mirror of
https://github.com/mpv-player/mpv
synced 2024-11-14 22:48:35 +01:00
214 lines
5.6 KiB
C
214 lines
5.6 KiB
C
/*
|
|
* Copyright (C) 2001 Anders Johansson ajh@atri.curtin.edu.au
|
|
*
|
|
* This file is part of MPlayer.
|
|
*
|
|
* MPlayer is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* MPlayer is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
/* Calculates a number of window functions. The following window
|
|
functions are currently implemented: Boxcar, Triang, Hanning,
|
|
Hamming, Blackman, Flattop and Kaiser. In the function call n is
|
|
the number of filter taps and w the buffer in which the filter
|
|
coefficients will be stored.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "dsp.h"
|
|
|
|
/*
|
|
// Boxcar
|
|
//
|
|
// n window length
|
|
// w buffer for the window parameters
|
|
*/
|
|
void af_window_boxcar(int n, FLOAT_TYPE* w)
|
|
{
|
|
int i;
|
|
// Calculate window coefficients
|
|
for (i=0 ; i<n ; i++)
|
|
w[i] = 1.0;
|
|
}
|
|
|
|
|
|
/*
|
|
// Triang a.k.a Bartlett
|
|
//
|
|
// | (N-1)|
|
|
// 2 * |k - -----|
|
|
// | 2 |
|
|
// w = 1.0 - ---------------
|
|
// N+1
|
|
// n window length
|
|
// w buffer for the window parameters
|
|
*/
|
|
void af_window_triang(int n, FLOAT_TYPE* w)
|
|
{
|
|
FLOAT_TYPE k1 = (FLOAT_TYPE)(n & 1);
|
|
FLOAT_TYPE k2 = 1/((FLOAT_TYPE)n + k1);
|
|
int end = (n + 1) >> 1;
|
|
int i;
|
|
|
|
// Calculate window coefficients
|
|
for (i=0 ; i<end ; i++)
|
|
w[i] = w[n-i-1] = (2.0*((FLOAT_TYPE)(i+1))-(1.0-k1))*k2;
|
|
}
|
|
|
|
|
|
/*
|
|
// Hanning
|
|
// 2*pi*k
|
|
// w = 0.5 - 0.5*cos(------), where 0 < k <= N
|
|
// N+1
|
|
// n window length
|
|
// w buffer for the window parameters
|
|
*/
|
|
void af_window_hanning(int n, FLOAT_TYPE* w)
|
|
{
|
|
int i;
|
|
FLOAT_TYPE k = 2*M_PI/((FLOAT_TYPE)(n+1)); // 2*pi/(N+1)
|
|
|
|
// Calculate window coefficients
|
|
for (i=0; i<n; i++)
|
|
*w++ = 0.5*(1.0 - cos(k*(FLOAT_TYPE)(i+1)));
|
|
}
|
|
|
|
/*
|
|
// Hamming
|
|
// 2*pi*k
|
|
// w(k) = 0.54 - 0.46*cos(------), where 0 <= k < N
|
|
// N-1
|
|
//
|
|
// n window length
|
|
// w buffer for the window parameters
|
|
*/
|
|
void af_window_hamming(int n,FLOAT_TYPE* w)
|
|
{
|
|
int i;
|
|
FLOAT_TYPE k = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1)
|
|
|
|
// Calculate window coefficients
|
|
for (i=0; i<n; i++)
|
|
*w++ = 0.54 - 0.46*cos(k*(FLOAT_TYPE)i);
|
|
}
|
|
|
|
/*
|
|
// Blackman
|
|
// 2*pi*k 4*pi*k
|
|
// w(k) = 0.42 - 0.5*cos(------) + 0.08*cos(------), where 0 <= k < N
|
|
// N-1 N-1
|
|
//
|
|
// n window length
|
|
// w buffer for the window parameters
|
|
*/
|
|
void af_window_blackman(int n,FLOAT_TYPE* w)
|
|
{
|
|
int i;
|
|
FLOAT_TYPE k1 = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1)
|
|
FLOAT_TYPE k2 = 2*k1; // 4*pi/(N-1)
|
|
|
|
// Calculate window coefficients
|
|
for (i=0; i<n; i++)
|
|
*w++ = 0.42 - 0.50*cos(k1*(FLOAT_TYPE)i) + 0.08*cos(k2*(FLOAT_TYPE)i);
|
|
}
|
|
|
|
/*
|
|
// Flattop
|
|
// 2*pi*k 4*pi*k
|
|
// w(k) = 0.2810638602 - 0.5208971735*cos(------) + 0.1980389663*cos(------), where 0 <= k < N
|
|
// N-1 N-1
|
|
//
|
|
// n window length
|
|
// w buffer for the window parameters
|
|
*/
|
|
void af_window_flattop(int n,FLOAT_TYPE* w)
|
|
{
|
|
int i;
|
|
FLOAT_TYPE k1 = 2*M_PI/((FLOAT_TYPE)(n-1)); // 2*pi/(N-1)
|
|
FLOAT_TYPE k2 = 2*k1; // 4*pi/(N-1)
|
|
|
|
// Calculate window coefficients
|
|
for (i=0; i<n; i++)
|
|
*w++ = 0.2810638602 - 0.5208971735*cos(k1*(FLOAT_TYPE)i)
|
|
+ 0.1980389663*cos(k2*(FLOAT_TYPE)i);
|
|
}
|
|
|
|
/* Computes the 0th order modified Bessel function of the first kind.
|
|
// (Needed to compute Kaiser window)
|
|
//
|
|
// y = sum( (x/(2*n))^2 )
|
|
// n
|
|
*/
|
|
#define BIZ_EPSILON 1E-21 // Max error acceptable
|
|
|
|
static FLOAT_TYPE besselizero(FLOAT_TYPE x)
|
|
{
|
|
FLOAT_TYPE temp;
|
|
FLOAT_TYPE sum = 1.0;
|
|
FLOAT_TYPE u = 1.0;
|
|
FLOAT_TYPE halfx = x/2.0;
|
|
int n = 1;
|
|
|
|
do {
|
|
temp = halfx/(FLOAT_TYPE)n;
|
|
u *=temp * temp;
|
|
sum += u;
|
|
n++;
|
|
} while (u >= BIZ_EPSILON * sum);
|
|
return sum;
|
|
}
|
|
|
|
/*
|
|
// Kaiser
|
|
//
|
|
// n window length
|
|
// w buffer for the window parameters
|
|
// b beta parameter of Kaiser window, Beta >= 1
|
|
//
|
|
// Beta trades the rejection of the low pass filter against the
|
|
// transition width from passband to stop band. Larger Beta means a
|
|
// slower transition and greater stop band rejection. See Rabiner and
|
|
// Gold (Theory and Application of DSP) under Kaiser windows for more
|
|
// about Beta. The following table from Rabiner and Gold gives some
|
|
// feel for the effect of Beta:
|
|
//
|
|
// All ripples in dB, width of transition band = D*N where N = window
|
|
// length
|
|
//
|
|
// BETA D PB RIP SB RIP
|
|
// 2.120 1.50 +-0.27 -30
|
|
// 3.384 2.23 0.0864 -40
|
|
// 4.538 2.93 0.0274 -50
|
|
// 5.658 3.62 0.00868 -60
|
|
// 6.764 4.32 0.00275 -70
|
|
// 7.865 5.0 0.000868 -80
|
|
// 8.960 5.7 0.000275 -90
|
|
// 10.056 6.4 0.000087 -100
|
|
*/
|
|
void af_window_kaiser(int n, FLOAT_TYPE* w, FLOAT_TYPE b)
|
|
{
|
|
FLOAT_TYPE tmp;
|
|
FLOAT_TYPE k1 = 1.0/besselizero(b);
|
|
int k2 = 1 - (n & 1);
|
|
int end = (n + 1) >> 1;
|
|
int i;
|
|
|
|
// Calculate window coefficients
|
|
for (i=0 ; i<end ; i++){
|
|
tmp = (FLOAT_TYPE)(2*i + k2) / ((FLOAT_TYPE)n - 1.0);
|
|
w[end-(1&(!k2))+i] = w[end-1-i] = k1 * besselizero(b*sqrt(1.0 - tmp*tmp));
|
|
}
|
|
}
|