mirror of
https://github.com/mpv-player/mpv
synced 2024-11-14 22:48:35 +01:00
2ae2955f09
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@26323 b3059339-0415-0410-9bf9-f77b7e298cf2
1069 lines
32 KiB
C
1069 lines
32 KiB
C
/**
|
|
* \file vf_zrmjpeg.c
|
|
*
|
|
* \brief Does mjpeg encoding as required by the zrmjpeg filter as well
|
|
* as by the zr video driver.
|
|
*/
|
|
/*
|
|
* Copyright (C) 2005 Rik Snel <rsnel@cube.dyndns.org>, license GPL v2 or later
|
|
* - based on vd_lavc.c by A'rpi (C) 2002-2003
|
|
* - parts from ffmpeg Copyright (c) 2000-2003 Fabrice Bellard
|
|
*
|
|
* This files includes a straightforward (to be) optimized JPEG encoder for
|
|
* the YUV422 format, based on mjpeg code from ffmpeg.
|
|
*
|
|
* For an excellent introduction to the JPEG format, see:
|
|
* http://www.ece.purdue.edu/~bouman/grad-labs/lab8/pdf/lab.pdf
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "config.h"
|
|
#include "mp_msg.h"
|
|
|
|
#include "img_format.h"
|
|
#include "mp_image.h"
|
|
#include "vf.h"
|
|
|
|
/* We need this #define because we need ../libavcodec/common.h to #define
|
|
* be2me_32, otherwise the linker will complain that it doesn't exist */
|
|
#define HAVE_AV_CONFIG_H
|
|
#include "libavcodec/avcodec.h"
|
|
#include "libavcodec/dsputil.h"
|
|
#include "libavcodec/mpegvideo.h"
|
|
//#include "jpeg_enc.h" /* this file is not present yet */
|
|
|
|
#undef malloc
|
|
#undef free
|
|
#undef realloc
|
|
|
|
extern int avcodec_initialized;
|
|
|
|
/* some convenient #define's, is this portable enough? */
|
|
/// Printout with vf_zrmjpeg: prefix at VERBOSE level
|
|
#define VERBOSE(...) mp_msg(MSGT_DECVIDEO, MSGL_V, "vf_zrmjpeg: " __VA_ARGS__)
|
|
/// Printout with vf_zrmjpeg: prefix at ERROR level
|
|
#define ERROR(...) mp_msg(MSGT_DECVIDEO, MSGL_ERR, "vf_zrmjpeg: " __VA_ARGS__)
|
|
/// Printout with vf_zrmjpeg: prefix at WARNING level
|
|
#define WARNING(...) mp_msg(MSGT_DECVIDEO, MSGL_WARN, \
|
|
"vf_zrmjpeg: " __VA_ARGS__)
|
|
|
|
// "local" flag in vd_ffmpeg.c. If not set, avcodec_init() et. al. need to be called
|
|
// set when init is done, so that initialization is not done twice.
|
|
extern int avcodec_initialized;
|
|
|
|
/// structure copied from mjpeg.c
|
|
/* zrmjpeg_encode_mb needs access to these tables for the black & white
|
|
* option */
|
|
typedef struct MJpegContext {
|
|
uint8_t huff_size_dc_luminance[12];
|
|
uint16_t huff_code_dc_luminance[12];
|
|
uint8_t huff_size_dc_chrominance[12];
|
|
uint16_t huff_code_dc_chrominance[12];
|
|
|
|
uint8_t huff_size_ac_luminance[256];
|
|
uint16_t huff_code_ac_luminance[256];
|
|
uint8_t huff_size_ac_chrominance[256];
|
|
uint16_t huff_code_ac_chrominance[256];
|
|
} MJpegContext;
|
|
|
|
/// The get_pixels() routine to use. The real routine comes from dsputil
|
|
static void (*get_pixels)(DCTELEM *restrict block, const uint8_t *pixels, int line_size);
|
|
|
|
/* Begin excessive code duplication ************************************/
|
|
/* Code coming from mpegvideo.c and mjpeg.c in ../libavcodec ***********/
|
|
|
|
/// copy of the table in mpegvideo.c
|
|
static const unsigned short aanscales[64] = {
|
|
/**< precomputed values scaled up by 14 bits */
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
};
|
|
|
|
/// Precompute DCT quantizing matrix
|
|
/**
|
|
* This routine will precompute the combined DCT matrix with qscale
|
|
* and DCT renorm needed by the MPEG encoder here. It is basically the
|
|
* same as the routine with the same name in mpegvideo.c, except for
|
|
* some coefficient changes. The matrix will be computed in two variations,
|
|
* depending on the DCT version used. The second used by the MMX version of DCT.
|
|
*
|
|
* \param s MpegEncContext pointer
|
|
* \param qmat[OUT] pointer to where the matrix is stored
|
|
* \param qmat16[OUT] pointer to where matrix for MMX is stored.
|
|
* This matrix is not permutated
|
|
* and second 64 entries are bias
|
|
* \param quant_matrix[IN] the quantizion matrix to use
|
|
* \param bias bias for the quantizer
|
|
* \param qmin minimum qscale value to set up for
|
|
* \param qmax maximum qscale value to set up for
|
|
*
|
|
* Only rows between qmin and qmax will be populated in the matrix.
|
|
* In this MJPEG encoder, only the value 8 for qscale is used.
|
|
*/
|
|
static void convert_matrix(MpegEncContext *s, int (*qmat)[64],
|
|
uint16_t (*qmat16)[2][64], const uint16_t *quant_matrix,
|
|
int bias, int qmin, int qmax) {
|
|
int qscale;
|
|
|
|
for(qscale = qmin; qscale <= qmax; qscale++) {
|
|
int i;
|
|
if (s->dsp.fdct == ff_jpeg_fdct_islow) {
|
|
for (i = 0; i < 64; i++) {
|
|
const int j = s->dsp.idct_permutation[i];
|
|
/* 16 <= qscale * quant_matrix[i] <= 7905
|
|
* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026
|
|
* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
|
|
* >= (1<<36)/249205026
|
|
* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
|
|
qmat[qscale][i] = (int)((UINT64_C(1) <<
|
|
(QMAT_SHIFT-3))/
|
|
(qscale*quant_matrix[j]));
|
|
}
|
|
} else if (s->dsp.fdct == fdct_ifast) {
|
|
for (i = 0; i < 64; i++) {
|
|
const int j = s->dsp.idct_permutation[i];
|
|
/* 16 <= qscale * quant_matrix[i] <= 7905
|
|
* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026
|
|
* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i])
|
|
* >= (1<<36)/249205026
|
|
* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */
|
|
qmat[qscale][i] = (int)((UINT64_C(1) <<
|
|
(QMAT_SHIFT + 11))/(aanscales[i]
|
|
*qscale * quant_matrix[j]));
|
|
}
|
|
} else {
|
|
for (i = 0; i < 64; i++) {
|
|
const int j = s->dsp.idct_permutation[i];
|
|
/* We can safely assume that 16 <= quant_matrix[i] <= 255
|
|
* So 16 <= qscale * quant_matrix[i] <= 7905
|
|
* so (1<<19) / 16 >= (1<<19) / (qscale * quant_matrix[i]) >= (1<<19) / 7905
|
|
* so 32768 >= (1<<19) / (qscale * quant_matrix[i]) >= 67 */
|
|
qmat[qscale][i] = (int)((UINT64_C(1) <<
|
|
QMAT_SHIFT_MMX) / (qscale
|
|
*quant_matrix[j]));
|
|
qmat16[qscale][0][i] = (1 << QMAT_SHIFT_MMX)
|
|
/(qscale * quant_matrix[j]);
|
|
|
|
if (qmat16[qscale][0][i] == 0 ||
|
|
qmat16[qscale][0][i] == 128*256)
|
|
qmat16[qscale][0][i]=128*256-1;
|
|
qmat16[qscale][1][i]=ROUNDED_DIV(bias
|
|
<<(16-QUANT_BIAS_SHIFT),
|
|
qmat16[qscale][0][i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emit the DC value into a MJPEG code sream
|
|
/**
|
|
* This routine is only intended to be used from encode_block
|
|
*
|
|
* \param s pointer to MpegEncContext structure
|
|
* \param val the DC value to emit
|
|
* \param huff_size pointer to huffman code size array
|
|
* \param huff_code pointer to the code array corresponding to \a huff_size
|
|
*
|
|
* This routine is a clone of mjpeg_encode_dc
|
|
*/
|
|
static inline void encode_dc(MpegEncContext *s, int val,
|
|
uint8_t *huff_size, uint16_t *huff_code) {
|
|
int mant, nbits;
|
|
|
|
if (val == 0) {
|
|
put_bits(&s->pb, huff_size[0], huff_code[0]);
|
|
} else {
|
|
mant = val;
|
|
if (val < 0) {
|
|
val = -val;
|
|
mant--;
|
|
}
|
|
nbits= av_log2_16bit(val) + 1;
|
|
put_bits(&s->pb, huff_size[nbits], huff_code[nbits]);
|
|
put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
|
|
}
|
|
}
|
|
|
|
/// Huffman encode and emit one DCT block into the MJPEG code stream
|
|
/**
|
|
* \param s pointer to MpegEncContext structure
|
|
* \param block pointer to the DCT block to emit
|
|
* \param n
|
|
*
|
|
* This routine is a duplicate of encode_block in mjpeg.c
|
|
*/
|
|
static void encode_block(MpegEncContext *s, DCTELEM *block, int n) {
|
|
int mant, nbits, code, i, j;
|
|
int component, dc, run, last_index, val;
|
|
MJpegContext *m = s->mjpeg_ctx;
|
|
uint8_t *huff_size_ac;
|
|
uint16_t *huff_code_ac;
|
|
|
|
/* DC coef */
|
|
component = (n <= 3 ? 0 : n - 4 + 1);
|
|
dc = block[0]; /* overflow is impossible */
|
|
val = dc - s->last_dc[component];
|
|
if (n < 4) {
|
|
encode_dc(s, val, m->huff_size_dc_luminance,
|
|
m->huff_code_dc_luminance);
|
|
huff_size_ac = m->huff_size_ac_luminance;
|
|
huff_code_ac = m->huff_code_ac_luminance;
|
|
} else {
|
|
encode_dc(s, val, m->huff_size_dc_chrominance,
|
|
m->huff_code_dc_chrominance);
|
|
huff_size_ac = m->huff_size_ac_chrominance;
|
|
huff_code_ac = m->huff_code_ac_chrominance;
|
|
}
|
|
s->last_dc[component] = dc;
|
|
|
|
/* AC coefs */
|
|
|
|
run = 0;
|
|
last_index = s->block_last_index[n];
|
|
for (i = 1; i <= last_index; i++) {
|
|
j = s->intra_scantable.permutated[i];
|
|
val = block[j];
|
|
if (val == 0) run++;
|
|
else {
|
|
while (run >= 16) {
|
|
put_bits(&s->pb, huff_size_ac[0xf0],
|
|
huff_code_ac[0xf0]);
|
|
run -= 16;
|
|
}
|
|
mant = val;
|
|
if (val < 0) {
|
|
val = -val;
|
|
mant--;
|
|
}
|
|
|
|
nbits= av_log2_16bit(val) + 1;
|
|
code = (run << 4) | nbits;
|
|
|
|
put_bits(&s->pb, huff_size_ac[code],
|
|
huff_code_ac[code]);
|
|
put_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
|
|
run = 0;
|
|
}
|
|
}
|
|
|
|
/* output EOB only if not already 64 values */
|
|
if (last_index < 63 || run != 0)
|
|
put_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]);
|
|
}
|
|
|
|
/// clip overflowing DCT coefficients
|
|
/**
|
|
* If the computed DCT coefficients in a block overflow, this routine
|
|
* will go through them and clip them to be in the valid range.
|
|
*
|
|
* \param s pointer to MpegEncContext
|
|
* \param block pointer to DCT block to process
|
|
* \param last_index index of the last non-zero coefficient in block
|
|
*
|
|
* The max and min level, which are clipped to, are stored in
|
|
* s->min_qcoeff and s->max_qcoeff respectively.
|
|
*/
|
|
static inline void clip_coeffs(MpegEncContext *s, DCTELEM *block,
|
|
int last_index) {
|
|
int i;
|
|
const int maxlevel= s->max_qcoeff;
|
|
const int minlevel= s->min_qcoeff;
|
|
|
|
for (i = 0; i <= last_index; i++) {
|
|
const int j = s->intra_scantable.permutated[i];
|
|
int level = block[j];
|
|
|
|
if (level > maxlevel) level=maxlevel;
|
|
else if(level < minlevel) level=minlevel;
|
|
block[j]= level;
|
|
}
|
|
}
|
|
|
|
/* End excessive code duplication **************************************/
|
|
|
|
typedef struct {
|
|
struct MpegEncContext *s;
|
|
int cheap_upsample;
|
|
int bw;
|
|
int y_rs;
|
|
int u_rs;
|
|
int v_rs;
|
|
} jpeg_enc_t;
|
|
|
|
// Huffman encode and emit one MCU of MJPEG code
|
|
/**
|
|
* \param j pointer to jpeg_enc_t structure
|
|
*
|
|
* This function huffman encodes one MCU, and emits the
|
|
* resulting bitstream into the MJPEG code that is currently worked on.
|
|
*
|
|
* this function is a reproduction of the one in mjpeg, it includes two
|
|
* changes, it allows for black&white encoding (it skips the U and V
|
|
* macroblocks and it outputs the huffman code for 'no change' (dc) and
|
|
* 'all zero' (ac)) and it takes 4 macroblocks (422) instead of 6 (420)
|
|
*/
|
|
static av_always_inline void zr_mjpeg_encode_mb(jpeg_enc_t *j) {
|
|
|
|
MJpegContext *m = j->s->mjpeg_ctx;
|
|
|
|
encode_block(j->s, j->s->block[0], 0);
|
|
encode_block(j->s, j->s->block[1], 1);
|
|
if (j->bw) {
|
|
/* U */
|
|
put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
|
|
m->huff_code_dc_chrominance[0]);
|
|
put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
|
|
m->huff_code_ac_chrominance[0]);
|
|
/* V */
|
|
put_bits(&j->s->pb, m->huff_size_dc_chrominance[0],
|
|
m->huff_code_dc_chrominance[0]);
|
|
put_bits(&j->s->pb, m->huff_size_ac_chrominance[0],
|
|
m->huff_code_ac_chrominance[0]);
|
|
} else {
|
|
/* we trick encode_block here so that it uses
|
|
* chrominance huffman tables instead of luminance ones
|
|
* (see the effect of second argument of encode_block) */
|
|
encode_block(j->s, j->s->block[2], 4);
|
|
encode_block(j->s, j->s->block[3], 5);
|
|
}
|
|
}
|
|
|
|
/// Fill one DCT MCU from planar storage
|
|
/**
|
|
* This routine will convert one MCU from YUYV planar storage into 4
|
|
* DCT macro blocks, converting from 8-bit format in the planar
|
|
* storage to 16-bit format used in the DCT.
|
|
*
|
|
* \param j pointer to jpeg_enc structure, and also storage for DCT macro blocks
|
|
* \param x pixel x-coordinate for the first pixel
|
|
* \param y pixel y-coordinate for the first pixel
|
|
* \param y_data pointer to the Y plane
|
|
* \param u_data pointer to the U plane
|
|
* \param v_data pointer to the V plane
|
|
*/
|
|
static av_always_inline void fill_block(jpeg_enc_t *j, int x, int y,
|
|
unsigned char *y_data, unsigned char *u_data,
|
|
unsigned char *v_data)
|
|
{
|
|
int i, k;
|
|
short int *dest;
|
|
unsigned char *source;
|
|
|
|
// The first Y, Y0
|
|
get_pixels(j->s->block[0], y*8*j->y_rs + 16*x + y_data, j->y_rs);
|
|
// The second Y, Y1
|
|
get_pixels(j->s->block[1], y*8*j->y_rs + 16*x + 8 + y_data, j->y_rs);
|
|
|
|
if (!j->bw && j->cheap_upsample) {
|
|
source = y * 4 * j->u_rs + 8*x + u_data;
|
|
dest = j->s->block[2];
|
|
for (i = 0; i < 4; i++) {
|
|
for (k = 0; k < 8; k++) {
|
|
dest[k] = source[k]; // First row
|
|
dest[k+8] = source[k]; // Duplicate to next row
|
|
|
|
}
|
|
dest += 16;
|
|
source += j->u_rs;
|
|
}
|
|
source = y * 4 * j->v_rs + 8*x + v_data;
|
|
dest = j->s->block[3];
|
|
for (i = 0; i < 4; i++) {
|
|
for (k = 0; k < 8; k++) {
|
|
dest[k] = source[k];
|
|
dest[k+8] = source[k];
|
|
}
|
|
dest += 16;
|
|
source += j->u_rs;
|
|
}
|
|
} else if (!j->bw && !j->cheap_upsample) {
|
|
// U
|
|
get_pixels(j->s->block[2], y*8*j->u_rs + 8*x + u_data, j->u_rs);
|
|
// V
|
|
get_pixels(j->s->block[3], y*8*j->v_rs + 8*x + v_data, j->v_rs);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief initialize mjpeg encoder
|
|
*
|
|
* This routine is to set up the parameters and initialize the mjpeg encoder.
|
|
* It does all the initializations needed of lower level routines.
|
|
* The formats accepted by this encoder is YUV422P and YUV420
|
|
*
|
|
* \param w width in pixels of the image to encode, must be a multiple of 16
|
|
* \param h height in pixels of the image to encode, must be a multiple of 8
|
|
* \param y_rsize size of each plane row Y component
|
|
* \param y_rsize size of each plane row U component
|
|
* \param v_rsize size of each plane row V component
|
|
* \param cu "cheap upsample". Set to 0 for YUV422 format, 1 for YUV420 format
|
|
* when set to 1, the encoder will assume that there is only half th
|
|
* number of rows of chroma information, and every chroma row is
|
|
* duplicated.
|
|
* \param q quality parameter for the mjpeg encode. Between 1 and 20 where 1
|
|
* is best quality and 20 is the worst quality.
|
|
* \param b monochrome flag. When set to 1, the mjpeg output is monochrome.
|
|
* In that case, the colour information is omitted, and actually the
|
|
* colour planes are not touched.
|
|
*
|
|
* \returns an appropriately set up jpeg_enc_t structure
|
|
*
|
|
* The actual plane buffer addreses are passed by jpeg_enc_frame().
|
|
*
|
|
* The encoder doesn't know anything about interlacing, the halve height
|
|
* needs to be passed and the double rowstride. Which field gets encoded
|
|
* is decided by what buffers are passed to mjpeg_encode_frame()
|
|
*/
|
|
static jpeg_enc_t *jpeg_enc_init(int w, int h, int y_rsize,
|
|
int u_rsize, int v_rsize,
|
|
int cu, int q, int b) {
|
|
jpeg_enc_t *j;
|
|
int i = 0;
|
|
VERBOSE("JPEG encoder init: %dx%d %d %d %d cu=%d q=%d bw=%d\n",
|
|
w, h, y_rsize, u_rsize, v_rsize, cu, q, b);
|
|
|
|
j = av_mallocz(sizeof(jpeg_enc_t));
|
|
if (j == NULL) return NULL;
|
|
|
|
j->s = av_mallocz(sizeof(MpegEncContext));
|
|
if (j->s == NULL) {
|
|
av_free(j);
|
|
return NULL;
|
|
}
|
|
|
|
/* info on how to access the pixels */
|
|
j->y_rs = y_rsize;
|
|
j->u_rs = u_rsize;
|
|
j->v_rs = v_rsize;
|
|
|
|
j->s->width = w; // image width and height
|
|
j->s->height = h;
|
|
j->s->qscale = q; // Encoding quality
|
|
|
|
j->s->out_format = FMT_MJPEG;
|
|
j->s->intra_only = 1; // Generate only intra pictures for jpeg
|
|
j->s->encoding = 1; // Set mode to encode
|
|
j->s->pict_type = FF_I_TYPE;
|
|
j->s->y_dc_scale = 8;
|
|
j->s->c_dc_scale = 8;
|
|
|
|
/*
|
|
* This sets up the MCU (Minimal Code Unit) number
|
|
* of appearances of the various component
|
|
* for the SOF0 table in the generated MJPEG.
|
|
* The values are not used for anything else.
|
|
* The current setup is simply YUV422, with two horizontal Y components
|
|
* for every UV component.
|
|
*/
|
|
//FIXME j->s->mjpeg_write_tables = 1; // setup to write tables
|
|
j->s->mjpeg_vsample[0] = 1; // 1 appearance of Y vertically
|
|
j->s->mjpeg_vsample[1] = 1; // 1 appearance of U vertically
|
|
j->s->mjpeg_vsample[2] = 1; // 1 appearance of V vertically
|
|
j->s->mjpeg_hsample[0] = 2; // 2 appearances of Y horizontally
|
|
j->s->mjpeg_hsample[1] = 1; // 1 appearance of U horizontally
|
|
j->s->mjpeg_hsample[2] = 1; // 1 appearance of V horizontally
|
|
|
|
j->cheap_upsample = cu;
|
|
j->bw = b;
|
|
|
|
// Is this needed?
|
|
/* if libavcodec is used by the decoder then we must not
|
|
* initialize again, but if it is not initialized then we must
|
|
* initialize it here. */
|
|
if (!avcodec_initialized) {
|
|
avcodec_init();
|
|
avcodec_register_all();
|
|
avcodec_initialized=1;
|
|
}
|
|
|
|
// Build mjpeg huffman code tables, setting up j->s->mjpeg_ctx
|
|
if (ff_mjpeg_encode_init(j->s) < 0) {
|
|
av_free(j->s);
|
|
av_free(j);
|
|
return NULL;
|
|
}
|
|
|
|
/* alloc bogus avctx to keep MPV_common_init from segfaulting */
|
|
j->s->avctx = avcodec_alloc_context();
|
|
if (j->s->avctx == NULL) {
|
|
av_free(j->s);
|
|
av_free(j);
|
|
return NULL;
|
|
}
|
|
|
|
// Set some a minimum amount of default values that are needed
|
|
// Indicates that we should generated normal MJPEG
|
|
j->s->avctx->codec_id = CODEC_ID_MJPEG;
|
|
// Which DCT method to use. AUTO will select the fastest one
|
|
j->s->avctx->dct_algo = FF_DCT_AUTO;
|
|
j->s->intra_quant_bias= 1<<(QUANT_BIAS_SHIFT-1); //(a + x/2)/x
|
|
|
|
j->s->avctx->thread_count = 1;
|
|
|
|
/* make MPV_common_init allocate important buffers, like s->block
|
|
* Also initializes dsputil */
|
|
if (MPV_common_init(j->s) < 0) {
|
|
av_free(j->s);
|
|
av_free(j);
|
|
return NULL;
|
|
}
|
|
|
|
/* correct the value for sc->mb_height. MPV_common_init put other
|
|
* values there */
|
|
j->s->mb_height = j->s->height/8;
|
|
j->s->mb_intra = 1;
|
|
|
|
// Init q matrix
|
|
j->s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0];
|
|
for (i = 1; i < 64; i++)
|
|
j->s->intra_matrix[i] = av_clip_uint8(
|
|
(ff_mpeg1_default_intra_matrix[i]*j->s->qscale) >> 3);
|
|
|
|
// precompute matrix
|
|
convert_matrix(j->s, j->s->q_intra_matrix, j->s->q_intra_matrix16,
|
|
j->s->intra_matrix, j->s->intra_quant_bias, 8, 8);
|
|
|
|
/* Pick up the selection of the optimal get_pixels() routine
|
|
* to use, which was done in MPV_common_init() */
|
|
get_pixels = j->s->dsp.get_pixels;
|
|
|
|
return j;
|
|
}
|
|
|
|
/**
|
|
* \brief mjpeg encode an image
|
|
*
|
|
* This routine will take a 3-plane YUV422 image and encoded it with MJPEG
|
|
* base line format, as suitable as input for the Zoran hardare MJPEG chips.
|
|
*
|
|
* It requires that the \a j parameter points the structure set up by the
|
|
* jpeg_enc_init() routine.
|
|
*
|
|
* \param j pointer to jpeg_enc_t structure as created by jpeg_enc_init()
|
|
* \param y_data pointer to Y component plane, packed one byte/pixel
|
|
* \param u_data pointer to U component plane, packed one byte per every
|
|
* other pixel
|
|
* \param v_data pointer to V component plane, packed one byte per every
|
|
* other pixel
|
|
* \param bufr pointer to the buffer where the mjpeg encoded code is stored
|
|
*
|
|
* \returns the number of bytes stored into \a bufr
|
|
*
|
|
* If \a j->s->mjpeg_write_tables is set, it will also emit the mjpeg tables,
|
|
* otherwise it will just emit the data. The \a j->s->mjpeg_write_tables
|
|
* variable will be reset to 0 by the routine.
|
|
*/
|
|
static int jpeg_enc_frame(jpeg_enc_t *j, uint8_t *y_data,
|
|
uint8_t *u_data, uint8_t *v_data, uint8_t *bufr) {
|
|
int mb_x, mb_y, overflow;
|
|
/* initialize the buffer */
|
|
|
|
init_put_bits(&j->s->pb, bufr, 1024*256);
|
|
|
|
// Emit the mjpeg header blocks
|
|
ff_mjpeg_encode_picture_header(j->s);
|
|
|
|
j->s->header_bits = put_bits_count(&j->s->pb);
|
|
|
|
j->s->last_dc[0] = 128;
|
|
j->s->last_dc[1] = 128;
|
|
j->s->last_dc[2] = 128;
|
|
|
|
for (mb_y = 0; mb_y < j->s->mb_height; mb_y++) {
|
|
for (mb_x = 0; mb_x < j->s->mb_width; mb_x++) {
|
|
/*
|
|
* Fill one DCT block (8x8 pixels) from
|
|
* 2 Y macroblocks and one U and one V
|
|
*/
|
|
fill_block(j, mb_x, mb_y, y_data, u_data, v_data);
|
|
emms_c(); /* is this really needed? */
|
|
|
|
j->s->block_last_index[0] =
|
|
j->s->dct_quantize(j->s, j->s->block[0],
|
|
0, 8, &overflow);
|
|
if (overflow) clip_coeffs(j->s, j->s->block[0],
|
|
j->s->block_last_index[0]);
|
|
j->s->block_last_index[1] =
|
|
j->s->dct_quantize(j->s, j->s->block[1],
|
|
1, 8, &overflow);
|
|
if (overflow) clip_coeffs(j->s, j->s->block[1],
|
|
j->s->block_last_index[1]);
|
|
|
|
if (!j->bw) {
|
|
j->s->block_last_index[4] =
|
|
j->s->dct_quantize(j->s, j->s->block[2],
|
|
4, 8, &overflow);
|
|
if (overflow) clip_coeffs(j->s, j->s->block[2],
|
|
j->s->block_last_index[2]);
|
|
j->s->block_last_index[5] =
|
|
j->s->dct_quantize(j->s, j->s->block[3],
|
|
5, 8, &overflow);
|
|
if (overflow) clip_coeffs(j->s, j->s->block[3],
|
|
j->s->block_last_index[3]);
|
|
}
|
|
zr_mjpeg_encode_mb(j);
|
|
}
|
|
}
|
|
emms_c();
|
|
ff_mjpeg_encode_picture_trailer(j->s);
|
|
flush_put_bits(&j->s->pb);
|
|
|
|
//FIXME
|
|
//if (j->s->mjpeg_write_tables == 1)
|
|
// j->s->mjpeg_write_tables = 0;
|
|
|
|
return pbBufPtr(&(j->s->pb)) - j->s->pb.buf;
|
|
}
|
|
|
|
/// the real uninit routine
|
|
/**
|
|
* This is the real routine that does the uninit of the ZRMJPEG filter
|
|
*
|
|
* \param j pointer to jpeg_enc structure
|
|
*/
|
|
static void jpeg_enc_uninit(jpeg_enc_t *j) {
|
|
ff_mjpeg_encode_close(j->s);
|
|
av_free(j->s);
|
|
av_free(j);
|
|
}
|
|
|
|
/// Private structure for ZRMJPEG filter
|
|
struct vf_priv_s {
|
|
jpeg_enc_t *j;
|
|
unsigned char buf[256*1024];
|
|
int bw, fd, hdec, vdec;
|
|
int fields;
|
|
int y_stride;
|
|
int c_stride;
|
|
int quality;
|
|
int maxwidth;
|
|
int maxheight;
|
|
};
|
|
|
|
/// vf CONFIGURE entry point for the ZRMJPEG filter
|
|
/**
|
|
* \param vf video filter instance pointer
|
|
* \param width image source width in pixels
|
|
* \param height image source height in pixels
|
|
* \param d_width width of requested window, just a hint
|
|
* \param d_height height of requested window, just a hint
|
|
* \param flags vf filter flags
|
|
* \param outfmt
|
|
*
|
|
* \returns returns 0 on error
|
|
*
|
|
* This routine will make the necessary hardware-related decisions for
|
|
* the ZRMJPEG filter, do the initialization of the MJPEG encoder, and
|
|
* then select one of the ZRJMJPEGIT or ZRMJPEGNI filters and then
|
|
* arrange to dispatch to the config() entry pointer for the one
|
|
* selected.
|
|
*/
|
|
static int config(struct vf_instance_s* vf, int width, int height, int d_width,
|
|
int d_height, unsigned int flags, unsigned int outfmt){
|
|
struct vf_priv_s *priv = vf->priv;
|
|
float aspect_decision;
|
|
int stretchx, stretchy, err = 0, maxstretchx = 4;
|
|
priv->fields = 1;
|
|
|
|
VERBOSE("config() called\n");
|
|
|
|
if (priv->j) {
|
|
VERBOSE("re-configuring, resetting JPEG encoder\n");
|
|
jpeg_enc_uninit(priv->j);
|
|
priv->j = NULL;
|
|
}
|
|
|
|
aspect_decision = ((float)d_width/(float)d_height)/
|
|
((float)width/(float)height);
|
|
|
|
if (aspect_decision > 1.8 && aspect_decision < 2.2) {
|
|
VERBOSE("should correct aspect by stretching x times 2, %d %d\n", 2*width, priv->maxwidth);
|
|
if (2*width <= priv->maxwidth) {
|
|
d_width = 2*width;
|
|
d_height = height;
|
|
maxstretchx = 2;
|
|
} else {
|
|
WARNING("unable to correct aspect by stretching, because resulting X will be too large, aspect correction by decimating y not yet implemented\n");
|
|
d_width = width;
|
|
d_height = height;
|
|
}
|
|
/* prestretch movie */
|
|
} else {
|
|
/* uncorrecting output for now */
|
|
d_width = width;
|
|
d_height = height;
|
|
}
|
|
/* make the scaling decision
|
|
* we are capable of stretching the image in the horizontal
|
|
* direction by factors 1, 2 and 4
|
|
* we can stretch the image in the vertical direction by a
|
|
* factor of 1 and 2 AND we must decide about interlacing */
|
|
if (d_width > priv->maxwidth/2 || height > priv->maxheight/2
|
|
|| maxstretchx == 1) {
|
|
stretchx = 1;
|
|
stretchy = 1;
|
|
priv->fields = 2;
|
|
if (priv->vdec == 2) {
|
|
priv->fields = 1;
|
|
} else if (priv->vdec == 4) {
|
|
priv->fields = 1;
|
|
stretchy = 2;
|
|
}
|
|
if (priv->hdec > maxstretchx) {
|
|
if (priv->fd) {
|
|
WARNING("horizontal decimation too high, "
|
|
"changing to %d (use fd to keep"
|
|
" hdec=%d)\n",
|
|
maxstretchx, priv->hdec);
|
|
priv->hdec = maxstretchx;
|
|
}
|
|
}
|
|
stretchx = priv->hdec;
|
|
} else if (d_width > priv->maxwidth/4 ||
|
|
height > priv->maxheight/4 ||
|
|
maxstretchx == 2) {
|
|
stretchx = 2;
|
|
stretchy = 1;
|
|
priv->fields = 1;
|
|
if (priv->vdec == 2) {
|
|
stretchy = 2;
|
|
} else if (priv->vdec == 4) {
|
|
if (!priv->fd) {
|
|
WARNING("vertical decimation too high, "
|
|
"changing to 2 (use fd to keep "
|
|
"vdec=4)\n");
|
|
priv->vdec = 2;
|
|
}
|
|
stretchy = 2;
|
|
}
|
|
if (priv->hdec == 2) {
|
|
stretchx = 4;
|
|
} else if (priv->hdec == 4) {
|
|
if (priv->fd) {
|
|
WARNING("horizontal decimation too high, "
|
|
"changing to 2 (use fd to keep "
|
|
"hdec=4)\n");
|
|
priv->hdec = 2;
|
|
}
|
|
stretchx = 4;
|
|
}
|
|
} else {
|
|
/* output image is maximally stretched */
|
|
stretchx = 4;
|
|
stretchy = 2;
|
|
priv->fields = 1;
|
|
if (priv->vdec != 1 && !priv->fd) {
|
|
WARNING("vertical decimation too high, changing to 1 "
|
|
"(use fd to keep vdec=%d)\n",
|
|
priv->vdec);
|
|
priv->vdec = 1;
|
|
}
|
|
if (priv->hdec != 1 && !priv->fd) {
|
|
WARNING("horizontal decimation too high, changing to 1 (use fd to keep hdec=%d)\n", priv->hdec);
|
|
priv->hdec = 1;
|
|
}
|
|
}
|
|
|
|
VERBOSE("generated JPEG's %dx%s%d%s, stretched to %dx%d\n",
|
|
width/priv->hdec, (priv->fields == 2) ? "(" : "",
|
|
height/(priv->vdec*priv->fields),
|
|
(priv->fields == 2) ? "x2)" : "",
|
|
(width/priv->hdec)*stretchx,
|
|
(height/(priv->vdec*priv->fields))*
|
|
stretchy*priv->fields);
|
|
|
|
|
|
if ((width/priv->hdec)*stretchx > priv->maxwidth ||
|
|
(height/(priv->vdec*priv->fields))*
|
|
stretchy*priv->fields > priv->maxheight) {
|
|
ERROR("output dimensions too large (%dx%d), max (%dx%d) "
|
|
"insert crop to fix\n",
|
|
(width/priv->hdec)*stretchx,
|
|
(height/(priv->vdec*priv->fields))*
|
|
stretchy*priv->fields,
|
|
priv->maxwidth, priv->maxheight);
|
|
err = 1;
|
|
}
|
|
|
|
if (width%(16*priv->hdec) != 0) {
|
|
ERROR("width must be a multiple of 16*hdec (%d), use expand\n",
|
|
priv->hdec*16);
|
|
err = 1;
|
|
}
|
|
|
|
if (height%(8*priv->fields*priv->vdec) != 0) {
|
|
ERROR("height must be a multiple of 8*fields*vdec (%d),"
|
|
" use expand\n", priv->vdec*priv->fields*8);
|
|
err = 1;
|
|
}
|
|
|
|
if (err) return 0;
|
|
|
|
priv->y_stride = width;
|
|
priv->c_stride = width/2;
|
|
priv->j = jpeg_enc_init(width, height/priv->fields,
|
|
priv->fields*priv->y_stride,
|
|
priv->fields*priv->c_stride,
|
|
priv->fields*priv->c_stride,
|
|
1, priv->quality, priv->bw);
|
|
|
|
if (!priv->j) return 0;
|
|
return vf_next_config(vf, width, height, d_width, d_height, flags,
|
|
(priv->fields == 2) ? IMGFMT_ZRMJPEGIT : IMGFMT_ZRMJPEGNI);
|
|
}
|
|
|
|
/// put_image entrypoint for the ZRMJPEG vf filter
|
|
/***
|
|
* \param vf pointer to vf_instance
|
|
* \param mpi pointer to mp_image_t structure
|
|
* \param pts
|
|
*/
|
|
static int put_image(struct vf_instance_s* vf, mp_image_t *mpi, double pts){
|
|
struct vf_priv_s *priv = vf->priv;
|
|
int size = 0;
|
|
int i;
|
|
mp_image_t* dmpi;
|
|
for (i = 0; i < priv->fields; i++)
|
|
size += jpeg_enc_frame(priv->j,
|
|
mpi->planes[0] + i*priv->y_stride,
|
|
mpi->planes[1] + i*priv->c_stride,
|
|
mpi->planes[2] + i*priv->c_stride,
|
|
priv->buf + size);
|
|
|
|
dmpi = vf_get_image(vf->next, IMGFMT_ZRMJPEGNI,
|
|
MP_IMGTYPE_EXPORT, 0, mpi->w, mpi->h);
|
|
dmpi->planes[0] = (uint8_t*)priv->buf;
|
|
dmpi->planes[1] = (uint8_t*)size;
|
|
return vf_next_put_image(vf,dmpi, pts);
|
|
}
|
|
|
|
/// query_format entrypoint for the ZRMJPEG vf filter
|
|
/***
|
|
* \param vf pointer to vf_instance
|
|
* \param fmt image format to query for
|
|
*
|
|
* \returns 0 if image format in fmt is not supported
|
|
*
|
|
* Given the image format specified by \a fmt, this routine is called
|
|
* to ask if the format is supported or not.
|
|
*/
|
|
static int query_format(struct vf_instance_s* vf, unsigned int fmt){
|
|
VERBOSE("query_format() called\n");
|
|
|
|
switch (fmt) {
|
|
case IMGFMT_YV12:
|
|
case IMGFMT_YUY2:
|
|
/* strictly speaking the output format of
|
|
* this filter will be known after config(),
|
|
* but everything that supports IMGFMT_ZRMJPEGNI
|
|
* should also support all other IMGFMT_ZRMJPEG* */
|
|
return vf_next_query_format(vf, IMGFMT_ZRMJPEGNI);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// vf UNINIT entry point for the ZRMJPEG filter
|
|
/**
|
|
* \param vf pointer to the vf instance structure
|
|
*/
|
|
static void uninit(vf_instance_t *vf) {
|
|
struct vf_priv_s *priv = vf->priv;
|
|
VERBOSE("uninit() called\n");
|
|
if (priv->j) jpeg_enc_uninit(priv->j);
|
|
free(priv);
|
|
}
|
|
|
|
/// vf OPEN entry point for the ZRMJPEG filter
|
|
/**
|
|
* \param vf pointer to the vf instance structure
|
|
* \param args the argument list string for the -vf zrmjpeg command
|
|
*
|
|
* \returns 0 for error, 1 for success
|
|
*
|
|
* This routine will do some basic initialization of local structures etc.,
|
|
* and then parse the command line arguments specific for the ZRMJPEG filter.
|
|
*/
|
|
static int open(vf_instance_t *vf, char* args){
|
|
struct vf_priv_s *priv;
|
|
VERBOSE("open() called: args=\"%s\"\n", args);
|
|
|
|
vf->config = config;
|
|
vf->put_image = put_image;
|
|
vf->query_format = query_format;
|
|
vf->uninit = uninit;
|
|
|
|
priv = vf->priv = calloc(sizeof(*priv), 1);
|
|
if (!vf->priv) {
|
|
ERROR("out of memory error\n");
|
|
return 0;
|
|
}
|
|
|
|
/* maximum displayable size by zoran card, these defaults
|
|
* are for my own zoran card in PAL mode, these can be changed
|
|
* by filter options. But... in an ideal world these values would
|
|
* be queried from the vo device itself... */
|
|
priv->maxwidth = 768;
|
|
priv->maxheight = 576;
|
|
|
|
priv->quality = 2;
|
|
priv->hdec = 1;
|
|
priv->vdec = 1;
|
|
|
|
/* if libavcodec is already initialized, we must not initialize it
|
|
* again, but if it is not initialized then we mustinitialize it now. */
|
|
if (!avcodec_initialized) {
|
|
/* we need to initialize libavcodec */
|
|
avcodec_init();
|
|
avcodec_register_all();
|
|
avcodec_initialized=1;
|
|
}
|
|
|
|
if (args) {
|
|
char *arg, *tmp, *ptr, junk;
|
|
int last = 0, input;
|
|
|
|
/* save arguments, to be able to safely modify them */
|
|
arg = strdup(args);
|
|
if (!arg) {
|
|
ERROR("out of memory, this is bad\n");
|
|
return 0;
|
|
}
|
|
|
|
tmp = ptr = arg;
|
|
do {
|
|
while (*tmp != ':' && *tmp) tmp++;
|
|
if (*tmp == ':') *tmp++ = '\0';
|
|
else last = 1;
|
|
VERBOSE("processing filter option \"%s\"\n", ptr);
|
|
/* These options deal with the maximum output
|
|
* resolution of the zoran card. These should
|
|
* be queried from the vo device, but it is currently
|
|
* too difficult, so the user should tell the filter */
|
|
if (!strncmp("maxheight=", ptr, 10)) {
|
|
if (sscanf(ptr+10, "%d%c", &input, &junk) != 1)
|
|
ERROR(
|
|
"error parsing parameter to \"maxheight=\", \"%s\", ignoring\n"
|
|
, ptr + 10);
|
|
else {
|
|
priv->maxheight = input;
|
|
VERBOSE("setting maxheight to %d\n",
|
|
priv->maxheight);
|
|
}
|
|
} else if (!strncmp("quality=", ptr, 8)) {
|
|
if (sscanf(ptr+8, "%d%c", &input, &junk) != 1)
|
|
ERROR(
|
|
"error parsing parameter to \"quality=\", \"%s\", ignoring\n"
|
|
, ptr + 8);
|
|
else if (input < 1 || input > 20)
|
|
ERROR(
|
|
"parameter to \"quality=\" out of range (1..20), %d\n", input);
|
|
else {
|
|
priv->quality = input;
|
|
VERBOSE("setting JPEG quality to %d\n",
|
|
priv->quality);
|
|
}
|
|
} else if (!strncmp("maxwidth=", ptr, 9)) {
|
|
if (sscanf(ptr+9, "%d%c", &input, &junk) != 1)
|
|
ERROR(
|
|
"error parsing parameter to \"maxwidth=\", \"%s\", ignoring\n"
|
|
, ptr + 9);
|
|
else {
|
|
priv->maxwidth = input;
|
|
VERBOSE("setting maxwidth to %d\n",
|
|
priv->maxwidth);
|
|
}
|
|
} else if (!strncmp("hdec=", ptr, 5)) {
|
|
if (sscanf(ptr+5, "%d%c", &input, &junk) != 1)
|
|
ERROR(
|
|
"error parsing parameter to \"hdec=\", \"%s\", ignoring\n"
|
|
, ptr + 9);
|
|
else if (input != 1 && input != 2 && input != 4)
|
|
ERROR(
|
|
"illegal parameter to \"hdec=\", %d, should be 1, 2 or 4",
|
|
input);
|
|
else {
|
|
priv->hdec = input;
|
|
VERBOSE(
|
|
"setting horizontal decimation to %d\n", priv->maxwidth);
|
|
}
|
|
} else if (!strncmp("vdec=", ptr, 5)) {
|
|
if (sscanf(ptr+5, "%d%c", &input, &junk) != 1)
|
|
ERROR(
|
|
"error parsing parameter to \"vdec=\", \"%s\", ignoring\n"
|
|
, ptr + 9);
|
|
else if (input != 1 && input != 2 && input != 4)
|
|
ERROR(
|
|
"illegal parameter to \"vdec=\", %d, should be 1, 2 or 4",
|
|
input);
|
|
else {
|
|
priv->vdec = input;
|
|
VERBOSE(
|
|
"setting vertical decimation to %d\n", priv->maxwidth);
|
|
}
|
|
} else if (!strcasecmp("dc10+-PAL", ptr) ||
|
|
!strcasecmp("dc10-PAL", ptr)) {
|
|
priv->maxwidth = 768;
|
|
priv->maxheight = 576;
|
|
VERBOSE("setting DC10(+) PAL profile\n");
|
|
} else if (!strcasecmp("fd", ptr)) {
|
|
priv->fd = 1;
|
|
VERBOSE("forcing decimation\n");
|
|
} else if (!strcasecmp("nofd", ptr)) {
|
|
priv->fd = 0;
|
|
VERBOSE("decimate only if beautiful\n");
|
|
} else if (!strcasecmp("bw", ptr)) {
|
|
priv->bw = 1;
|
|
VERBOSE("setting black and white encoding\n");
|
|
} else if (!strcasecmp("color", ptr)) {
|
|
priv->bw = 0;
|
|
VERBOSE("setting color encoding\n");
|
|
} else if (!strcasecmp("dc10+-NTSC", ptr) ||
|
|
!strcasecmp("dc10-NTSC", ptr)) {
|
|
priv->maxwidth = 640;
|
|
priv->maxheight = 480;
|
|
VERBOSE("setting DC10(+) NTSC profile\n");
|
|
} else if (!strcasecmp("buz-PAL", ptr) ||
|
|
!strcasecmp("lml33-PAL", ptr)) {
|
|
priv->maxwidth = 720;
|
|
priv->maxheight = 576;
|
|
VERBOSE("setting buz/lml33 PAL profile\n");
|
|
} else if (!strcasecmp("buz-NTSC", ptr) ||
|
|
!strcasecmp("lml33-NTSC", ptr)) {
|
|
priv->maxwidth = 720;
|
|
priv->maxheight = 480;
|
|
VERBOSE("setting buz/lml33 NTSC profile\n");
|
|
} else {
|
|
WARNING("ignoring unknown filter option "
|
|
"\"%s\", or missing argument\n",
|
|
ptr);
|
|
}
|
|
ptr = tmp;
|
|
} while (!last);
|
|
|
|
free(arg);
|
|
}
|
|
|
|
|
|
return 1;
|
|
}
|
|
|
|
const vf_info_t vf_info_zrmjpeg = {
|
|
"realtime zoran MJPEG encoding",
|
|
"zrmjpeg",
|
|
"Rik Snel",
|
|
"",
|
|
open,
|
|
NULL
|
|
};
|
|
|