1
mirror of https://github.com/mpv-player/mpv synced 2024-11-14 22:48:35 +01:00
mpv/video/out/gl_video_shaders.glsl
wm4 eb7959e43a gl_video: add support for more rgb formats
Until now, only formats directly supported by OpenGL were supported.
This excludes various permutations of 8-bit RGB[A|0]. But we can simply
permutate the color channels in the shader, so do that. This also adds
support for all these weird RGB0 formats.

Note that we could use libavutil's pixfmt list instead of the
mp_packed_formats array, but trying to decrypt the pixfmt info would
probably end in pain, so this array with duplicated information is
actually better and shorter.

Note: I didn't actually test whether the alpha components are reproduced
correctly with alpha formats.
2013-07-18 13:52:38 +02:00

396 lines
14 KiB
GLSL

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see <http://www.gnu.org/licenses/>.
*
* You can alternatively redistribute this file and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
// Note that this file is not directly passed as shader, but run through some
// text processing functions, and in fact contains multiple vertex and fragment
// shaders.
// inserted at the beginning of all shaders
#!section prelude
// GLSL 1.20 compatibility layer
// texture() should be assumed to always map to texture2D()
#if __VERSION__ >= 130
# define texture1D texture
# define texture3D texture
# define DECLARE_FRAGPARMS \
out vec4 out_color;
#else
# define texture texture2D
# define DECLARE_FRAGPARMS
# define out_color gl_FragColor
# define in varying
#endif
// Earlier GLSL doesn't support mix() with bvec
#if __VERSION__ >= 130
vec3 srgb_compand(vec3 v)
{
return mix(1.055 * pow(v, vec3(1.0/2.4)) - vec3(0.055), v * 12.92,
lessThanEqual(v, vec3(0.0031308)));
}
#endif
#!section vertex_all
#if __VERSION__ < 130
# undef in
# define in attribute
# define out varying
#endif
uniform mat3 transform;
uniform sampler3D lut_3d;
in vec2 vertex_position;
in vec4 vertex_color;
out vec4 color;
in vec2 vertex_texcoord;
out vec2 texcoord;
void main() {
vec3 position = vec3(vertex_position, 1);
#ifndef FIXED_SCALE
position = transform * position;
#endif
gl_Position = vec4(position, 1);
color = vertex_color;
#ifdef USE_OSD_LINEAR_CONV
// If no 3dlut is being used, we need to pull up to linear light for
// the sRGB function. *IF* 3dlut is used, we do not.
color.rgb = pow(color.rgb, vec3(1.0/0.45));
#endif
#ifdef USE_OSD_3DLUT
color = vec4(texture3D(lut_3d, color.rgb).rgb, color.a);
#endif
#ifdef USE_OSD_SRGB
color.rgb = srgb_compand(color.rgb);
#endif
texcoord = vertex_texcoord;
}
#!section frag_osd_libass
uniform sampler2D texture0;
in vec2 texcoord;
in vec4 color;
DECLARE_FRAGPARMS
void main() {
out_color = vec4(color.rgb, color.a * texture(texture0, texcoord).r);
}
#!section frag_osd_rgba
uniform sampler2D texture0;
in vec2 texcoord;
DECLARE_FRAGPARMS
void main() {
out_color = texture(texture0, texcoord);
}
#!section frag_video
uniform sampler2D texture0;
uniform sampler2D texture1;
uniform sampler2D texture2;
uniform sampler2D texture3;
uniform vec2 textures_size[4];
uniform vec2 chroma_center_offset;
uniform sampler1D lut_c_1d;
uniform sampler1D lut_l_1d;
uniform sampler2D lut_c_2d;
uniform sampler2D lut_l_2d;
uniform sampler3D lut_3d;
uniform sampler2D dither;
uniform mat4x3 colormatrix;
uniform mat2 dither_trafo;
uniform vec3 inv_gamma;
uniform float input_gamma;
uniform float conv_gamma;
uniform float dither_quantization;
uniform float dither_center;
uniform float filter_param1;
uniform vec2 dither_size;
in vec2 texcoord;
DECLARE_FRAGPARMS
#define CONV_NV12 1
#define CONV_PLANAR 2
vec4 sample_bilinear(sampler2D tex, vec2 texsize, vec2 texcoord) {
return texture(tex, texcoord);
}
// Explanation how bicubic scaling with only 4 texel fetches is done:
// http://www.mate.tue.nl/mate/pdfs/10318.pdf
// 'Efficient GPU-Based Texture Interpolation using Uniform B-Splines'
// Explanation why this algorithm normally always blurs, even with unit scaling:
// http://bigwww.epfl.ch/preprints/ruijters1001p.pdf
// 'GPU Prefilter for Accurate Cubic B-spline Interpolation'
vec4 calcweights(float s) {
vec4 t = vec4(-0.5, 0.1666, 0.3333, -0.3333) * s + vec4(1, 0, -0.5, 0.5);
t = t * s + vec4(0, 0, -0.5, 0.5);
t = t * s + vec4(-0.6666, 0, 0.8333, 0.1666);
vec2 a = vec2(1, 1) / vec2(t.z, t.w);
t.xy = t.xy * a + vec2(1, 1);
t.x = t.x + s;
t.y = t.y - s;
return t;
}
vec4 sample_bicubic_fast(sampler2D tex, vec2 texsize, vec2 texcoord) {
vec2 pt = 1 / texsize;
vec2 fcoord = fract(texcoord * texsize + vec2(0.5, 0.5));
vec4 parmx = calcweights(fcoord.x);
vec4 parmy = calcweights(fcoord.y);
vec4 cdelta;
cdelta.xz = parmx.rg * vec2(-pt.x, pt.x);
cdelta.yw = parmy.rg * vec2(-pt.y, pt.y);
// first y-interpolation
vec4 ar = texture(tex, texcoord + cdelta.xy);
vec4 ag = texture(tex, texcoord + cdelta.xw);
vec4 ab = mix(ag, ar, parmy.b);
// second y-interpolation
vec4 br = texture(tex, texcoord + cdelta.zy);
vec4 bg = texture(tex, texcoord + cdelta.zw);
vec4 aa = mix(bg, br, parmy.b);
// x-interpolation
return mix(aa, ab, parmx.b);
}
float[2] weights2(sampler1D lookup, float f) {
vec4 c = texture1D(lookup, f);
return float[2](c.r, c.g);
}
float[4] weights4(sampler1D lookup, float f) {
vec4 c = texture1D(lookup, f);
return float[4](c.r, c.g, c.b, c.a);
}
float[6] weights6(sampler2D lookup, float f) {
vec4 c1 = texture(lookup, vec2(0.25, f));
vec4 c2 = texture(lookup, vec2(0.75, f));
return float[6](c1.r, c1.g, c1.b, c2.r, c2.g, c2.b);
}
float[8] weights8(sampler2D lookup, float f) {
vec4 c1 = texture(lookup, vec2(0.25, f));
vec4 c2 = texture(lookup, vec2(0.75, f));
return float[8](c1.r, c1.g, c1.b, c1.a, c2.r, c2.g, c2.b, c2.a);
}
float[12] weights12(sampler2D lookup, float f) {
vec4 c1 = texture(lookup, vec2(1.0/6.0, f));
vec4 c2 = texture(lookup, vec2(0.5, f));
vec4 c3 = texture(lookup, vec2(5.0/6.0, f));
return float[12](c1.r, c1.g, c1.b, c1.a,
c2.r, c2.g, c2.b, c2.a,
c3.r, c3.g, c3.b, c3.a);
}
float[16] weights16(sampler2D lookup, float f) {
vec4 c1 = texture(lookup, vec2(0.125, f));
vec4 c2 = texture(lookup, vec2(0.375, f));
vec4 c3 = texture(lookup, vec2(0.625, f));
vec4 c4 = texture(lookup, vec2(0.875, f));
return float[16](c1.r, c1.g, c1.b, c1.a, c2.r, c2.g, c2.b, c2.a,
c3.r, c3.g, c3.b, c3.a, c4.r, c4.g, c4.b, c4.a);
}
#define CONVOLUTION_SEP_N(NAME, N) \
vec4 NAME(sampler2D tex, vec2 texcoord, vec2 pt, float weights[N]) { \
vec4 res = vec4(0); \
for (int n = 0; n < N; n++) { \
res += weights[n] * texture(tex, texcoord + pt * n); \
} \
return res; \
}
CONVOLUTION_SEP_N(convolution_sep2, 2)
CONVOLUTION_SEP_N(convolution_sep4, 4)
CONVOLUTION_SEP_N(convolution_sep6, 6)
CONVOLUTION_SEP_N(convolution_sep8, 8)
CONVOLUTION_SEP_N(convolution_sep12, 12)
CONVOLUTION_SEP_N(convolution_sep16, 16)
// The dir parameter is (0, 1) or (1, 0), and we expect the shader compiler to
// remove all the redundant multiplications and additions.
#define SAMPLE_CONVOLUTION_SEP_N(NAME, N, SAMPLERT, CONV_FUNC, WEIGHTS_FUNC)\
vec4 NAME(vec2 dir, SAMPLERT lookup, sampler2D tex, vec2 texsize, \
vec2 texcoord) { \
vec2 pt = (1 / texsize) * dir; \
float fcoord = dot(fract(texcoord * texsize - 0.5), dir); \
vec2 base = texcoord - fcoord * pt; \
return CONV_FUNC(tex, base - pt * (N / 2 - 1), pt, \
WEIGHTS_FUNC(lookup, fcoord)); \
}
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep2, 2, sampler1D, convolution_sep2, weights2)
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep4, 4, sampler1D, convolution_sep4, weights4)
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep6, 6, sampler2D, convolution_sep6, weights6)
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep8, 8, sampler2D, convolution_sep8, weights8)
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep12, 12, sampler2D, convolution_sep12, weights12)
SAMPLE_CONVOLUTION_SEP_N(sample_convolution_sep16, 16, sampler2D, convolution_sep16, weights16)
#define CONVOLUTION_N(NAME, N) \
vec4 NAME(sampler2D tex, vec2 texcoord, vec2 pt, float taps_x[N], \
float taps_y[N]) { \
vec4 res = vec4(0); \
for (int y = 0; y < N; y++) { \
vec4 line = vec4(0); \
for (int x = 0; x < N; x++) \
line += taps_x[x] * texture(tex, texcoord + pt * vec2(x, y));\
res += taps_y[y] * line; \
} \
return res; \
}
CONVOLUTION_N(convolution2, 2)
CONVOLUTION_N(convolution4, 4)
CONVOLUTION_N(convolution6, 6)
CONVOLUTION_N(convolution8, 8)
CONVOLUTION_N(convolution12, 12)
CONVOLUTION_N(convolution16, 16)
#define SAMPLE_CONVOLUTION_N(NAME, N, SAMPLERT, CONV_FUNC, WEIGHTS_FUNC) \
vec4 NAME(SAMPLERT lookup, sampler2D tex, vec2 texsize, vec2 texcoord) {\
vec2 pt = 1 / texsize; \
vec2 fcoord = fract(texcoord * texsize - 0.5); \
vec2 base = texcoord - fcoord * pt; \
return CONV_FUNC(tex, base - pt * (N / 2 - 1), pt, \
WEIGHTS_FUNC(lookup, fcoord.x), \
WEIGHTS_FUNC(lookup, fcoord.y)); \
}
SAMPLE_CONVOLUTION_N(sample_convolution2, 2, sampler1D, convolution2, weights2)
SAMPLE_CONVOLUTION_N(sample_convolution4, 4, sampler1D, convolution4, weights4)
SAMPLE_CONVOLUTION_N(sample_convolution6, 6, sampler2D, convolution6, weights6)
SAMPLE_CONVOLUTION_N(sample_convolution8, 8, sampler2D, convolution8, weights8)
SAMPLE_CONVOLUTION_N(sample_convolution12, 12, sampler2D, convolution12, weights12)
SAMPLE_CONVOLUTION_N(sample_convolution16, 16, sampler2D, convolution16, weights16)
// Unsharp masking
vec4 sample_sharpen3(sampler2D tex, vec2 texsize, vec2 texcoord) {
vec2 pt = 1 / texsize;
vec2 st = pt * 0.5;
vec4 p = texture(tex, texcoord);
vec4 sum = texture(tex, texcoord + st * vec2(+1, +1))
+ texture(tex, texcoord + st * vec2(+1, -1))
+ texture(tex, texcoord + st * vec2(-1, +1))
+ texture(tex, texcoord + st * vec2(-1, -1));
return p + (p - 0.25 * sum) * filter_param1;
}
vec4 sample_sharpen5(sampler2D tex, vec2 texsize, vec2 texcoord) {
vec2 pt = 1 / texsize;
vec2 st1 = pt * 1.2;
vec4 p = texture(tex, texcoord);
vec4 sum1 = texture(tex, texcoord + st1 * vec2(+1, +1))
+ texture(tex, texcoord + st1 * vec2(+1, -1))
+ texture(tex, texcoord + st1 * vec2(-1, +1))
+ texture(tex, texcoord + st1 * vec2(-1, -1));
vec2 st2 = pt * 1.5;
vec4 sum2 = texture(tex, texcoord + st2 * vec2(+1, 0))
+ texture(tex, texcoord + st2 * vec2( 0, +1))
+ texture(tex, texcoord + st2 * vec2(-1, 0))
+ texture(tex, texcoord + st2 * vec2( 0, -1));
vec4 t = p * 0.859375 + sum2 * -0.1171875 + sum1 * -0.09765625;
return p + t * filter_param1;
}
void main() {
vec2 chr_texcoord = texcoord + chroma_center_offset;
#ifndef USE_CONV
#define USE_CONV 0
#endif
#if USE_CONV == CONV_PLANAR
vec4 acolor = vec4(SAMPLE_L(texture0, textures_size[0], texcoord).r,
SAMPLE_C(texture1, textures_size[1], chr_texcoord).r,
SAMPLE_C(texture2, textures_size[2], chr_texcoord).r,
1.0);
#elif USE_CONV == CONV_NV12
vec4 acolor = vec4(SAMPLE_L(texture0, textures_size[0], texcoord).r,
SAMPLE_C(texture1, textures_size[1], chr_texcoord).rg,
1.0);
#else
vec4 acolor = SAMPLE_L(texture0, textures_size[0], texcoord);
#endif
#ifdef USE_ALPHA_PLANE
acolor.a = SAMPLE_L(texture3, textures_size[3], texcoord).r;
#endif
#ifdef USE_COLOR_SWIZZLE
acolor = acolor. USE_COLOR_SWIZZLE ;
#endif
vec3 color = acolor.rgb;
float alpha = acolor.a;
#ifdef USE_YGRAY
// NOTE: actually slightly wrong for 16 bit input video, and completely
// wrong for 9/10 bit input
color.gb = vec2(128.0/255.0);
#endif
#ifdef USE_INPUT_GAMMA
color = pow(color, vec3(input_gamma));
#endif
#ifdef USE_COLORMATRIX
color = mat3(colormatrix) * color + colormatrix[3];
color = clamp(color, 0, 1);
#endif
#ifdef USE_CONV_GAMMA
color = pow(color, vec3(conv_gamma));
#endif
#ifdef USE_LINEAR_CONV_INV
// Convert from linear RGB to gamma RGB before putting it through the 3D-LUT
// in the final stage.
color = pow(color, vec3(0.45));
#endif
#ifdef USE_GAMMA_POW
color = pow(color, inv_gamma);
#endif
#ifdef USE_3DLUT
color = texture3D(lut_3d, color).rgb;
#endif
#ifdef USE_SRGB
color.rgb = srgb_compand(color.rgb);
#endif
#ifdef USE_DITHER
vec2 dither_pos = gl_FragCoord.xy / dither_size;
#ifdef USE_TEMPORAL_DITHER
dither_pos = dither_trafo * dither_pos;
#endif
float dither_value = texture(dither, dither_pos).r;
color = floor(color * dither_quantization + dither_value + dither_center) /
dither_quantization;
#endif
#ifdef USE_ALPHA
out_color = vec4(color, alpha);
#else
out_color = vec4(color, 1.0);
#endif
}