, workarounds have been put in place for the following backend
limitations that are unsolvable for the time being:

- #3262 drive is sometimes aware of trashed files/folders when it shouldn't be
- #6199 dropbox can't handle emojis and certain other characters
- #4590 onedrive API has longstanding bug for conflictBehavior=replace in
	server-side copy/move
2024-03-27 10:50:14 -04:00
nielash
8c69455c37 sync: don't set dir modtimes if already set
Before this change, directory modtimes (and metadata) were always synced from
src to dst, even if already in sync (i.e. their modtimes already matched.) This
potentially required excessive API calls, made logs noisy, and was potentially
problematic for backends that create "versions" or otherwise log activity
updates when modtime/metadata is updated.

After this change, a new DirsEqual function is added to check whether dirs are
equal based on a number of factors such as ModifyWindow and sync flags in use.
If the dirs are equal, the modtime/metadata update is skipped.

For backends that require setDirModTimeAfter, the "after" sync is performed only
for dirs that could have been changed by the sync (i.e. dirs containing files
that were created/updated.)

Note that dir metadata (other than modtime) is not currently considered by
DirsEqual, consistent with how object metadata is synced (only when objects are
unequal for reasons other than metadata).

To sync dir modtimes and metadata unconditionally (the previous behavior), use
--ignore-times.
2024-03-07 09:57:11 +00:00
Nick Craig-Wood
f5f86786b2 sync: implement directory sync for mod times and metadata
Directory mod times are synced by default if the backend is capable
and directory metadata is synced if the --metadata flag is provided
and the backend is capable.

This updates the bisync golden tests also which were affected by
--dry-run setting of directory modtimes.

Fixes #6685
2024-02-28 16:26:14 +00:00
nielash
810644e873 bisync: add --resync-mode for customizing --resync - fixes #5681
Before this change, the path1 version of a file always prevailed during
--resync, and many users requested options to automatically select the winner
based on characteristics such as newer, older, larger, and smaller. This change
adds support for such options.

Note that ideally this feature would have been implemented by allowing the
existing `--resync` flag to optionally accept string values such as `--resync
newer`. However, this would have been a breaking change, as the existing flag
is a `bool` and it does not seem to be possible to have a `string` flag that
accepts both `--resync newer` and `--resync` (with no argument.) (`NoOptDefVal`
does not work for this, as it would force an `=` like `--resync=newer`.) So
instead, the best compromise to avoid a breaking change was to add a new
`--resync-mode CHOICE` flag that implies `--resync`, while maintaining the
existing behavior of `--resync` (which implies `--resync-mode path1`. i.e. both
flags are now valid, and either can be used without the other.

--resync-mode CHOICE

In the event that a file differs on both sides during a `--resync`,
`--resync-mode` controls which version will overwrite the other. The supported
options are similar to `--conflict-resolve`. For all of the following options,
the version that is kept is referred to as the "winner", and the version that
is overwritten (deleted) is referred to as the "loser". The options are named
after the "winner":

- `path1` - (the default) - the version from Path1 is unconditionally
considered the winner (regardless of `modtime` and `size`, if any). This can be
useful if one side is more trusted or up-to-date than the other, at the time of
the `--resync`.
- `path2` - same as `path1`, except the path2 version is considered the winner.
- `newer` - the newer file (by `modtime`) is considered the winner, regardless
of which side it came from. This may result in having a mix of some winners
from Path1, and some winners from Path2. (The implementation is analagous to
running `rclone copy --update` in both directions.)
- `older` - same as `newer`, except the older file is considered the winner,
and the newer file is considered the loser.
- `larger` - the larger file (by `size`) is considered the winner (regardless
of `modtime`, if any). This can be a useful option for remotes without
`modtime` support, or with the kinds of files (such as logs) that tend to grow
but not shrink, over time.
- `smaller` - the smaller file (by `size`) is considered the winner (regardless
of `modtime`, if any).

For all of the above options, note the following:
- If either of the underlying remotes lacks support for the chosen method, it
will be ignored and will fall back to the default of `path1`. (For example, if
`--resync-mode newer` is set, but one of the paths uses a remote that doesn't
support `modtime`.)
- If a winner can't be determined because the chosen method's attribute is
missing or equal, it will be ignored, and bisync will instead try to determine
whether the files differ by looking at the other `--compare` methods in effect.
(For example, if `--resync-mode newer` is set, but the Path1 and Path2 modtimes
are identical, bisync will compare the sizes.) If bisync concludes that they
differ, preference is given to whichever is the "source" at that moment. (In
practice, this gives a slight advantage to Path2, as the 2to1 copy comes before
the 1to2 copy.) If the files _do not_ differ, nothing is copied (as both sides
are already correct).
- These options apply only to files that exist on both sides (with the same
name and relative path). Files that exist *only* on one side and not the other
are *always* copied to the other, during `--resync` (this is one of the main
differences between resync and non-resync runs.).
- `--conflict-resolve`, `--conflict-loser`, and `--conflict-suffix` do not
apply during `--resync`, and unlike these flags, nothing is renamed during
`--resync`. When a file differs on both sides during `--resync`, one version
always overwrites the other (much like in `rclone copy`.) (Consider using
`--backup-dir` to retain a backup of the losing version.)
- Unlike for `--conflict-resolve`, `--resync-mode none` is not a valid option
(or rather, it will be interpreted as "no resync", unless `--resync` has also
been specified, in which case it will be ignored.)
- Winners and losers are decided at the individual file-level only (there is
not currently an option to pick an entire winning directory atomically,
although the `path1` and `path2` options typically produce a similar result.)
- To maintain backward-compatibility, the `--resync` flag implies
`--resync-mode path1` unless a different `--resync-mode` is explicitly
specified. Similarly, all `--resync-mode` options (except `none`) imply
`--resync`, so it is not necessary to use both the `--resync` and
`--resync-mode` flags simultaneously -- either one is sufficient without the
other.
2024-01-20 17:17:01 -05:00
nielash
b4216648e4 bisync: full support for comparing checksum, size, modtime - fixes #5679 fixes #5683 fixes #5684 fixes #5675
Before this change, bisync could only detect changes based on modtime, and
would refuse to run if either path lacked modtime support. This made bisync
unavailable for many of rclone's backends. Additionally, bisync did not account
for the Fs's precision when comparing modtimes, meaning that they could only be
reliably compared within the same side -- not against the opposite side. Size
and checksum (even when available) were ignored completely for deltas.

After this change, bisync now fully supports comparing based on any combination
of size, modtime, and checksum, lifting the prior restriction on backends
without modtime support. The comparison logic considers the backend's
precision, hash types, and other features as appropriate.

The comparison features optionally use a new --compare flag (which takes any
combination of size,modtime,checksum) and even supports some combinations not
otherwise supported in `sync` (like comparing all three at the same time.) By
default (without the --compare flag), bisync inherits the same comparison
options as `sync` (that is: size and modtime by default, unless modified with
flags such as --checksum or --size-only.) If the --compare flag is set, it will
override these defaults.

If --compare includes checksum and both remotes support checksums but have no
hash types in common with each other, checksums will be considered only for
comparisons within the same side (to determine what has changed since the prior
sync), but not for comparisons against the opposite side. If one side supports
checksums and the other does not, checksums will only be considered on the side
that supports them. When comparing with checksum and/or size without modtime,
bisync cannot determine whether a file is newer or older -- only whether it is
changed or unchanged. (If it is changed on both sides, bisync still does the
standard equality-check to avoid declaring a sync conflict unless it absolutely
has to.)

Also included are some new flags to customize the checksum comparison behavior
on backends where hashes are slow or unavailable. --no-slow-hash and
--slow-hash-sync-only allow selectively ignoring checksums on backends such as
local where they are slow. --download-hash allows computing them by downloading
when (and only when) they're otherwise not available. Of course, this option
probably won't be practical with large files, but may be a good option for
syncing small-but-important files with maximum accuracy (for example, a source
code repo on a crypt remote.) An additional advantage over methods like
cryptcheck is that the original file is not required for comparison (for
example, --download-hash can be used to bisync two different crypt remotes with
different passwords.)

Additionally, all of the above are now considered during the final --check-sync
for much-improved accuracy (before this change, it only compared filenames!)

Many other details are explained in the included docs.
2024-01-20 16:08:06 -05:00
nielash
9c96c13a35 bisync: optimize --resync performance -- partially addresses #5681
Before this change, --resync was handled in three steps, and needed to do a lot
of unnecessary work to implement its own --ignore-existing logic, which also
caused problems with unicode normalization, in addition to being pretty slow.
After this change, it is refactored to produce the same result much more
efficiently, by reducing the three steps to two and letting ci.IgnoreExisting
do the work instead of reinventing the wheel.

The behavior and sync order remain unchanged for now -- just faster (but see
the ongoing lively discussions about potential future changes in #5681!)
2024-01-20 14:50:08 -05:00
nielash
fd95511091 bisync: generate listings concurrently with march -- fixes #7332
Before this change, bisync needed to build a full listing for Path1, then a
full listing for Path2, then compare them -- and each of those tasks needed to
finish before the next one could start. In addition to being slow and
inefficient, it also caused real problems if a file changed between the time
bisync checked it on Path1 and the time it checked the corresponding file on
Path2.

This change solves these problems by listing both paths concurrently, using
the same March infrastructure that check and sync use to traverse two
directories in lock-step, optimized by Go's robust concurrency support.
Listings should now be much faster, and any given path is now checked
nearly-instantaneously on both sides, minimizing room for error.

Further discussion:
https://forum.rclone.org/t/bisync-bugs-and-feature-requests/37636#:~:text=4.%20Listings%20should%20alternate%20between%20paths%20to%20minimize%20errors
2024-01-20 14:50:08 -05:00
nielash
0cac5d67ab bisync: introduce terminal colors
This introduces a few basic color codings to make the terminal output more
readable (and more fun). Rclone's standard --color flag is supported.
(AUTO|NEVER|ALWAYS)

Only a few lines have colors right now -- more will probably be added in
future versions.
2024-01-20 14:50:08 -05:00
nielash
6d6dc00abb bisync: rollback listing on error
Before this change, bisync had no mechanism for "retrying" a file again next
time, in the event of an unexpected and possibly temporary error. After this
change, bisync is now essentially able to mark a file as needing to be
rechecked next time. Bisync does this by keeping one prior listing on hand at
all times. In a low-confidence situation, bisync can revert a given file row
back to its state at the end of the last known successful sync, ensuring that
any subsequent changes will be re-noticed on the next run.
This can potentially be helpful for a dynamically changing file system, where
files may be changing quickly while bisync is working with them.
2024-01-20 14:50:08 -05:00
Ivan Andreev
940e99a929 bisync: test scenarios #5164
Co-authored-by: Chris Nelson <stuff@cjnaz.com>
2021-11-01 21:00:27 +03:00