1
mirror of https://github.com/mpv-player/mpv synced 2025-01-13 00:06:25 +01:00
mpv/video/mp_image.c
wm4 1800761a65 mp_image: remove mp_image.bpp
This field contained the "average" bit depth per pixel. It serves no
purpose anymore. Remove it.

Only vo_opengl_old still uses this in order to allocate a buffer that is
shared between all planes.
2013-01-13 20:04:13 +01:00

431 lines
13 KiB
C

/*
* This file is part of MPlayer.
*
* MPlayer is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* MPlayer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <libavutil/mem.h>
#include <libavutil/common.h>
#include <libavutil/bswap.h>
#include "talloc.h"
#include "video/img_format.h"
#include "video/mp_image.h"
#include "video/sws_utils.h"
#include "video/memcpy_pic.h"
struct m_refcount {
void *arg;
// free() is called if refcount reaches 0.
void (*free)(void *arg);
// External refcounted object (such as libavcodec DR buffers). This assumes
// that the actual data is managed by the external object, not by
// m_refcount. The .ext_* calls use that external object's refcount
// primitives. It usually doesn't make sense to set both .free and .ext_*.
void (*ext_ref)(void *arg);
void (*ext_unref)(void *arg);
bool (*ext_is_unique)(void *arg);
// Native refcount (there may be additional references if .ext_* are set)
int refcount;
};
// Only for checking API usage
static int m_refcount_destructor(void *ptr)
{
struct m_refcount *ref = ptr;
assert(ref->refcount == 0);
return 0;
}
// Starts out with refcount==1, caller can set .arg and .free and .ext_*
static struct m_refcount *m_refcount_new(void)
{
struct m_refcount *ref = talloc_ptrtype(NULL, ref);
*ref = (struct m_refcount) { .refcount = 1 };
talloc_set_destructor(ref, m_refcount_destructor);
return ref;
}
static void m_refcount_ref(struct m_refcount *ref)
{
ref->refcount++;
if (ref->ext_ref)
ref->ext_ref(ref->arg);
}
static void m_refcount_unref(struct m_refcount *ref)
{
assert(ref->refcount > 0);
if (ref->ext_unref)
ref->ext_unref(ref->arg);
ref->refcount--;
if (ref->refcount == 0) {
if (ref->free)
ref->free(ref->arg);
talloc_free(ref);
}
}
static bool m_refcount_is_unique(struct m_refcount *ref)
{
if (ref->refcount > 1)
return false;
if (ref->ext_is_unique)
return ref->ext_is_unique(ref->arg); // referenced only by us
return true;
}
static void mp_image_alloc_planes(struct mp_image *mpi)
{
assert(!mpi->planes[0]);
size_t plane_size[MP_MAX_PLANES];
for (int n = 0; n < MP_MAX_PLANES; n++) {
int line_bytes = (mpi->plane_w[n] * mpi->fmt.bpp[n] + 7) / 8;
mpi->stride[n] = FFALIGN(line_bytes, SWS_MIN_BYTE_ALIGN);
plane_size[n] = mpi->stride[n] * mpi->plane_h[n];
}
if (mpi->imgfmt == IMGFMT_PAL8)
plane_size[1] = MP_PALETTE_SIZE;
size_t sum = 0;
for (int n = 0; n < MP_MAX_PLANES; n++)
sum += plane_size[n];
uint8_t *data = av_malloc(FFMAX(sum, 1));
if (!data)
abort(); //out of memory
for (int n = 0; n < MP_MAX_PLANES; n++) {
mpi->planes[n] = plane_size[n] ? data : NULL;
data += plane_size[n];
}
}
void mp_image_setfmt(struct mp_image *mpi, unsigned int out_fmt)
{
mpi->flags &= ~MP_IMGFLAG_FMT_MASK;
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
mpi->fmt = fmt;
mpi->flags |= fmt.flags;
mpi->imgfmt = fmt.id;
mpi->chroma_x_shift = fmt.chroma_xs;
mpi->chroma_y_shift = fmt.chroma_ys;
mpi->num_planes = fmt.num_planes;
mp_image_set_size(mpi, mpi->w, mpi->h);
}
static int mp_image_destructor(void *ptr)
{
mp_image_t *mpi = ptr;
m_refcount_unref(mpi->refcount);
return 0;
}
static int mp_chroma_div_up(int size, int shift)
{
return (size + (1 << shift) - 1) >> shift;
}
// Caller has to make sure this doesn't exceed the allocated plane data/strides.
void mp_image_set_size(struct mp_image *mpi, int w, int h)
{
mpi->w = w;
mpi->h = h;
for (int n = 0; n < mpi->num_planes; n++) {
mpi->plane_w[n] = mp_chroma_div_up(mpi->w, mpi->fmt.xs[n]);
mpi->plane_h[n] = mp_chroma_div_up(mpi->h, mpi->fmt.ys[n]);
}
mpi->chroma_width = mpi->plane_w[1];
mpi->chroma_height = mpi->plane_h[1];
mpi->display_w = mpi->display_h = 0;
}
void mp_image_set_display_size(struct mp_image *mpi, int dw, int dh)
{
mpi->display_w = dw;
mpi->display_h = dh;
}
struct mp_image *mp_image_alloc(unsigned int imgfmt, int w, int h)
{
struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
talloc_set_destructor(mpi, mp_image_destructor);
mp_image_set_size(mpi, w, h);
mp_image_setfmt(mpi, imgfmt);
mp_image_alloc_planes(mpi);
mpi->refcount = m_refcount_new();
mpi->refcount->free = av_free;
mpi->refcount->arg = mpi->planes[0];
return mpi;
}
struct mp_image *mp_image_new_copy(struct mp_image *img)
{
struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
mp_image_copy(new, img);
mp_image_copy_attributes(new, img);
// Normally these are covered by the reference to the original image data
// (like the AVFrame in vd_lavc.c), but we can't manage it on our own.
new->qscale = NULL;
new->qstride = 0;
return new;
}
// Make dst take over the image data of src, and free src.
// This is basically a safe version of *dst = *src; free(src);
// Only works with ref-counted images, and can't change image size/format.
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
{
assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
assert(dst->refcount && src->refcount);
for (int p = 0; p < MP_MAX_PLANES; p++) {
dst->planes[p] = src->planes[p];
dst->stride[p] = src->stride[p];
}
mp_image_copy_attributes(dst, src);
m_refcount_unref(dst->refcount);
dst->refcount = src->refcount;
talloc_set_destructor(src, NULL);
talloc_free(src);
}
// Return a new reference to img. The returned reference is owned by the caller,
// while img is left untouched.
struct mp_image *mp_image_new_ref(struct mp_image *img)
{
if (!img->refcount)
return mp_image_new_copy(img);
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
m_refcount_ref(new->refcount);
return new;
}
// Return a reference counted reference to img. If the reference count reaches
// 0, call free(free_arg). The data passed by img must not be free'd before
// that. The new reference will be writeable.
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
void (*free)(void *arg))
{
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
new->refcount = m_refcount_new();
new->refcount->free = free;
new->refcount->arg = free_arg;
return new;
}
// Return a reference counted reference to img. ref/unref/is_unique are used to
// connect to an external refcounting API. It is assumed that the new object
// has an initial reference to that external API.
struct mp_image *mp_image_new_external_ref(struct mp_image *img, void *arg,
void (*ref)(void *arg),
void (*unref)(void *arg),
bool (*is_unique)(void *arg))
{
struct mp_image *new = talloc_ptrtype(NULL, new);
talloc_set_destructor(new, mp_image_destructor);
*new = *img;
new->refcount = m_refcount_new();
new->refcount->ext_ref = ref;
new->refcount->ext_unref = unref;
new->refcount->ext_is_unique = is_unique;
new->refcount->arg = arg;
return new;
}
bool mp_image_is_writeable(struct mp_image *img)
{
if (!img->refcount)
return true; // not ref-counted => always considered writeable
return m_refcount_is_unique(img->refcount);
}
// Make the image data referenced by img writeable. This allocates new data
// if the data wasn't already writeable, and img->planes[] and img->stride[]
// will be set to the copy.
void mp_image_make_writeable(struct mp_image *img)
{
if (mp_image_is_writeable(img))
return;
mp_image_steal_data(img, mp_image_new_copy(img));
assert(mp_image_is_writeable(img));
}
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
{
if (*p_img != new_value) {
talloc_free(*p_img);
*p_img = new_value ? mp_image_new_ref(new_value) : NULL;
}
}
// Mere helper function (mp_image can be directly free'd with talloc_free)
void mp_image_unrefp(struct mp_image **p_img)
{
talloc_free(*p_img);
*p_img = NULL;
}
void mp_image_copy(struct mp_image *dst, struct mp_image *src)
{
assert(dst->imgfmt == src->imgfmt);
assert(dst->w == src->w && dst->h == src->h);
assert(mp_image_is_writeable(dst));
for (int n = 0; n < dst->num_planes; n++) {
int line_bytes = (dst->plane_w[n] * dst->fmt.bpp[n] + 7) / 8;
memcpy_pic(dst->planes[n], src->planes[n], line_bytes, dst->plane_h[n],
dst->stride[n], src->stride[n]);
}
if (dst->imgfmt == IMGFMT_PAL8)
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
}
void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
{
dst->pict_type = src->pict_type;
dst->fields = src->fields;
dst->qscale_type = src->qscale_type;
dst->pts = src->pts;
if (dst->w == src->w && dst->h == src->h) {
dst->qstride = src->qstride;
dst->qscale = src->qscale;
dst->display_w = src->display_w;
dst->display_h = src->display_h;
}
if ((dst->flags & MP_IMGFLAG_YUV) == (src->flags & MP_IMGFLAG_YUV)) {
dst->colorspace = src->colorspace;
dst->levels = src->levels;
}
if (dst->imgfmt == IMGFMT_PAL8 && src->imgfmt == IMGFMT_PAL8) {
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
}
}
// Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
// x0/y0 must be naturally aligned.
void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
{
assert(x0 >= 0 && y0 >= 0);
assert(x0 <= x1 && y0 <= y1);
assert(x1 <= img->w && y1 <= img->h);
assert(!(x0 & (img->fmt.align_x - 1)));
assert(!(y0 & (img->fmt.align_y - 1)));
for (int p = 0; p < img->num_planes; ++p) {
img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
(x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
}
mp_image_set_size(img, x1 - x0, y1 - y0);
}
void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
{
mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
}
// Bottom/right border is allowed not to be aligned, but it might implicitly
// overwrite pixel data until the alignment (align_x/align_y) is reached.
void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
{
assert(x0 >= 0 && y0 >= 0);
assert(x0 <= x1 && y0 <= y1);
assert(x1 <= img->w && y1 <= img->h);
assert(!(x0 & (img->fmt.align_x - 1)));
assert(!(y0 & (img->fmt.align_y - 1)));
struct mp_image area = *img;
mp_image_crop(&area, x0, y0, x1, y1);
uint32_t plane_clear[MP_MAX_PLANES] = {0};
if (area.imgfmt == IMGFMT_YUYV) {
plane_clear[0] = av_le2ne16(0x8000);
} else if (area.imgfmt == IMGFMT_UYVY) {
plane_clear[0] = av_le2ne16(0x0080);
} else if (area.imgfmt == IMGFMT_NV12 || area.imgfmt == IMGFMT_NV21) {
plane_clear[1] = 0x8080;
} else if (area.flags & MP_IMGFLAG_YUV_P) {
uint16_t chroma_clear = (1 << area.fmt.plane_bits) / 2;
if (!(area.flags & MP_IMGFLAG_NE))
chroma_clear = av_bswap16(chroma_clear);
if (area.num_planes > 2)
plane_clear[1] = plane_clear[2] = chroma_clear;
}
for (int p = 0; p < area.num_planes; p++) {
int bpp = area.fmt.bpp[p];
int bytes = (area.plane_w[p] * bpp + 7) / 8;
if (bpp <= 8) {
memset_pic(area.planes[p], plane_clear[p], bytes,
area.plane_h[p], area.stride[p]);
} else {
memset16_pic(area.planes[p], plane_clear[p], (bytes + 1) / 2,
area.plane_h[p], area.stride[p]);
}
}
}
enum mp_csp mp_image_csp(struct mp_image *img)
{
if (img->colorspace != MP_CSP_AUTO)
return img->colorspace;
return (img->flags & MP_IMGFLAG_YUV) ? MP_CSP_BT_601 : MP_CSP_RGB;
}
enum mp_csp_levels mp_image_levels(struct mp_image *img)
{
if (img->levels != MP_CSP_LEVELS_AUTO)
return img->levels;
return (img->flags & MP_IMGFLAG_YUV) ? MP_CSP_LEVELS_TV : MP_CSP_LEVELS_PC;
}
void mp_image_set_colorspace_details(struct mp_image *image,
struct mp_csp_details *csp)
{
if (image->flags & MP_IMGFLAG_YUV) {
image->colorspace = csp->format;
if (image->colorspace == MP_CSP_AUTO)
image->colorspace = MP_CSP_BT_601;
image->levels = csp->levels_in;
if (image->levels == MP_CSP_LEVELS_AUTO)
image->levels = MP_CSP_LEVELS_TV;
} else {
image->colorspace = MP_CSP_RGB;
image->levels = MP_CSP_LEVELS_PC;
}
}