mpv/demux/demux.c

4632 lines
155 KiB
C

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdatomic.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "cache.h"
#include "config.h"
#include "options/m_config.h"
#include "options/m_option.h"
#include "mpv_talloc.h"
#include "common/av_common.h"
#include "common/msg.h"
#include "common/global.h"
#include "common/recorder.h"
#include "common/stats.h"
#include "misc/charset_conv.h"
#include "misc/thread_tools.h"
#include "osdep/timer.h"
#include "osdep/threads.h"
#include "stream/stream.h"
#include "demux.h"
#include "timeline.h"
#include "stheader.h"
#include "cue.h"
// Demuxer list
extern const struct demuxer_desc demuxer_desc_edl;
extern const struct demuxer_desc demuxer_desc_cue;
extern const demuxer_desc_t demuxer_desc_rawaudio;
extern const demuxer_desc_t demuxer_desc_rawvideo;
extern const demuxer_desc_t demuxer_desc_mf;
extern const demuxer_desc_t demuxer_desc_matroska;
extern const demuxer_desc_t demuxer_desc_lavf;
extern const demuxer_desc_t demuxer_desc_playlist;
extern const demuxer_desc_t demuxer_desc_disc;
extern const demuxer_desc_t demuxer_desc_rar;
extern const demuxer_desc_t demuxer_desc_libarchive;
extern const demuxer_desc_t demuxer_desc_null;
extern const demuxer_desc_t demuxer_desc_timeline;
static const demuxer_desc_t *const demuxer_list[] = {
&demuxer_desc_disc,
&demuxer_desc_edl,
&demuxer_desc_cue,
&demuxer_desc_rawaudio,
&demuxer_desc_rawvideo,
&demuxer_desc_matroska,
#if HAVE_LIBARCHIVE
&demuxer_desc_libarchive,
#endif
&demuxer_desc_lavf,
&demuxer_desc_mf,
&demuxer_desc_playlist,
&demuxer_desc_null,
NULL
};
#define OPT_BASE_STRUCT struct demux_opts
static bool get_demux_sub_opts(int index, const struct m_sub_options **sub);
const struct m_sub_options demux_conf = {
.opts = (const struct m_option[]){
{"cache", OPT_CHOICE(enable_cache,
{"no", 0}, {"auto", -1}, {"yes", 1})},
{"cache-on-disk", OPT_BOOL(disk_cache)},
{"demuxer-readahead-secs", OPT_DOUBLE(min_secs), M_RANGE(0, DBL_MAX)},
{"demuxer-hysteresis-secs", OPT_DOUBLE(hyst_secs), M_RANGE(0, DBL_MAX)},
{"demuxer-max-bytes", OPT_BYTE_SIZE(max_bytes),
M_RANGE(0, M_MAX_MEM_BYTES)},
{"demuxer-max-back-bytes", OPT_BYTE_SIZE(max_bytes_bw),
M_RANGE(0, M_MAX_MEM_BYTES)},
{"demuxer-donate-buffer", OPT_BOOL(donate_fw)},
{"force-seekable", OPT_BOOL(force_seekable)},
{"cache-secs", OPT_DOUBLE(min_secs_cache), M_RANGE(0, DBL_MAX)},
{"access-references", OPT_BOOL(access_references)},
{"demuxer-seekable-cache", OPT_CHOICE(seekable_cache,
{"auto", -1}, {"no", 0}, {"yes", 1})},
{"index", OPT_CHOICE(index_mode, {"default", 1}, {"recreate", 0})},
{"mf-fps", OPT_DOUBLE(mf_fps)},
{"mf-type", OPT_STRING(mf_type)},
{"sub-create-cc-track", OPT_BOOL(create_ccs)},
{"stream-record", OPT_STRING(record_file)},
{"video-backward-overlap", OPT_CHOICE(video_back_preroll, {"auto", -1}),
M_RANGE(0, 1024)},
{"audio-backward-overlap", OPT_CHOICE(audio_back_preroll, {"auto", -1}),
M_RANGE(0, 1024)},
{"video-backward-batch", OPT_INT(back_batch[STREAM_VIDEO]),
M_RANGE(0, 1024)},
{"audio-backward-batch", OPT_INT(back_batch[STREAM_AUDIO]),
M_RANGE(0, 1024)},
{"demuxer-backward-playback-step", OPT_DOUBLE(back_seek_size),
M_RANGE(0, DBL_MAX)},
{"metadata-codepage", OPT_STRING(meta_cp)},
{0}
},
.size = sizeof(struct demux_opts),
.defaults = &(const struct demux_opts){
.enable_cache = -1, // auto
.max_bytes = 150 * 1024 * 1024,
.max_bytes_bw = 50 * 1024 * 1024,
.donate_fw = true,
.min_secs = 1.0,
.min_secs_cache = 1000.0 * 60 * 60,
.seekable_cache = -1,
.index_mode = 1,
.mf_fps = 1.0,
.access_references = true,
.video_back_preroll = -1,
.audio_back_preroll = -1,
.back_seek_size = 60,
.back_batch = {
[STREAM_VIDEO] = 1,
[STREAM_AUDIO] = 10,
},
.meta_cp = "auto",
},
.get_sub_options = get_demux_sub_opts,
};
struct demux_internal {
struct mp_log *log;
struct mpv_global *global;
struct stats_ctx *stats;
bool can_cache; // not a slave demuxer; caching makes sense
bool can_record; // stream recording is allowed
// The demuxer runs potentially in another thread, so we keep two demuxer
// structs; the real demuxer can access the shadow struct only.
struct demuxer *d_thread; // accessed by demuxer impl. (producer)
struct demuxer *d_user; // accessed by player (consumer)
// The lock protects the packet queues (struct demux_stream),
// and the fields below.
mp_mutex lock;
mp_cond wakeup;
mp_thread thread;
// -- All the following fields are protected by lock.
bool thread_terminate;
bool threading;
bool shutdown_async;
void (*wakeup_cb)(void *ctx);
void *wakeup_cb_ctx;
struct sh_stream **streams;
int num_streams;
char *meta_charset;
// If non-NULL, a stream which is used for global (timed) metadata. It will
// be an arbitrary stream, which hopefully will happen to work.
struct sh_stream *metadata_stream;
int events;
struct demux_cache *cache;
bool warned_queue_overflow;
bool eof; // whether we're in EOF state
double min_secs;
double hyst_secs; // stop reading till there's hyst_secs remaining
bool hyst_active;
size_t max_bytes;
size_t max_bytes_bw;
bool seekable_cache;
bool using_network_cache_opts;
char *record_filename;
// Whether the demuxer thread should prefetch packets. This is set to false
// if EOF was reached or the demuxer cache is full. This is also important
// in the initial state: the decoder thread needs to select streams before
// the first packet is read, so this is set to true by packet reading only.
// Reset to false again on EOF or if prefetching is done.
bool reading;
// Set if we just performed a seek, without reading packets yet. Used to
// avoid a redundant initial seek after enabling streams. We could just
// allow it, but to avoid buggy seeking affecting normal playback, we don't.
bool after_seek;
// Set in addition to after_seek if we think we seeked to the start of the
// file (or if the demuxer was just opened).
bool after_seek_to_start;
// Demuxing backwards. Since demuxer implementations don't support this
// directly, it is emulated by seeking backwards for every packet run. Also,
// packets between keyframes are demuxed forwards (you can't decode that
// stuff otherwise), which adds complexity on top of it.
bool back_demuxing;
// For backward demuxing:
bool need_back_seek; // back-step seek needs to be triggered
bool back_any_need_recheck; // at least 1 ds->back_need_recheck set
bool tracks_switched; // thread needs to inform demuxer of this
bool seeking; // there's a seek queued
int seek_flags; // flags for next seek (if seeking==true)
double seek_pts;
// (fields for debugging)
double seeking_in_progress; // low level seek state
int low_level_seeks; // number of started low level seeks
double demux_ts; // last demuxed DTS or PTS
double ts_offset; // timestamp offset to apply to everything
// (sorted by least recent use: index 0 is least recently used)
struct demux_cached_range **ranges;
int num_ranges;
size_t total_bytes; // total sum of packet data buffered
// Range from which decoder is reading, and to which demuxer is appending.
// This is normally never NULL. This is always ranges[num_ranges - 1].
// This is can be NULL during initialization or deinitialization.
struct demux_cached_range *current_range;
double highest_av_pts; // highest non-subtitle PTS seen - for duration
bool blocked;
// Transient state.
double duration;
// Cached state.
int64_t stream_size;
int64_t last_speed_query;
double speed_query_prev_sample;
uint64_t bytes_per_second;
int64_t next_cache_update;
// demux user state (user thread, somewhat similar to reader/decoder state)
double last_playback_pts; // last playback_pts from demux_update()
bool force_metadata_update;
int cached_metadata_index; // speed up repeated lookups
struct mp_recorder *dumper;
int dumper_status;
bool owns_stream;
// -- Access from demuxer thread only
bool enable_recording;
struct mp_recorder *recorder;
int64_t slave_unbuffered_read_bytes; // value repoted from demuxer impl.
int64_t hack_unbuffered_read_bytes; // for demux_get_bytes_read_hack()
int64_t cache_unbuffered_read_bytes; // for demux_reader_state.bytes_per_second
int64_t byte_level_seeks; // for demux_reader_state.byte_level_seeks
};
struct timed_metadata {
double pts;
struct mp_tags *tags;
bool from_stream;
};
// A continuous range of cached packets for all enabled streams.
// (One demux_queue for each known stream.)
struct demux_cached_range {
// streams[] is indexed by demux_stream->index
struct demux_queue **streams;
int num_streams;
// Computed from the stream queue's values. These fields (unlike as with
// demux_queue) are always either NOPTS, or fully valid.
double seek_start, seek_end;
bool is_bof; // set if the file begins with this range
bool is_eof; // set if the file ends with this range
struct timed_metadata **metadata;
int num_metadata;
};
#define QUEUE_INDEX_SIZE_MASK(queue) ((queue)->index_size - 1)
// Access the idx-th entry in the given demux_queue.
// Requirement: idx >= 0 && idx < queue->num_index
#define QUEUE_INDEX_ENTRY(queue, idx) \
((queue)->index[((queue)->index0 + (idx)) & QUEUE_INDEX_SIZE_MASK(queue)])
// Don't index packets whose timestamps that are within the last index entry by
// this amount of time (it's better to seek them manually).
#define INDEX_STEP_SIZE 1.0
struct index_entry {
double pts;
struct demux_packet *pkt;
};
// A continuous list of cached packets for a single stream/range. There is one
// for each stream and range. Also contains some state for use during demuxing
// (keeping it across seeks makes it easier to resume demuxing).
struct demux_queue {
struct demux_stream *ds;
struct demux_cached_range *range;
struct demux_packet *head;
struct demux_packet *tail;
uint64_t tail_cum_pos; // cumulative size including tail packet
bool correct_dts; // packet DTS is strictly monotonically increasing
bool correct_pos; // packet pos is strictly monotonically increasing
int64_t last_pos; // for determining correct_pos
int64_t last_pos_fixup; // for filling in unset dp->pos values
double last_dts; // for determining correct_dts
double last_ts; // timestamp of the last packet added to queue
// for incrementally determining seek PTS range
struct demux_packet *keyframe_latest;
struct demux_packet *keyframe_first; // cached value of first KF packet
// incrementally maintained seek range, possibly invalid
double seek_start, seek_end;
double last_pruned; // timestamp of last pruned keyframe
bool is_bof; // started demuxing at beginning of file
bool is_eof; // received true EOF here
// Complete index, though it may skip some entries to reduce density.
struct index_entry *index; // ring buffer
size_t index_size; // size of index[] (0 or a power of 2)
size_t index0; // first index entry
size_t num_index; // number of index entries (wraps on index_size)
};
struct demux_stream {
struct demux_internal *in;
struct sh_stream *sh; // ds->sh->ds == ds
enum stream_type type; // equals to sh->type
int index; // equals to sh->index
// --- all fields are protected by in->lock
void (*wakeup_cb)(void *ctx);
void *wakeup_cb_ctx;
// demuxer state
bool selected; // user wants packets from this stream
bool eager; // try to keep at least 1 packet queued
// if false, this stream is disabled, or passively
// read (like subtitles)
bool still_image; // stream consists of multiple sparse still images
bool refreshing; // finding old position after track switches
bool eof; // end of demuxed stream? (true if no more packets)
bool global_correct_dts;// all observed so far
bool global_correct_pos;
// current queue - used both for reading and demuxing (this is never NULL)
struct demux_queue *queue;
// reader (decoder) state (bitrate calculations are part of it because we
// want to return the bitrate closest to the "current position")
double base_ts; // timestamp of the last packet returned to decoder
double last_br_ts; // timestamp of last packet bitrate was calculated
size_t last_br_bytes; // summed packet sizes since last bitrate calculation
double bitrate;
struct demux_packet *reader_head; // points at current decoder position
bool skip_to_keyframe;
bool attached_picture_added;
bool need_wakeup; // call wakeup_cb on next reader_head state change
double force_read_until;// eager=false streams (subs): force read-ahead
// For demux_internal.dumper. Currently, this is used only temporarily
// during blocking dumping.
struct demux_packet *dump_pos;
// for refresh seeks: pos/dts of last packet returned to reader
int64_t last_ret_pos;
double last_ret_dts;
// Backwards demuxing.
bool back_need_recheck; // flag for incremental find_backward_restart_pos work
// pos/dts of the previous keyframe packet returned; always valid if back-
// demuxing is enabled, and back_restart_eof/back_restart_next are false.
int64_t back_restart_pos;
double back_restart_dts;
bool back_restart_eof; // restart position is at EOF; overrides pos/dts
bool back_restart_next; // restart before next keyframe; overrides above
bool back_restarting; // searching keyframe before restart pos
// Current PTS lower bound for back demuxing.
double back_seek_pos;
// pos/dts of the packet to resume demuxing from when another stream caused
// a seek backward to get more packets. reader_head will be reset to this
// packet as soon as it's encountered again.
int64_t back_resume_pos;
double back_resume_dts;
bool back_resuming; // resuming mode (above fields are valid/used)
// Set to true if the first packet (keyframe) of a range was returned.
bool back_range_started;
// Number of KF packets at start of range yet to return. -1 is used for BOF.
int back_range_count;
// Number of KF packets yet to return that are marked as preroll.
int back_range_preroll;
// Static packet preroll count.
int back_preroll;
// for closed captions (demuxer_feed_caption)
struct sh_stream *cc;
bool ignore_eof; // ignore stream in underrun detection
};
static void switch_to_fresh_cache_range(struct demux_internal *in);
static void demuxer_sort_chapters(demuxer_t *demuxer);
static MP_THREAD_VOID demux_thread(void *pctx);
static void update_cache(struct demux_internal *in);
static void add_packet_locked(struct sh_stream *stream, demux_packet_t *dp);
static struct demux_packet *advance_reader_head(struct demux_stream *ds);
static bool queue_seek(struct demux_internal *in, double seek_pts, int flags,
bool clear_back_state);
static struct demux_packet *compute_keyframe_times(struct demux_packet *pkt,
double *out_kf_min,
double *out_kf_max);
static void find_backward_restart_pos(struct demux_stream *ds);
static struct demux_packet *find_seek_target(struct demux_queue *queue,
double pts, int flags);
static void prune_old_packets(struct demux_internal *in);
static void dumper_close(struct demux_internal *in);
static void demux_convert_tags_charset(struct demuxer *demuxer);
static uint64_t get_forward_buffered_bytes(struct demux_stream *ds)
{
if (!ds->reader_head)
return 0;
return ds->queue->tail_cum_pos - ds->reader_head->cum_pos;
}
#if 0
// very expensive check for redundant cached queue state
static void check_queue_consistency(struct demux_internal *in)
{
uint64_t total_bytes = 0;
assert(in->current_range && in->num_ranges > 0);
assert(in->current_range == in->ranges[in->num_ranges - 1]);
for (int n = 0; n < in->num_ranges; n++) {
struct demux_cached_range *range = in->ranges[n];
int range_num_packets = 0;
assert(range->num_streams == in->num_streams);
for (int i = 0; i < range->num_streams; i++) {
struct demux_queue *queue = range->streams[i];
assert(queue->range == range);
size_t fw_bytes = 0;
bool is_forward = false;
bool kf_found = false;
bool kf1_found = false;
size_t next_index = 0;
uint64_t queue_total_bytes = 0;
for (struct demux_packet *dp = queue->head; dp; dp = dp->next) {
is_forward |= dp == queue->ds->reader_head;
kf_found |= dp == queue->keyframe_latest;
kf1_found |= dp == queue->keyframe_first;
size_t bytes = demux_packet_estimate_total_size(dp);
total_bytes += bytes;
queue_total_bytes += bytes;
if (is_forward) {
fw_bytes += bytes;
assert(range == in->current_range);
assert(queue->ds->queue == queue);
}
range_num_packets += 1;
if (!dp->next)
assert(queue->tail == dp);
if (next_index < queue->num_index &&
QUEUE_INDEX_ENTRY(queue, next_index).pkt == dp)
next_index += 1;
}
if (!queue->head)
assert(!queue->tail);
assert(next_index == queue->num_index);
uint64_t queue_total_bytes2 = 0;
if (queue->head)
queue_total_bytes2 = queue->tail_cum_pos - queue->head->cum_pos;
assert(queue_total_bytes == queue_total_bytes2);
// If the queue is currently used...
if (queue->ds->queue == queue) {
// ...reader_head and others must be in the queue.
assert(is_forward == !!queue->ds->reader_head);
assert(kf_found == !!queue->keyframe_latest);
uint64_t fw_bytes2 = get_forward_buffered_bytes(queue->ds);
assert(fw_bytes == fw_bytes2);
}
assert(kf1_found == !!queue->keyframe_first);
if (range != in->current_range) {
assert(fw_bytes == 0);
}
if (queue->keyframe_latest)
assert(queue->keyframe_latest->keyframe);
total_bytes += queue->index_size * sizeof(struct index_entry);
}
// Invariant needed by pruning; violation has worse effects than just
// e.g. broken seeking due to incorrect seek ranges.
if (range->seek_start != MP_NOPTS_VALUE)
assert(range_num_packets > 0);
}
assert(in->total_bytes == total_bytes);
}
#endif
// (this doesn't do most required things for a switch, like updating ds->queue)
static void set_current_range(struct demux_internal *in,
struct demux_cached_range *range)
{
in->current_range = range;
// Move to in->ranges[in->num_ranges-1] (for LRU sorting/invariant)
for (int n = 0; n < in->num_ranges; n++) {
if (in->ranges[n] == range) {
MP_TARRAY_REMOVE_AT(in->ranges, in->num_ranges, n);
break;
}
}
MP_TARRAY_APPEND(in, in->ranges, in->num_ranges, range);
}
static void prune_metadata(struct demux_cached_range *range)
{
int first_needed = 0;
if (range->seek_start == MP_NOPTS_VALUE) {
first_needed = range->num_metadata;
} else {
for (int n = 0; n < range->num_metadata ; n++) {
if (range->metadata[n]->pts > range->seek_start)
break;
first_needed = n;
}
}
// Always preserve the last entry.
first_needed = MPMIN(first_needed, range->num_metadata - 1);
// (Could make this significantly more efficient for large first_needed,
// however that might be very rare and even then it might not matter.)
for (int n = 0; n < first_needed; n++) {
talloc_free(range->metadata[0]);
MP_TARRAY_REMOVE_AT(range->metadata, range->num_metadata, 0);
}
}
// Refresh range->seek_start/end. Idempotent.
static void update_seek_ranges(struct demux_cached_range *range)
{
range->seek_start = range->seek_end = MP_NOPTS_VALUE;
range->is_bof = true;
range->is_eof = true;
double min_start_pts = MP_NOPTS_VALUE;
double max_end_pts = MP_NOPTS_VALUE;
for (int n = 0; n < range->num_streams; n++) {
struct demux_queue *queue = range->streams[n];
if (queue->ds->selected && queue->ds->eager) {
if (queue->is_bof) {
min_start_pts = MP_PTS_MIN(min_start_pts, queue->seek_start);
} else {
range->seek_start =
MP_PTS_MAX(range->seek_start, queue->seek_start);
}
if (queue->is_eof) {
max_end_pts = MP_PTS_MAX(max_end_pts, queue->seek_end);
} else {
range->seek_end = MP_PTS_MIN(range->seek_end, queue->seek_end);
}
range->is_eof &= queue->is_eof;
range->is_bof &= queue->is_bof;
bool empty = queue->is_eof && !queue->head;
if (queue->seek_start >= queue->seek_end && !empty &&
!(queue->seek_start == queue->seek_end &&
queue->seek_start != MP_NOPTS_VALUE))
goto broken;
}
}
if (range->is_eof)
range->seek_end = max_end_pts;
if (range->is_bof)
range->seek_start = min_start_pts;
// Sparse (subtitle) stream behavior is not very clearly defined, but
// usually we don't want it to restrict the range of other streams. For
// example, if there are subtitle packets at position 5 and 10 seconds, and
// the demuxer demuxed the other streams until position 7 seconds, the seek
// range end position is 7.
// Assume that reading a non-sparse (audio/video) packet gets all sparse
// packets that are needed before that non-sparse packet.
// This is incorrect in any of these cases:
// - sparse streams only (it's unknown how to determine an accurate range)
// - if sparse streams have non-keyframe packets (we set queue->last_pruned
// to the start of the pruned keyframe range - we'd need the end or so)
// We also assume that ds->eager equals to a stream not being sparse
// (usually true, except if only sparse streams are selected).
// We also rely on the fact that the demuxer position will always be ahead
// of the seek_end for audio/video, because they need to prefetch at least
// 1 packet to detect the end of a keyframe range. This means that there's
// a relatively high guarantee to have all sparse (subtitle) packets within
// the seekable range.
// As a consequence, the code _never_ checks queue->seek_end for a sparse
// queue, as the end of it is implied by the highest PTS of a non-sparse
// stream (i.e. the latest demuxer position).
// On the other hand, if a sparse packet was pruned, and that packet has
// a higher PTS than seek_start for non-sparse queues, that packet is
// missing. So the range's seek_start needs to be adjusted accordingly.
for (int n = 0; n < range->num_streams; n++) {
struct demux_queue *queue = range->streams[n];
if (queue->ds->selected && !queue->ds->eager &&
queue->last_pruned != MP_NOPTS_VALUE &&
range->seek_start != MP_NOPTS_VALUE)
{
// (last_pruned is _exclusive_ to the seekable range, so add a small
// value to exclude it from the valid range.)
range->seek_start =
MP_PTS_MAX(range->seek_start, queue->last_pruned + 0.1);
}
}
if (range->seek_start >= range->seek_end && !(range->is_bof && range->is_eof))
goto broken;
prune_metadata(range);
return;
broken:
range->seek_start = range->seek_end = MP_NOPTS_VALUE;
prune_metadata(range);
}
// Remove queue->head from the queue.
static void remove_head_packet(struct demux_queue *queue)
{
struct demux_packet *dp = queue->head;
assert(queue->ds->reader_head != dp);
if (queue->keyframe_first == dp)
queue->keyframe_first = NULL;
if (queue->keyframe_latest == dp)
queue->keyframe_latest = NULL;
queue->is_bof = false;
uint64_t end_pos = dp->next ? dp->next->cum_pos : queue->tail_cum_pos;
queue->ds->in->total_bytes -= end_pos - dp->cum_pos;
if (queue->num_index && queue->index[queue->index0].pkt == dp) {
queue->index0 = (queue->index0 + 1) & QUEUE_INDEX_SIZE_MASK(queue);
queue->num_index -= 1;
}
queue->head = dp->next;
if (!queue->head)
queue->tail = NULL;
talloc_free(dp);
}
static void free_index(struct demux_queue *queue)
{
struct demux_stream *ds = queue->ds;
struct demux_internal *in = ds->in;
in->total_bytes -= queue->index_size * sizeof(queue->index[0]);
queue->index_size = 0;
queue->index0 = 0;
queue->num_index = 0;
TA_FREEP(&queue->index);
}
static void clear_queue(struct demux_queue *queue)
{
struct demux_stream *ds = queue->ds;
struct demux_internal *in = ds->in;
if (queue->head)
in->total_bytes -= queue->tail_cum_pos - queue->head->cum_pos;
free_index(queue);
struct demux_packet *dp = queue->head;
while (dp) {
struct demux_packet *dn = dp->next;
assert(ds->reader_head != dp);
talloc_free(dp);
dp = dn;
}
queue->head = queue->tail = NULL;
queue->keyframe_first = NULL;
queue->keyframe_latest = NULL;
queue->seek_start = queue->seek_end = queue->last_pruned = MP_NOPTS_VALUE;
queue->correct_dts = queue->correct_pos = true;
queue->last_pos = -1;
queue->last_ts = queue->last_dts = MP_NOPTS_VALUE;
queue->last_pos_fixup = -1;
queue->is_eof = false;
queue->is_bof = false;
}
static void clear_cached_range(struct demux_internal *in,
struct demux_cached_range *range)
{
for (int n = 0; n < range->num_streams; n++)
clear_queue(range->streams[n]);
for (int n = 0; n < range->num_metadata; n++)
talloc_free(range->metadata[n]);
range->num_metadata = 0;
update_seek_ranges(range);
}
// Remove ranges with no data (except in->current_range). Also remove excessive
// ranges.
static void free_empty_cached_ranges(struct demux_internal *in)
{
while (1) {
struct demux_cached_range *worst = NULL;
int end = in->num_ranges - 1;
// (Not set during early init or late destruction.)
if (in->current_range) {
assert(in->current_range && in->num_ranges > 0);
assert(in->current_range == in->ranges[in->num_ranges - 1]);
end -= 1;
}
for (int n = end; n >= 0; n--) {
struct demux_cached_range *range = in->ranges[n];
if (range->seek_start == MP_NOPTS_VALUE || !in->seekable_cache) {
clear_cached_range(in, range);
MP_TARRAY_REMOVE_AT(in->ranges, in->num_ranges, n);
for (int i = 0; i < range->num_streams; i++)
talloc_free(range->streams[i]);
talloc_free(range);
} else {
if (!worst || (range->seek_end - range->seek_start <
worst->seek_end - worst->seek_start))
worst = range;
}
}
if (in->num_ranges <= MAX_SEEK_RANGES || !worst)
break;
clear_cached_range(in, worst);
}
}
static void ds_clear_reader_queue_state(struct demux_stream *ds)
{
ds->reader_head = NULL;
ds->eof = false;
ds->need_wakeup = true;
}
static void ds_clear_reader_state(struct demux_stream *ds,
bool clear_back_state)
{
ds_clear_reader_queue_state(ds);
ds->base_ts = ds->last_br_ts = MP_NOPTS_VALUE;
ds->last_br_bytes = 0;
ds->bitrate = -1;
ds->skip_to_keyframe = false;
ds->attached_picture_added = false;
ds->last_ret_pos = -1;
ds->last_ret_dts = MP_NOPTS_VALUE;
ds->force_read_until = MP_NOPTS_VALUE;
if (clear_back_state) {
ds->back_restart_pos = -1;
ds->back_restart_dts = MP_NOPTS_VALUE;
ds->back_restart_eof = false;
ds->back_restart_next = ds->in->back_demuxing;
ds->back_restarting = ds->in->back_demuxing && ds->eager;
ds->back_seek_pos = MP_NOPTS_VALUE;
ds->back_resume_pos = -1;
ds->back_resume_dts = MP_NOPTS_VALUE;
ds->back_resuming = false;
ds->back_range_started = false;
ds->back_range_count = 0;
ds->back_range_preroll = 0;
}
}
// called locked, from user thread only
static void clear_reader_state(struct demux_internal *in,
bool clear_back_state)
{
for (int n = 0; n < in->num_streams; n++)
ds_clear_reader_state(in->streams[n]->ds, clear_back_state);
in->warned_queue_overflow = false;
in->d_user->filepos = -1; // implicitly synchronized
in->blocked = false;
in->need_back_seek = false;
}
// Call if the observed reader state on this stream somehow changes. The wakeup
// is skipped if the reader successfully read a packet, because that means we
// expect it to come back and ask for more.
static void wakeup_ds(struct demux_stream *ds)
{
if (ds->need_wakeup) {
if (ds->wakeup_cb) {
ds->wakeup_cb(ds->wakeup_cb_ctx);
} else if (ds->in->wakeup_cb) {
ds->in->wakeup_cb(ds->in->wakeup_cb_ctx);
}
ds->need_wakeup = false;
mp_cond_signal(&ds->in->wakeup);
}
}
static void update_stream_selection_state(struct demux_internal *in,
struct demux_stream *ds)
{
ds->eof = false;
ds->refreshing = false;
// We still have to go over the whole stream list to update ds->eager for
// other streams too, because they depend on other stream's selections.
bool any_av_streams = false;
bool any_streams = false;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *s = in->streams[n]->ds;
s->still_image = s->sh->still_image;
s->eager = s->selected && !s->sh->attached_picture;
if (s->eager && !s->still_image)
any_av_streams |= s->type != STREAM_SUB;
any_streams |= s->selected;
}
// Subtitles are only eagerly read if there are no other eagerly read
// streams.
if (any_av_streams) {
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *s = in->streams[n]->ds;
if (s->type == STREAM_SUB)
s->eager = false;
}
}
if (!any_streams)
in->blocked = false;
ds_clear_reader_state(ds, true);
// Make sure any stream reselection or addition is reflected in the seek
// ranges, and also get rid of data that is not needed anymore (or
// rather, which can't be kept consistent). This has to happen after we've
// updated all the subtle state (like s->eager).
for (int n = 0; n < in->num_ranges; n++) {
struct demux_cached_range *range = in->ranges[n];
if (!ds->selected)
clear_queue(range->streams[ds->index]);
update_seek_ranges(range);
}
free_empty_cached_ranges(in);
wakeup_ds(ds);
}
void demux_set_ts_offset(struct demuxer *demuxer, double offset)
{
struct demux_internal *in = demuxer->in;
mp_mutex_lock(&in->lock);
in->ts_offset = offset;
mp_mutex_unlock(&in->lock);
}
static void add_missing_streams(struct demux_internal *in,
struct demux_cached_range *range)
{
for (int n = range->num_streams; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
struct demux_queue *queue = talloc_ptrtype(NULL, queue);
*queue = (struct demux_queue){
.ds = ds,
.range = range,
};
clear_queue(queue);
MP_TARRAY_APPEND(range, range->streams, range->num_streams, queue);
assert(range->streams[ds->index] == queue);
}
}
// Allocate a new sh_stream of the given type. It either has to be released
// with talloc_free(), or added to a demuxer with demux_add_sh_stream(). You
// cannot add or read packets from the stream before it has been added.
// type may be changed later, but only before demux_add_sh_stream().
struct sh_stream *demux_alloc_sh_stream(enum stream_type type)
{
struct sh_stream *sh = talloc_ptrtype(NULL, sh);
*sh = (struct sh_stream) {
.type = type,
.index = -1,
.ff_index = -1, // may be overwritten by demuxer
.demuxer_id = -1, // ... same
.program_id = -1, // ... same
.codec = talloc_zero(sh, struct mp_codec_params),
.tags = talloc_zero(sh, struct mp_tags),
};
sh->codec->type = type;
return sh;
}
// Add a new sh_stream to the demuxer. Note that as soon as the stream has been
// added, it must be immutable, and must not be released (this will happen when
// the demuxer is destroyed).
static void demux_add_sh_stream_locked(struct demux_internal *in,
struct sh_stream *sh)
{
assert(!sh->ds); // must not be added yet
sh->index = in->num_streams;
sh->ds = talloc(sh, struct demux_stream);
*sh->ds = (struct demux_stream) {
.in = in,
.sh = sh,
.type = sh->type,
.index = sh->index,
.global_correct_dts = true,
.global_correct_pos = true,
};
struct demux_stream *ds = sh->ds;
if (!sh->codec->codec)
sh->codec->codec = "";
if (sh->ff_index < 0)
sh->ff_index = sh->index;
MP_TARRAY_APPEND(in, in->streams, in->num_streams, sh);
assert(in->streams[sh->index] == sh);
if (in->current_range) {
for (int n = 0; n < in->num_ranges; n++)
add_missing_streams(in, in->ranges[n]);
sh->ds->queue = in->current_range->streams[sh->ds->index];
}
update_stream_selection_state(in, sh->ds);
switch (ds->type) {
case STREAM_AUDIO:
ds->back_preroll = in->d_user->opts->audio_back_preroll;
if (ds->back_preroll < 0) { // auto
ds->back_preroll = mp_codec_is_lossless(sh->codec->codec) ? 0 : 1;
if (sh->codec->codec && (strcmp(sh->codec->codec, "opus") == 0 ||
strcmp(sh->codec->codec, "vorbis") == 0 ||
strcmp(sh->codec->codec, "mp3") == 0))
ds->back_preroll = 2;
}
break;
case STREAM_VIDEO:
ds->back_preroll = in->d_user->opts->video_back_preroll;
if (ds->back_preroll < 0)
ds->back_preroll = 0; // auto
break;
}
if (!ds->sh->attached_picture) {
// Typically this is used for webradio, so any stream will do.
if (!in->metadata_stream)
in->metadata_stream = sh;
}
in->events |= DEMUX_EVENT_STREAMS;
if (in->wakeup_cb)
in->wakeup_cb(in->wakeup_cb_ctx);
}
// For demuxer implementations only.
void demux_add_sh_stream(struct demuxer *demuxer, struct sh_stream *sh)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_thread);
mp_mutex_lock(&in->lock);
demux_add_sh_stream_locked(in, sh);
mp_mutex_unlock(&in->lock);
}
// Return a stream with the given index. Since streams can only be added during
// the lifetime of the demuxer, it is guaranteed that an index within the valid
// range [0, demux_get_num_stream()) always returns a valid sh_stream pointer,
// which will be valid until the demuxer is destroyed.
struct sh_stream *demux_get_stream(struct demuxer *demuxer, int index)
{
struct demux_internal *in = demuxer->in;
mp_mutex_lock(&in->lock);
assert(index >= 0 && index < in->num_streams);
struct sh_stream *r = in->streams[index];
mp_mutex_unlock(&in->lock);
return r;
}
// See demux_get_stream().
int demux_get_num_stream(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
mp_mutex_lock(&in->lock);
int r = in->num_streams;
mp_mutex_unlock(&in->lock);
return r;
}
// It's UB to call anything but demux_dealloc() on the demuxer after this.
static void demux_shutdown(struct demux_internal *in)
{
struct demuxer *demuxer = in->d_user;
if (in->recorder) {
mp_recorder_destroy(in->recorder);
in->recorder = NULL;
}
dumper_close(in);
if (demuxer->desc->close)
demuxer->desc->close(in->d_thread);
demuxer->priv = NULL;
in->d_thread->priv = NULL;
demux_flush(demuxer);
assert(in->total_bytes == 0);
in->current_range = NULL;
free_empty_cached_ranges(in);
talloc_free(in->cache);
in->cache = NULL;
if (in->owns_stream)
free_stream(demuxer->stream);
demuxer->stream = NULL;
}
static void demux_dealloc(struct demux_internal *in)
{
for (int n = 0; n < in->num_streams; n++)
talloc_free(in->streams[n]);
mp_mutex_destroy(&in->lock);
mp_cond_destroy(&in->wakeup);
talloc_free(in->d_user);
}
void demux_free(struct demuxer *demuxer)
{
if (!demuxer)
return;
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
demux_stop_thread(demuxer);
demux_shutdown(in);
demux_dealloc(in);
}
// Start closing the demuxer and eventually freeing the demuxer asynchronously.
// You must not access the demuxer once this has been started. Once the demuxer
// is shutdown, the wakeup callback is invoked. Then you need to call
// demux_free_async_finish() to end the operation (it must not be called from
// the wakeup callback).
// This can return NULL. Then the demuxer cannot be free'd asynchronously, and
// you need to call demux_free() instead.
struct demux_free_async_state *demux_free_async(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
if (!in->threading)
return NULL;
mp_mutex_lock(&in->lock);
in->thread_terminate = true;
in->shutdown_async = true;
mp_cond_signal(&in->wakeup);
mp_mutex_unlock(&in->lock);
return (struct demux_free_async_state *)demuxer->in; // lies
}
// As long as state is valid, you can call this to request immediate abort.
// Roughly behaves as demux_cancel_and_free(), except you still need to wait
// for the result.
void demux_free_async_force(struct demux_free_async_state *state)
{
struct demux_internal *in = (struct demux_internal *)state; // reverse lies
mp_cancel_trigger(in->d_user->cancel);
}
// Check whether the demuxer is shutdown yet. If not, return false, and you
// need to call this again in the future (preferably after you were notified by
// the wakeup callback). If yes, deallocate all state, and return true (in
// particular, the state ptr becomes invalid, and the wakeup callback will never
// be called again).
bool demux_free_async_finish(struct demux_free_async_state *state)
{
struct demux_internal *in = (struct demux_internal *)state; // reverse lies
mp_mutex_lock(&in->lock);
bool busy = in->shutdown_async;
mp_mutex_unlock(&in->lock);
if (busy)
return false;
demux_stop_thread(in->d_user);
demux_dealloc(in);
return true;
}
// Like demux_free(), but trigger an abort, which will force the demuxer to
// terminate immediately. If this wasn't opened with demux_open_url(), there is
// some chance this will accidentally abort other things via demuxer->cancel.
void demux_cancel_and_free(struct demuxer *demuxer)
{
if (!demuxer)
return;
mp_cancel_trigger(demuxer->cancel);
demux_free(demuxer);
}
// Start the demuxer thread, which reads ahead packets on its own.
void demux_start_thread(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
if (!in->threading) {
in->threading = true;
if (mp_thread_create(&in->thread, demux_thread, in))
in->threading = false;
}
}
void demux_stop_thread(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
if (in->threading) {
mp_mutex_lock(&in->lock);
in->thread_terminate = true;
mp_cond_signal(&in->wakeup);
mp_mutex_unlock(&in->lock);
mp_thread_join(in->thread);
in->threading = false;
in->thread_terminate = false;
}
}
// The demuxer thread will call cb(ctx) if there's a new packet, or EOF is reached.
void demux_set_wakeup_cb(struct demuxer *demuxer, void (*cb)(void *ctx), void *ctx)
{
struct demux_internal *in = demuxer->in;
mp_mutex_lock(&in->lock);
in->wakeup_cb = cb;
in->wakeup_cb_ctx = ctx;
mp_mutex_unlock(&in->lock);
}
void demux_start_prefetch(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
mp_mutex_lock(&in->lock);
in->reading = true;
mp_cond_signal(&in->wakeup);
mp_mutex_unlock(&in->lock);
}
const char *stream_type_name(enum stream_type type)
{
switch (type) {
case STREAM_VIDEO: return "video";
case STREAM_AUDIO: return "audio";
case STREAM_SUB: return "sub";
default: return "unknown";
}
}
static struct sh_stream *demuxer_get_cc_track_locked(struct sh_stream *stream)
{
struct sh_stream *sh = stream->ds->cc;
if (!sh) {
sh = demux_alloc_sh_stream(STREAM_SUB);
if (!sh)
return NULL;
sh->codec->codec = "eia_608";
sh->default_track = true;
sh->hls_bitrate = stream->hls_bitrate;
sh->program_id = stream->program_id;
stream->ds->cc = sh;
demux_add_sh_stream_locked(stream->ds->in, sh);
sh->ds->ignore_eof = true;
}
return sh;
}
void demuxer_feed_caption(struct sh_stream *stream, demux_packet_t *dp)
{
struct demux_internal *in = stream->ds->in;
mp_mutex_lock(&in->lock);
struct sh_stream *sh = demuxer_get_cc_track_locked(stream);
if (!sh) {
mp_mutex_unlock(&in->lock);
talloc_free(dp);
return;
}
dp->keyframe = true;
dp->pts = MP_ADD_PTS(dp->pts, -in->ts_offset);
dp->dts = MP_ADD_PTS(dp->dts, -in->ts_offset);
dp->stream = sh->index;
add_packet_locked(sh, dp);
mp_mutex_unlock(&in->lock);
}
static void error_on_backward_demuxing(struct demux_internal *in)
{
if (!in->back_demuxing)
return;
MP_ERR(in, "Disabling backward demuxing.\n");
in->back_demuxing = false;
clear_reader_state(in, true);
}
static void perform_backward_seek(struct demux_internal *in)
{
double target = MP_NOPTS_VALUE;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (ds->reader_head && !ds->back_restarting && !ds->back_resuming &&
ds->eager)
{
ds->back_resuming = true;
ds->back_resume_pos = ds->reader_head->pos;
ds->back_resume_dts = ds->reader_head->dts;
}
target = MP_PTS_MIN(target, ds->back_seek_pos);
}
target = MP_PTS_OR_DEF(target, in->d_thread->start_time);
MP_VERBOSE(in, "triggering backward seek to get more packets\n");
queue_seek(in, target, SEEK_SATAN | SEEK_HR, false);
in->reading = true;
// Don't starve other threads.
mp_mutex_unlock(&in->lock);
mp_mutex_lock(&in->lock);
}
// For incremental backward demuxing search work.
static void check_backward_seek(struct demux_internal *in)
{
in->back_any_need_recheck = false;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (ds->back_need_recheck)
find_backward_restart_pos(ds);
}
}
// Search for a packet to resume demuxing from.
// The implementation of this function is quite awkward, because the packet
// queue is a singly linked list without back links, while it needs to search
// backwards.
// This is the core of backward demuxing.
static void find_backward_restart_pos(struct demux_stream *ds)
{
struct demux_internal *in = ds->in;
ds->back_need_recheck = false;
if (!ds->back_restarting)
return;
struct demux_packet *first = ds->reader_head;
struct demux_packet *last = ds->queue->tail;
if (first && !first->keyframe)
MP_WARN(in, "Queue not starting on keyframe.\n");
// Packet at back_restart_pos. (Note: we don't actually need it, only the
// packet immediately before it. But same effort.)
// If this is NULL, look for EOF (resume from very last keyframe).
struct demux_packet *back_restart = NULL;
if (ds->back_restart_next) {
// Initial state. Switch to one of the other modi.
for (struct demux_packet *cur = first; cur; cur = cur->next) {
// Restart for next keyframe after reader_head.
if (cur != first && cur->keyframe) {
ds->back_restart_dts = cur->dts;
ds->back_restart_pos = cur->pos;
ds->back_restart_eof = false;
ds->back_restart_next = false;
break;
}
}
if (ds->back_restart_next && ds->eof) {
// Restart from end if nothing was found.
ds->back_restart_eof = true;
ds->back_restart_next = false;
}
if (ds->back_restart_next)
return;
}
if (ds->back_restart_eof) {
// We're trying to find EOF (without discarding packets). Only continue
// if we really reach EOF.
if (!ds->eof)
return;
} else if (!first && ds->eof) {
// Reached EOF during normal backward demuxing. We probably returned the
// last keyframe range to user. Need to resume at an earlier position.
// Fall through, hit the no-keyframe case (and possibly the BOF check
// if there are no packets at all), and then resume_earlier.
} else if (!first) {
return; // no packets yet
} else {
assert(last);
if ((ds->global_correct_dts && last->dts < ds->back_restart_dts) ||
(ds->global_correct_pos && last->pos < ds->back_restart_pos))
return; // restart pos not reached yet
// The target we're searching for is apparently before the start of the
// queue.
if ((ds->global_correct_dts && first->dts > ds->back_restart_dts) ||
(ds->global_correct_pos && first->pos > ds->back_restart_pos))
goto resume_earlier; // current position is too late; seek back
for (struct demux_packet *cur = first; cur; cur = cur->next) {
if ((ds->global_correct_dts && cur->dts == ds->back_restart_dts) ||
(ds->global_correct_pos && cur->pos == ds->back_restart_pos))
{
back_restart = cur;
break;
}
}
if (!back_restart) {
// The packet should have been in the searched range; maybe dts/pos
// determinism assumptions were broken.
MP_ERR(in, "Demuxer not cooperating.\n");
error_on_backward_demuxing(in);
return;
}
}
// Find where to restart demuxing. It's usually the last keyframe packet
// before restart_pos, but might be up to back_preroll + batch keyframe
// packets earlier.
// (Normally, we'd just iterate backwards, but no back links.)
int num_kf = 0;
struct demux_packet *pre_1 = NULL; // idiotic "optimization" for total=1
for (struct demux_packet *dp = first; dp != back_restart; dp = dp->next) {
if (dp->keyframe) {
num_kf++;
pre_1 = dp;
}
}
// Number of renderable keyframes to return to user.
// (Excludes preroll, which is decoded by user, but then discarded.)
int batch = MPMAX(in->d_user->opts->back_batch[ds->type], 1);
// Number of keyframes to return to the user in total.
int total = batch + ds->back_preroll;
assert(total >= 1);
bool is_bof = ds->queue->is_bof &&
(first == ds->queue->head || ds->back_seek_pos < ds->queue->seek_start);
struct demux_packet *target = NULL; // resume pos
// nr. of keyframes, incl. target, excl. restart_pos
int got_total = num_kf < total && is_bof ? num_kf : total;
int got_preroll = MPMAX(got_total - batch, 0);
if (got_total == 1) {
target = pre_1;
} else if (got_total <= num_kf) {
int cur_kf = 0;
for (struct demux_packet *dp = first; dp != back_restart; dp = dp->next) {
if (dp->keyframe) {
if (num_kf - cur_kf == got_total) {
target = dp;
break;
}
cur_kf++;
}
}
}
if (!target) {
if (is_bof) {
MP_VERBOSE(in, "BOF for stream %d\n", ds->index);
ds->back_restarting = false;
ds->back_range_started = false;
ds->back_range_count = -1;
ds->back_range_preroll = 0;
ds->need_wakeup = true;
wakeup_ds(ds);
return;
}
goto resume_earlier;
}
// Skip reader_head from previous keyframe to current one.
// Or if preroll is involved, the first preroll packet.
while (ds->reader_head != target) {
if (!advance_reader_head(ds))
MP_ASSERT_UNREACHABLE(); // target must be in list
}
double seek_pts;
compute_keyframe_times(target, &seek_pts, NULL);
if (seek_pts != MP_NOPTS_VALUE)
ds->back_seek_pos = seek_pts;
// For next backward adjust action.
struct demux_packet *restart_pkt = NULL;
int kf_pos = 0;
for (struct demux_packet *dp = target; dp; dp = dp->next) {
if (dp->keyframe) {
if (kf_pos == got_preroll) {
restart_pkt = dp;
break;
}
kf_pos++;
}
}
assert(restart_pkt);
ds->back_restart_dts = restart_pkt->dts;
ds->back_restart_pos = restart_pkt->pos;
ds->back_restarting = false;
ds->back_range_started = false;
ds->back_range_count = got_total;
ds->back_range_preroll = got_preroll;
ds->need_wakeup = true;
wakeup_ds(ds);
return;
resume_earlier:
// We want to seek back to get earlier packets. But before we do this, we
// must be sure that other streams have initialized their state. The only
// time when this state is not initialized is right after the seek that
// started backward demuxing (not any subsequent backstep seek). If this
// initialization is omitted, the stream would try to start demuxing from
// the "current" position. If another stream backstepped before that, the
// other stream will miss the original seek target, and start playback from
// a position that is too early.
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds2 = in->streams[n]->ds;
if (ds2 == ds || !ds2->eager)
continue;
if (ds2->back_restarting && ds2->back_restart_next) {
MP_VERBOSE(in, "delaying stream %d for %d\n", ds->index, ds2->index);
return;
}
}
if (ds->back_seek_pos != MP_NOPTS_VALUE) {
struct demux_packet *t =
find_seek_target(ds->queue, ds->back_seek_pos - 0.001, 0);
if (t && t != ds->reader_head) {
double pts;
compute_keyframe_times(t, &pts, NULL);
ds->back_seek_pos = MP_PTS_MIN(ds->back_seek_pos, pts);
ds_clear_reader_state(ds, false);
ds->reader_head = t;
ds->back_need_recheck = true;
in->back_any_need_recheck = true;
mp_cond_signal(&in->wakeup);
} else {
ds->back_seek_pos -= in->d_user->opts->back_seek_size;
in->need_back_seek = true;
}
}
}
// Process that one or multiple packets were added.
static void back_demux_see_packets(struct demux_stream *ds)
{
struct demux_internal *in = ds->in;
if (!ds->selected || !in->back_demuxing || !ds->eager)
return;
assert(!(ds->back_resuming && ds->back_restarting));
if (!ds->global_correct_dts && !ds->global_correct_pos) {
MP_ERR(in, "Can't demux backward due to demuxer problems.\n");
error_on_backward_demuxing(in);
return;
}
while (ds->back_resuming && ds->reader_head) {
struct demux_packet *head = ds->reader_head;
if ((ds->global_correct_dts && head->dts == ds->back_resume_dts) ||
(ds->global_correct_pos && head->pos == ds->back_resume_pos))
{
ds->back_resuming = false;
ds->need_wakeup = true;
wakeup_ds(ds); // probably
break;
}
advance_reader_head(ds);
}
if (ds->back_restarting)
find_backward_restart_pos(ds);
}
// Add the keyframe to the end of the index. Not all packets are actually added.
static void add_index_entry(struct demux_queue *queue, struct demux_packet *dp,
double pts)
{
struct demux_internal *in = queue->ds->in;
assert(dp->keyframe && pts != MP_NOPTS_VALUE);
if (queue->num_index > 0) {
struct index_entry *last = &QUEUE_INDEX_ENTRY(queue, queue->num_index - 1);
if (pts - last->pts < INDEX_STEP_SIZE)
return;
}
if (queue->num_index == queue->index_size) {
// Needs to honor power-of-2 requirement.
size_t new_size = MPMAX(128, queue->index_size * 2);
assert(!(new_size & (new_size - 1)));
MP_DBG(in, "stream %d: resize index to %zu\n", queue->ds->index,
new_size);
// Note: we could tolerate allocation failure, and just discard the
// entire index (and prevent the index from being recreated).
MP_RESIZE_ARRAY(NULL, queue->index, new_size);
size_t highest_index = queue->index0 + queue->num_index;
for (size_t n = queue->index_size; n < highest_index; n++)
queue->index[n] = queue->index[n - queue->index_size];
in->total_bytes +=
(new_size - queue->index_size) * sizeof(queue->index[0]);
queue->index_size = new_size;
}
assert(queue->num_index < queue->index_size);
queue->num_index += 1;
QUEUE_INDEX_ENTRY(queue, queue->num_index - 1) = (struct index_entry){
.pts = pts,
.pkt = dp,
};
}
// Check whether the next range in the list is, and if it appears to overlap,
// try joining it into a single range.
static void attempt_range_joining(struct demux_internal *in)
{
struct demux_cached_range *current = in->current_range;
struct demux_cached_range *next = NULL;
double next_dist = INFINITY;
assert(current && in->num_ranges > 0);
assert(current == in->ranges[in->num_ranges - 1]);
for (int n = 0; n < in->num_ranges - 1; n++) {
struct demux_cached_range *range = in->ranges[n];
if (current->seek_start <= range->seek_start) {
// This uses ">" to get some non-0 overlap.
double dist = current->seek_end - range->seek_start;
if (dist > 0 && dist < next_dist) {
next = range;
next_dist = dist;
}
}
}
if (!next)
return;
MP_VERBOSE(in, "going to join ranges %f-%f + %f-%f\n",
current->seek_start, current->seek_end,
next->seek_start, next->seek_end);
// Try to find a join point, where packets obviously overlap. (It would be
// better and faster to do this incrementally, but probably too complex.)
// The current range can overlap arbitrarily with the next one, not only by
// the seek overlap, but for arbitrary packet readahead as well.
// We also drop the overlapping packets (if joining fails, we discard the
// entire next range anyway, so this does no harm).
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
struct demux_queue *q1 = current->streams[n];
struct demux_queue *q2 = next->streams[n];
if (!ds->global_correct_pos && !ds->global_correct_dts) {
MP_WARN(in, "stream %d: ranges unjoinable\n", n);
goto failed;
}
struct demux_packet *end = q1->tail;
bool join_point_found = !end; // no packets yet -> joining will work
if (end) {
while (q2->head) {
struct demux_packet *dp = q2->head;
// Some weird corner-case. We'd have to search the equivalent
// packet in q1 to update it correctly. Better just give up.
if (dp == q2->keyframe_latest) {
MP_VERBOSE(in, "stream %d: not enough keyframes for join\n", n);
goto failed;
}
if ((ds->global_correct_dts && dp->dts == end->dts) ||
(ds->global_correct_pos && dp->pos == end->pos))
{
// Do some additional checks as a (imperfect) sanity check
// in case pos/dts are not "correct" across the ranges (we
// never actually check that).
if (dp->dts != end->dts || dp->pos != end->pos ||
dp->pts != end->pts)
{
MP_WARN(in,
"stream %d: non-repeatable demuxer behavior\n", n);
goto failed;
}
remove_head_packet(q2);
join_point_found = true;
break;
}
// This happens if the next range misses the end packet. For
// normal streams (ds->eager==true), this is a failure to find
// an overlap. For subtitles, this can mean the current_range
// has a subtitle somewhere before the end of its range, and
// next has another subtitle somewhere after the start of its
// range.
if ((ds->global_correct_dts && dp->dts > end->dts) ||
(ds->global_correct_pos && dp->pos > end->pos))
break;
remove_head_packet(q2);
}
}
// For enabled non-sparse streams, always require an overlap packet.
if (ds->eager && !join_point_found) {
MP_WARN(in, "stream %d: no join point found\n", n);
goto failed;
}
}
// Actually join the ranges. Now that we think it will work, mutate the
// data associated with the current range.
for (int n = 0; n < in->num_streams; n++) {
struct demux_queue *q1 = current->streams[n];
struct demux_queue *q2 = next->streams[n];
struct demux_stream *ds = in->streams[n]->ds;
assert(ds->queue == q1);
// First new packet that is appended to the current range.
struct demux_packet *join_point = q2->head;
if (q2->head) {
if (q1->head) {
q1->tail->next = q2->head;
} else {
q1->head = q2->head;
}
q1->tail = q2->tail;
}
q1->seek_end = q2->seek_end;
q1->correct_dts &= q2->correct_dts;
q1->correct_pos &= q2->correct_pos;
q1->last_pos = q2->last_pos;
q1->last_dts = q2->last_dts;
q1->last_ts = q2->last_ts;
q1->keyframe_latest = q2->keyframe_latest;
q1->is_eof = q2->is_eof;
q1->last_pos_fixup = -1;
q2->head = q2->tail = NULL;
q2->keyframe_first = NULL;
q2->keyframe_latest = NULL;
if (ds->selected && !ds->reader_head)
ds->reader_head = join_point;
ds->skip_to_keyframe = false;
// Make the cum_pos values in all q2 packets continuous.
for (struct demux_packet *dp = join_point; dp; dp = dp->next) {
uint64_t next_pos = dp->next ? dp->next->cum_pos : q2->tail_cum_pos;
uint64_t size = next_pos - dp->cum_pos;
dp->cum_pos = q1->tail_cum_pos;
q1->tail_cum_pos += size;
}
// And update the index with packets from q2.
for (size_t i = 0; i < q2->num_index; i++) {
struct index_entry *e = &QUEUE_INDEX_ENTRY(q2, i);
add_index_entry(q1, e->pkt, e->pts);
}
free_index(q2);
// For moving demuxer position.
ds->refreshing = ds->selected;
}
for (int n = 0; n < next->num_metadata; n++) {
MP_TARRAY_APPEND(current, current->metadata, current->num_metadata,
next->metadata[n]);
}
next->num_metadata = 0;
update_seek_ranges(current);
// Move demuxing position to after the current range.
in->seeking = true;
in->seek_flags = SEEK_HR;
in->seek_pts = next->seek_end - 1.0;
MP_VERBOSE(in, "ranges joined!\n");
for (int n = 0; n < in->num_streams; n++)
back_demux_see_packets(in->streams[n]->ds);
failed:
clear_cached_range(in, next);
free_empty_cached_ranges(in);
}
// Compute the assumed first and last frame timestamp for keyframe range
// starting at pkt. To get valid results, pkt->keyframe must be true, otherwise
// nonsense will be returned.
// Always sets *out_kf_min and *out_kf_max without reading them. Both are set
// to NOPTS if there are no timestamps at all in the stream. *kf_max will not
// be set to the actual end time of the decoded output, just the last frame
// (audio will typically end up with kf_min==kf_max).
// Either of out_kf_min and out_kf_max can be NULL, which discards the result.
// Return the next keyframe packet after pkt, or NULL if there's none.
static struct demux_packet *compute_keyframe_times(struct demux_packet *pkt,
double *out_kf_min,
double *out_kf_max)
{
struct demux_packet *start = pkt;
double min = MP_NOPTS_VALUE;
double max = MP_NOPTS_VALUE;
while (pkt) {
if (pkt->keyframe && pkt != start)
break;
double ts = MP_PTS_OR_DEF(pkt->pts, pkt->dts);
if (pkt->segmented && ((pkt->start != MP_NOPTS_VALUE && ts < pkt->start) ||
(pkt->end != MP_NOPTS_VALUE && ts > pkt->end)))
ts = MP_NOPTS_VALUE;
min = MP_PTS_MIN(min, ts);
max = MP_PTS_MAX(max, ts);
pkt = pkt->next;
}
if (out_kf_min)
*out_kf_min = min;
if (out_kf_max)
*out_kf_max = max;
return pkt;
}
// Determine seekable range when a packet is added. If dp==NULL, treat it as
// EOF (i.e. closes the current block).
// This has to deal with a number of corner cases, such as demuxers potentially
// starting output at non-keyframes.
// Can join seek ranges, which messes with in->current_range and all.
static void adjust_seek_range_on_packet(struct demux_stream *ds,
struct demux_packet *dp)
{
struct demux_queue *queue = ds->queue;
if (!ds->in->seekable_cache)
return;
bool new_eof = !dp;
bool update_ranges = queue->is_eof != new_eof;
queue->is_eof = new_eof;
if (!dp || dp->keyframe) {
if (queue->keyframe_latest) {
double kf_min, kf_max;
compute_keyframe_times(queue->keyframe_latest, &kf_min, &kf_max);
if (kf_min != MP_NOPTS_VALUE) {
add_index_entry(queue, queue->keyframe_latest, kf_min);
// Initialize the queue's start if it's unset.
if (queue->seek_start == MP_NOPTS_VALUE) {
update_ranges = true;
queue->seek_start = kf_min + ds->sh->seek_preroll;
}
}
if (kf_max != MP_NOPTS_VALUE &&
(queue->seek_end == MP_NOPTS_VALUE || kf_max > queue->seek_end))
{
// If the queue was past the current range's end even before
// this update, it means _other_ streams are not there yet,
// and the seek range doesn't need to be updated. This means
// if the _old_ queue->seek_end was already after the range end,
// then the new seek_end won't extend the range either.
if (queue->range->seek_end == MP_NOPTS_VALUE ||
queue->seek_end <= queue->range->seek_end)
{
update_ranges = true;
}
queue->seek_end = kf_max;
}
}
queue->keyframe_latest = dp;
}
// Adding a sparse packet never changes the seek range.
if (update_ranges && ds->eager) {
update_seek_ranges(queue->range);
attempt_range_joining(ds->in);
}
}
static struct mp_recorder *recorder_create(struct demux_internal *in,
const char *dst)
{
struct sh_stream **streams = NULL;
int num_streams = 0;
for (int n = 0; n < in->num_streams; n++) {
struct sh_stream *stream = in->streams[n];
if (stream->ds->selected)
MP_TARRAY_APPEND(NULL, streams, num_streams, stream);
}
struct demuxer *demuxer = in->d_thread;
struct demux_attachment **attachments = talloc_array(NULL, struct demux_attachment*, demuxer->num_attachments);
for (int n = 0; n < demuxer->num_attachments; n++) {
attachments[n] = &demuxer->attachments[n];
}
struct mp_recorder *res = mp_recorder_create(in->d_thread->global, dst,
streams, num_streams,
attachments, demuxer->num_attachments);
talloc_free(streams);
talloc_free(attachments);
return res;
}
static void write_dump_packet(struct demux_internal *in, struct demux_packet *dp)
{
assert(in->dumper);
assert(in->dumper_status == CONTROL_TRUE);
struct mp_recorder_sink *sink =
mp_recorder_get_sink(in->dumper, in->streams[dp->stream]);
if (sink) {
mp_recorder_feed_packet(sink, dp);
} else {
MP_ERR(in, "New stream appeared; stopping recording.\n");
in->dumper_status = CONTROL_ERROR;
}
}
static void record_packet(struct demux_internal *in, struct demux_packet *dp)
{
// (should preferably be outside of the lock)
if (in->enable_recording && !in->recorder &&
in->d_user->opts->record_file && in->d_user->opts->record_file[0])
{
// Later failures shouldn't make it retry and overwrite the previously
// recorded file.
in->enable_recording = false;
in->recorder = recorder_create(in, in->d_user->opts->record_file);
if (!in->recorder)
MP_ERR(in, "Disabling recording.\n");
}
if (in->recorder) {
struct mp_recorder_sink *sink =
mp_recorder_get_sink(in->recorder, in->streams[dp->stream]);
if (sink) {
mp_recorder_feed_packet(sink, dp);
} else {
MP_ERR(in, "New stream appeared; stopping recording.\n");
mp_recorder_destroy(in->recorder);
in->recorder = NULL;
}
}
if (in->dumper_status == CONTROL_OK)
write_dump_packet(in, dp);
}
static void add_packet_locked(struct sh_stream *stream, demux_packet_t *dp)
{
struct demux_stream *ds = stream ? stream->ds : NULL;
assert(ds && ds->in);
if (!dp->len || demux_cancel_test(ds->in->d_thread)) {
talloc_free(dp);
return;
}
assert(dp->stream == stream->index);
assert(!dp->next);
struct demux_internal *in = ds->in;
in->after_seek = false;
in->after_seek_to_start = false;
double ts = dp->dts == MP_NOPTS_VALUE ? dp->pts : dp->dts;
if (dp->segmented)
ts = MP_PTS_MIN(ts, dp->end);
if (ts != MP_NOPTS_VALUE)
in->demux_ts = ts;
struct demux_queue *queue = ds->queue;
bool drop = !ds->selected || in->seeking || ds->sh->attached_picture;
if (!drop) {
// If libavformat splits packets, some packets will have pos unset, so
// make up one based on the first packet => makes refresh seeks work.
if ((dp->pos < 0 || dp->pos == queue->last_pos_fixup) &&
!dp->keyframe && queue->last_pos_fixup >= 0)
dp->pos = queue->last_pos_fixup + 1;
queue->last_pos_fixup = dp->pos;
}
if (!drop && ds->refreshing) {
// Resume reading once the old position was reached (i.e. we start
// returning packets where we left off before the refresh).
// If it's the same position, drop, but continue normally next time.
if (queue->correct_dts) {
ds->refreshing = dp->dts < queue->last_dts;
} else if (queue->correct_pos) {
ds->refreshing = dp->pos < queue->last_pos;
} else {
ds->refreshing = false; // should not happen
MP_WARN(in, "stream %d: demux refreshing failed\n", ds->index);
}
drop = true;
}
if (drop) {
talloc_free(dp);
return;
}
record_packet(in, dp);
if (in->cache && in->d_user->opts->disk_cache) {
int64_t pos = demux_cache_write(in->cache, dp);
if (pos >= 0) {
demux_packet_unref_contents(dp);
dp->is_cached = true;
dp->cached_data.pos = pos;
}
}
queue->correct_pos &= dp->pos >= 0 && dp->pos > queue->last_pos;
queue->correct_dts &= dp->dts != MP_NOPTS_VALUE && dp->dts > queue->last_dts;
queue->last_pos = dp->pos;
queue->last_dts = dp->dts;
ds->global_correct_pos &= queue->correct_pos;
ds->global_correct_dts &= queue->correct_dts;
// (keep in mind that even if the reader went out of data, the queue is not
// necessarily empty due to the backbuffer)
if (!ds->reader_head && (!ds->skip_to_keyframe || dp->keyframe)) {
ds->reader_head = dp;
ds->skip_to_keyframe = false;
}
size_t bytes = demux_packet_estimate_total_size(dp);
in->total_bytes += bytes;
dp->cum_pos = queue->tail_cum_pos;
queue->tail_cum_pos += bytes;
if (queue->tail) {
// next packet in stream
queue->tail->next = dp;
queue->tail = dp;
} else {
// first packet in stream
queue->head = queue->tail = dp;
}
if (!ds->ignore_eof) {
// obviously not true anymore
ds->eof = false;
in->eof = false;
}
// For video, PTS determination is not trivial, but for other media types
// distinguishing PTS and DTS is not useful.
if (stream->type != STREAM_VIDEO && dp->pts == MP_NOPTS_VALUE)
dp->pts = dp->dts;
if (ts != MP_NOPTS_VALUE && (ts > queue->last_ts || ts + 10 < queue->last_ts))
queue->last_ts = ts;
if (ds->base_ts == MP_NOPTS_VALUE)
ds->base_ts = queue->last_ts;
const char *num_pkts = queue->head == queue->tail ? "1" : ">1";
uint64_t fw_bytes = get_forward_buffered_bytes(ds);
MP_TRACE(in, "append packet to %s: size=%zu pts=%f dts=%f pos=%"PRIi64" "
"[num=%s size=%zd]\n", stream_type_name(stream->type),
dp->len, dp->pts, dp->dts, dp->pos, num_pkts, (size_t)fw_bytes);
adjust_seek_range_on_packet(ds, dp);
// May need to reduce backward cache.
prune_old_packets(in);
// Possibly update duration based on highest TS demuxed (but ignore subs).
if (stream->type != STREAM_SUB) {
if (dp->segmented)
ts = MP_PTS_MIN(ts, dp->end);
if (ts > in->highest_av_pts) {
in->highest_av_pts = ts;
double duration = in->highest_av_pts - in->d_thread->start_time;
if (duration > in->d_thread->duration) {
in->d_thread->duration = duration;
// (Don't wakeup user thread, would be too noisy.)
in->events |= DEMUX_EVENT_DURATION;
in->duration = duration;
}
}
}
// Don't process the packet further if it's skipped by the previous seek
// (see reader_head check/assignment above).
if (!ds->reader_head)
return;
back_demux_see_packets(ds);
wakeup_ds(ds);
}
static void mark_stream_eof(struct demux_stream *ds)
{
if (!ds->eof) {
ds->eof = true;
adjust_seek_range_on_packet(ds, NULL);
back_demux_see_packets(ds);
wakeup_ds(ds);
}
}
static bool lazy_stream_needs_wait(struct demux_stream *ds)
{
struct demux_internal *in = ds->in;
// Attempt to read until force_read_until was reached, or reading has
// stopped for some reason (true EOF, queue overflow).
return !ds->eager && !in->back_demuxing &&
!in->eof && ds->force_read_until != MP_NOPTS_VALUE &&
(in->demux_ts == MP_NOPTS_VALUE ||
in->demux_ts <= ds->force_read_until);
}
// Returns true if there was "progress" (lock was released temporarily).
static bool read_packet(struct demux_internal *in)
{
bool was_reading = in->reading;
in->reading = false;
if (!was_reading || in->blocked || demux_cancel_test(in->d_thread))
return false;
// Check if we need to read a new packet. We do this if all queues are below
// the minimum, or if a stream explicitly needs new packets. Also includes
// safe-guards against packet queue overflow.
bool read_more = false, prefetch_more = false, refresh_more = false;
uint64_t total_fw_bytes = 0;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (ds->eager) {
read_more |= !ds->reader_head;
if (in->back_demuxing)
read_more |= ds->back_restarting || ds->back_resuming;
} else {
if (lazy_stream_needs_wait(ds)) {
read_more = true;
} else {
mark_stream_eof(ds); // let playback continue
}
}
refresh_more |= ds->refreshing;
if (ds->eager && ds->queue->last_ts != MP_NOPTS_VALUE &&
in->min_secs > 0 && ds->base_ts != MP_NOPTS_VALUE &&
ds->queue->last_ts >= ds->base_ts &&
!in->back_demuxing)
{
if (ds->queue->last_ts - ds->base_ts <= in->hyst_secs)
in->hyst_active = false;
if (!in->hyst_active)
prefetch_more |= ds->queue->last_ts - ds->base_ts < in->min_secs;
}
total_fw_bytes += get_forward_buffered_bytes(ds);
}
MP_TRACE(in, "bytes=%zd, read_more=%d prefetch_more=%d, refresh_more=%d\n",
(size_t)total_fw_bytes, read_more, prefetch_more, refresh_more);
if (total_fw_bytes >= in->max_bytes) {
// if we hit the limit just by prefetching, simply stop prefetching
if (!read_more) {
in->hyst_active = !!in->hyst_secs;
return false;
}
if (!in->warned_queue_overflow) {
in->warned_queue_overflow = true;
MP_WARN(in, "Too many packets in the demuxer packet queues:\n");
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (ds->selected) {
size_t num_pkts = 0;
for (struct demux_packet *dp = ds->reader_head;
dp; dp = dp->next)
num_pkts++;
uint64_t fw_bytes = get_forward_buffered_bytes(ds);
MP_WARN(in, " %s/%d: %zd packets, %zd bytes%s%s\n",
stream_type_name(ds->type), n,
num_pkts, (size_t)fw_bytes,
ds->eager ? "" : " (lazy)",
ds->refreshing ? " (refreshing)" : "");
}
}
if (in->back_demuxing)
MP_ERR(in, "Backward playback is likely stuck/broken now.\n");
}
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (!ds->reader_head)
mark_stream_eof(ds);
}
return false;
}
if (!read_more && !prefetch_more && !refresh_more) {
in->hyst_active = !!in->hyst_secs;
return false;
}
if (in->after_seek_to_start) {
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
in->current_range->streams[n]->is_bof =
ds->selected && !ds->refreshing;
}
}
// Actually read a packet. Drop the lock while doing so, because waiting
// for disk or network I/O can take time.
in->reading = true;
in->after_seek = false;
in->after_seek_to_start = false;
mp_mutex_unlock(&in->lock);
struct demuxer *demux = in->d_thread;
struct demux_packet *pkt = NULL;
bool eof = true;
if (demux->desc->read_packet && !demux_cancel_test(demux))
eof = !demux->desc->read_packet(demux, &pkt);
mp_mutex_lock(&in->lock);
update_cache(in);
if (pkt) {
assert(pkt->stream >= 0 && pkt->stream < in->num_streams);
add_packet_locked(in->streams[pkt->stream], pkt);
}
if (!in->seeking) {
if (eof) {
for (int n = 0; n < in->num_streams; n++)
mark_stream_eof(in->streams[n]->ds);
// If we had EOF previously, then don't wakeup (avoids wakeup loop)
if (!in->eof) {
if (in->wakeup_cb)
in->wakeup_cb(in->wakeup_cb_ctx);
mp_cond_signal(&in->wakeup);
MP_VERBOSE(in, "EOF reached.\n");
}
}
in->eof = eof;
in->reading = !eof;
}
return true;
}
static void prune_old_packets(struct demux_internal *in)
{
assert(in->current_range == in->ranges[in->num_ranges - 1]);
// It's not clear what the ideal way to prune old packets is. For now, we
// prune the oldest packet runs, as long as the total cache amount is too
// big.
while (1) {
uint64_t fw_bytes = 0;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
fw_bytes += get_forward_buffered_bytes(ds);
}
uint64_t max_avail = in->max_bytes_bw;
// Backward cache (if enabled at all) can use unused forward cache.
// Still leave 1 byte free, so the read_packet logic doesn't get stuck.
if (max_avail && in->max_bytes > (fw_bytes + 1) && in->d_user->opts->donate_fw)
max_avail += in->max_bytes - (fw_bytes + 1);
if (in->total_bytes - fw_bytes <= max_avail)
break;
// (Start from least recently used range.)
struct demux_cached_range *range = in->ranges[0];
double earliest_ts = MP_NOPTS_VALUE;
struct demux_stream *earliest_stream = NULL;
for (int n = 0; n < range->num_streams; n++) {
struct demux_queue *queue = range->streams[n];
struct demux_stream *ds = queue->ds;
if (queue->head && queue->head != ds->reader_head) {
struct demux_packet *dp = queue->head;
double ts = queue->seek_start;
// If the ts is NOPTS, the queue has no retainable packets, so
// delete them all. This code is not run when there's enough
// free space, so normally the queue gets the chance to build up.
bool prune_always =
!in->seekable_cache || ts == MP_NOPTS_VALUE || !dp->keyframe;
if (prune_always || !earliest_stream || ts < earliest_ts) {
earliest_ts = ts;
earliest_stream = ds;
if (prune_always)
break;
}
}
}
// In some cases (like when the seek index became huge), there aren't
// any backwards packets, even if the total cache size is exceeded.
if (!earliest_stream)
break;
struct demux_stream *ds = earliest_stream;
struct demux_queue *queue = range->streams[ds->index];
bool non_kf_prune = queue->head && !queue->head->keyframe;
bool kf_was_pruned = false;
while (queue->head && queue->head != ds->reader_head) {
if (queue->head->keyframe) {
// If the cache is seekable, only delete until up the next
// keyframe. This is not always efficient, but ensures we
// prune all streams fairly.
// Also, if the first packet was _not_ a keyframe, we want it
// to remove all preceding non-keyframe packets first, before
// re-evaluating what to prune next.
if ((kf_was_pruned || non_kf_prune) && in->seekable_cache)
break;
kf_was_pruned = true;
}
remove_head_packet(queue);
}
// Need to update the seekable time range.
if (kf_was_pruned) {
assert(!queue->keyframe_first); // it was just deleted, supposedly
queue->keyframe_first = queue->head;
// (May happen if reader_head stopped pruning the range, and there's
// no next range.)
while (queue->keyframe_first && !queue->keyframe_first->keyframe)
queue->keyframe_first = queue->keyframe_first->next;
if (queue->seek_start != MP_NOPTS_VALUE)
queue->last_pruned = queue->seek_start;
double kf_min;
compute_keyframe_times(queue->keyframe_first, &kf_min, NULL);
bool update_range = true;
queue->seek_start = kf_min;
if (queue->seek_start != MP_NOPTS_VALUE) {
queue->seek_start += ds->sh->seek_preroll;
// Don't need to update if the new start is still before the
// range's start (or if the range was undefined anyway).
if (range->seek_start == MP_NOPTS_VALUE ||
queue->seek_start <= range->seek_start)
{
update_range = false;
}
}
if (update_range)
update_seek_ranges(range);
}
if (range != in->current_range && range->seek_start == MP_NOPTS_VALUE)
free_empty_cached_ranges(in);
}
}
static void execute_trackswitch(struct demux_internal *in)
{
in->tracks_switched = false;
mp_mutex_unlock(&in->lock);
if (in->d_thread->desc->switched_tracks)
in->d_thread->desc->switched_tracks(in->d_thread);
mp_mutex_lock(&in->lock);
}
static void execute_seek(struct demux_internal *in)
{
int flags = in->seek_flags;
double pts = in->seek_pts;
in->eof = false;
in->seeking = false;
in->seeking_in_progress = pts;
in->demux_ts = MP_NOPTS_VALUE;
in->low_level_seeks += 1;
in->after_seek = true;
in->after_seek_to_start =
!(flags & (SEEK_FORWARD | SEEK_FACTOR)) &&
pts <= in->d_thread->start_time;
for (int n = 0; n < in->num_streams; n++)
in->streams[n]->ds->queue->last_pos_fixup = -1;
if (in->recorder)
mp_recorder_mark_discontinuity(in->recorder);
mp_mutex_unlock(&in->lock);
MP_VERBOSE(in, "execute seek (to %f flags %d)\n", pts, flags);
if (in->d_thread->desc->seek)
in->d_thread->desc->seek(in->d_thread, pts, flags);
MP_VERBOSE(in, "seek done\n");
mp_mutex_lock(&in->lock);
in->seeking_in_progress = MP_NOPTS_VALUE;
}
static void update_opts(struct demuxer *demuxer)
{
struct demux_opts *opts = demuxer->opts;
struct demux_internal *in = demuxer->in;
in->min_secs = opts->min_secs;
in->hyst_secs = opts->hyst_secs;
in->max_bytes = opts->max_bytes;
in->max_bytes_bw = opts->max_bytes_bw;
int seekable = opts->seekable_cache;
bool is_streaming = in->d_thread->is_streaming;
bool use_cache = is_streaming;
if (opts->enable_cache >= 0)
use_cache = opts->enable_cache == 1;
if (use_cache) {
in->min_secs = MPMAX(in->min_secs, opts->min_secs_cache);
if (seekable < 0)
seekable = 1;
}
in->seekable_cache = seekable == 1;
in->using_network_cache_opts = is_streaming && use_cache;
if (!in->seekable_cache)
in->max_bytes_bw = 0;
if (!in->can_cache) {
in->seekable_cache = false;
in->min_secs = 0;
in->max_bytes = 1;
in->max_bytes_bw = 0;
in->using_network_cache_opts = false;
}
if (in->seekable_cache && opts->disk_cache && !in->cache) {
in->cache = demux_cache_create(in->global, in->log);
if (!in->cache)
MP_ERR(in, "Failed to create file cache.\n");
}
// The filename option really decides whether recording should be active.
// So if the filename changes, act upon it.
char *old = in->record_filename ? in->record_filename : "";
char *new = opts->record_file ? opts->record_file : "";
if (strcmp(old, new) != 0) {
if (in->recorder) {
MP_WARN(in, "Stopping recording.\n");
mp_recorder_destroy(in->recorder);
in->recorder = NULL;
}
talloc_free(in->record_filename);
in->record_filename = talloc_strdup(in, opts->record_file);
// Note: actual recording only starts once packets are read. It may be
// important to delay creating in->recorder to that point, because the
// demuxer might detect more streams until finding the first packet.
in->enable_recording = in->can_record;
}
// In case the cache was reduced in size.
prune_old_packets(in);
// In case the seekable cache was disabled.
free_empty_cached_ranges(in);
}
// Make demuxing progress. Return whether progress was made.
static bool thread_work(struct demux_internal *in)
{
if (m_config_cache_update(in->d_user->opts_cache))
update_opts(in->d_user);
if (in->tracks_switched) {
execute_trackswitch(in);
return true;
}
if (in->need_back_seek) {
perform_backward_seek(in);
return true;
}
if (in->back_any_need_recheck) {
check_backward_seek(in);
return true;
}
if (in->seeking) {
execute_seek(in);
return true;
}
if (read_packet(in))
return true; // read_packet unlocked, so recheck conditions
if (mp_time_ns() >= in->next_cache_update) {
update_cache(in);
return true;
}
return false;
}
static MP_THREAD_VOID demux_thread(void *pctx)
{
struct demux_internal *in = pctx;
mp_thread_set_name("demux");
mp_mutex_lock(&in->lock);
stats_register_thread_cputime(in->stats, "thread");
while (!in->thread_terminate) {
if (thread_work(in))
continue;
mp_cond_signal(&in->wakeup);
mp_cond_timedwait_until(&in->wakeup, &in->lock, in->next_cache_update);
}
if (in->shutdown_async) {
mp_mutex_unlock(&in->lock);
demux_shutdown(in);
mp_mutex_lock(&in->lock);
in->shutdown_async = false;
if (in->wakeup_cb)
in->wakeup_cb(in->wakeup_cb_ctx);
}
stats_unregister_thread(in->stats, "thread");
mp_mutex_unlock(&in->lock);
MP_THREAD_RETURN();
}
// Low-level part of dequeueing a packet.
static struct demux_packet *advance_reader_head(struct demux_stream *ds)
{
struct demux_packet *pkt = ds->reader_head;
if (!pkt)
return NULL;
ds->reader_head = pkt->next;
ds->last_ret_pos = pkt->pos;
ds->last_ret_dts = pkt->dts;
return pkt;
}
// Return a newly allocated new packet. The pkt parameter may be either a
// in-memory packet (then a new reference is made), or a reference to
// packet in the disk cache (then the packet is read from disk).
static struct demux_packet *read_packet_from_cache(struct demux_internal *in,
struct demux_packet *pkt)
{
if (!pkt)
return NULL;
if (pkt->is_cached) {
assert(in->cache);
struct demux_packet *meta = pkt;
pkt = demux_cache_read(in->cache, pkt->cached_data.pos);
if (pkt) {
demux_packet_copy_attribs(pkt, meta);
} else {
MP_ERR(in, "Failed to retrieve packet from cache.\n");
}
} else {
// The returned packet is mutated etc. and will be owned by the user.
pkt = demux_copy_packet(pkt);
}
return pkt;
}
// Returns:
// < 0: EOF was reached, *res is not set
// == 0: no new packet yet, wait, *res is not set
// > 0: new packet is moved to *res
static int dequeue_packet(struct demux_stream *ds, double min_pts,
struct demux_packet **res)
{
struct demux_internal *in = ds->in;
if (!ds->selected)
return -1;
if (in->blocked)
return 0;
if (ds->sh->attached_picture) {
ds->eof = true;
if (ds->attached_picture_added)
return -1;
ds->attached_picture_added = true;
struct demux_packet *pkt = demux_copy_packet(ds->sh->attached_picture);
MP_HANDLE_OOM(pkt);
pkt->stream = ds->sh->index;
*res = pkt;
return 1;
}
if (!in->reading && !in->eof) {
in->reading = true; // enable demuxer thread prefetching
mp_cond_signal(&in->wakeup);
}
ds->force_read_until = min_pts;
if (ds->back_resuming || ds->back_restarting) {
assert(in->back_demuxing);
return 0;
}
bool eof = !ds->reader_head && ds->eof;
if (in->back_demuxing) {
// Subtitles not supported => EOF.
if (!ds->eager)
return -1;
// Next keyframe (or EOF) was reached => step back.
if (ds->back_range_started && !ds->back_range_count &&
((ds->reader_head && ds->reader_head->keyframe) || eof))
{
ds->back_restarting = true;
ds->back_restart_eof = false;
ds->back_restart_next = false;
find_backward_restart_pos(ds);
if (ds->back_restarting)
return 0;
}
eof = ds->back_range_count < 0;
}
ds->need_wakeup = !ds->reader_head;
if (!ds->reader_head || eof) {
if (!ds->eager) {
// Non-eager streams temporarily return EOF. If they returned 0,
// the reader would have to wait for new packets, which does not
// make sense due to the sparseness and passiveness of non-eager
// streams.
// Unless the min_pts feature is used: then EOF is only signaled
// if read-ahead went above min_pts.
if (!lazy_stream_needs_wait(ds))
ds->eof = eof = true;
}
return eof ? -1 : 0;
}
struct demux_packet *pkt = advance_reader_head(ds);
assert(pkt);
pkt = read_packet_from_cache(in, pkt);
if (!pkt)
return 0;
if (in->back_demuxing) {
if (pkt->keyframe) {
assert(ds->back_range_count > 0);
ds->back_range_count -= 1;
if (ds->back_range_preroll >= 0)
ds->back_range_preroll -= 1;
}
if (ds->back_range_preroll >= 0)
pkt->back_preroll = true;
if (!ds->back_range_started) {
pkt->back_restart = true;
ds->back_range_started = true;
}
}
double ts = MP_PTS_OR_DEF(pkt->dts, pkt->pts);
if (ts != MP_NOPTS_VALUE)
ds->base_ts = ts;
if (pkt->keyframe && ts != MP_NOPTS_VALUE) {
// Update bitrate - only at keyframe points, because we use the
// (possibly) reordered packet timestamps instead of realtime.
double d = ts - ds->last_br_ts;
if (ds->last_br_ts == MP_NOPTS_VALUE || d < 0) {
ds->bitrate = -1;
ds->last_br_ts = ts;
ds->last_br_bytes = 0;
} else if (d >= 0.5) { // a window of least 500ms for UI purposes
ds->bitrate = ds->last_br_bytes / d;
ds->last_br_ts = ts;
ds->last_br_bytes = 0;
}
}
ds->last_br_bytes += pkt->len;
// This implies this function is actually called from "the" user thread.
if (pkt->pos >= in->d_user->filepos)
in->d_user->filepos = pkt->pos;
in->d_user->filesize = in->stream_size;
pkt->pts = MP_ADD_PTS(pkt->pts, in->ts_offset);
pkt->dts = MP_ADD_PTS(pkt->dts, in->ts_offset);
if (pkt->segmented) {
pkt->start = MP_ADD_PTS(pkt->start, in->ts_offset);
pkt->end = MP_ADD_PTS(pkt->end, in->ts_offset);
}
prune_old_packets(in);
*res = pkt;
return 1;
}
// Poll the demuxer queue, and if there's a packet, return it. Otherwise, just
// make the demuxer thread read packets for this stream, and if there's at
// least one packet, call the wakeup callback.
// This enables readahead if it wasn't yet (except for interleaved subtitles).
// Returns:
// < 0: EOF was reached, *out_pkt=NULL
// == 0: no new packet yet, but maybe later, *out_pkt=NULL
// > 0: new packet read, *out_pkt is set
// Note: when reading interleaved subtitles, the demuxer won't try to forcibly
// read ahead to get the next subtitle packet (as the next packet could be
// minutes away). In this situation, this function will just return -1.
int demux_read_packet_async(struct sh_stream *sh, struct demux_packet **out_pkt)
{
return demux_read_packet_async_until(sh, MP_NOPTS_VALUE, out_pkt);
}
// Like demux_read_packet_async(). They are the same for min_pts==MP_NOPTS_VALUE.
// If min_pts is set, and the stream is lazily read (eager=false, interleaved
// subtitles), then return 0 until demuxing has reached min_pts, or the queue
// overflowed, or EOF was reached, or a packet was read for this stream.
int demux_read_packet_async_until(struct sh_stream *sh, double min_pts,
struct demux_packet **out_pkt)
{
struct demux_stream *ds = sh ? sh->ds : NULL;
*out_pkt = NULL;
if (!ds)
return -1;
struct demux_internal *in = ds->in;
mp_mutex_lock(&in->lock);
int r = -1;
while (1) {
r = dequeue_packet(ds, min_pts, out_pkt);
if (in->threading || in->blocked || r != 0)
break;
// Needs to actually read packets until we got a packet or EOF.
thread_work(in);
}
mp_mutex_unlock(&in->lock);
return r;
}
// Read and return any packet we find. NULL means EOF.
// Does not work with threading (don't call demux_start_thread()).
struct demux_packet *demux_read_any_packet(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
mp_mutex_lock(&in->lock);
assert(!in->threading); // doesn't work with threading
struct demux_packet *out_pkt = NULL;
bool read_more = true;
while (read_more && !in->blocked) {
bool all_eof = true;
for (int n = 0; n < in->num_streams; n++) {
int r = dequeue_packet(in->streams[n]->ds, MP_NOPTS_VALUE, &out_pkt);
if (r > 0)
goto done;
if (r == 0)
all_eof = false;
}
// retry after calling this
read_more = thread_work(in);
read_more &= !all_eof;
}
done:
mp_mutex_unlock(&in->lock);
return out_pkt;
}
int demuxer_help(struct mp_log *log, const m_option_t *opt, struct bstr name)
{
int i;
mp_info(log, "Available demuxers:\n");
mp_info(log, " demuxer: info:\n");
for (i = 0; demuxer_list[i]; i++) {
mp_info(log, "%10s %s\n",
demuxer_list[i]->name, demuxer_list[i]->desc);
}
mp_info(log, "\n");
return M_OPT_EXIT;
}
static const char *d_level(enum demux_check level)
{
switch (level) {
case DEMUX_CHECK_FORCE: return "force";
case DEMUX_CHECK_UNSAFE: return "unsafe";
case DEMUX_CHECK_REQUEST:return "request";
case DEMUX_CHECK_NORMAL: return "normal";
}
MP_ASSERT_UNREACHABLE();
}
static int decode_float(char *str, float *out)
{
char *rest;
float dec_val;
dec_val = strtod(str, &rest);
if (!rest || (rest == str) || !isfinite(dec_val))
return -1;
*out = dec_val;
return 0;
}
static int decode_gain(struct mp_log *log, struct mp_tags *tags,
const char *tag, float *out)
{
char *tag_val = NULL;
float dec_val;
tag_val = mp_tags_get_str(tags, tag);
if (!tag_val)
return -1;
if (decode_float(tag_val, &dec_val) < 0) {
mp_msg(log, MSGL_ERR, "Invalid replaygain value\n");
return -1;
}
*out = dec_val;
return 0;
}
static int decode_peak(struct mp_log *log, struct mp_tags *tags,
const char *tag, float *out)
{
char *tag_val = NULL;
float dec_val;
*out = 1.0;
tag_val = mp_tags_get_str(tags, tag);
if (!tag_val)
return 0;
if (decode_float(tag_val, &dec_val) < 0 || dec_val <= 0.0)
return -1;
*out = dec_val;
return 0;
}
static struct replaygain_data *decode_rgain(struct mp_log *log,
struct mp_tags *tags)
{
struct replaygain_data rg = {0};
// Set values in *rg, using track gain as a fallback for album gain if the
// latter is not present. This behavior matches that in demux/demux_lavf.c's
// export_replaygain; if you change this, please make equivalent changes
// there too.
if (decode_gain(log, tags, "REPLAYGAIN_TRACK_GAIN", &rg.track_gain) >= 0 &&
decode_peak(log, tags, "REPLAYGAIN_TRACK_PEAK", &rg.track_peak) >= 0)
{
if (decode_gain(log, tags, "REPLAYGAIN_ALBUM_GAIN", &rg.album_gain) < 0 ||
decode_peak(log, tags, "REPLAYGAIN_ALBUM_PEAK", &rg.album_peak) < 0)
{
// Album gain is undefined; fall back to track gain.
rg.album_gain = rg.track_gain;
rg.album_peak = rg.track_peak;
}
return talloc_dup(NULL, &rg);
}
if (decode_gain(log, tags, "REPLAYGAIN_GAIN", &rg.track_gain) >= 0 &&
decode_peak(log, tags, "REPLAYGAIN_PEAK", &rg.track_peak) >= 0)
{
rg.album_gain = rg.track_gain;
rg.album_peak = rg.track_peak;
return talloc_dup(NULL, &rg);
}
// The r128 replaygain tags declared in RFC 7845 for opus files. The tags
// are generated with EBU-R128, which does not use peak meters. And the
// values are stored as a Q7.8 fixed point number in dB.
if (decode_gain(log, tags, "R128_TRACK_GAIN", &rg.track_gain) >= 0) {
if (decode_gain(log, tags, "R128_ALBUM_GAIN", &rg.album_gain) < 0) {
// Album gain is undefined; fall back to track gain.
rg.album_gain = rg.track_gain;
}
rg.track_gain /= 256.;
rg.album_gain /= 256.;
// Add 5dB to compensate for the different reference levels between
// our reference of ReplayGain 2 (-18 LUFS) and EBU R128 (-23 LUFS).
rg.track_gain += 5.;
rg.album_gain += 5.;
return talloc_dup(NULL, &rg);
}
return NULL;
}
static void demux_update_replaygain(demuxer_t *demuxer)
{
struct demux_internal *in = demuxer->in;
for (int n = 0; n < in->num_streams; n++) {
struct sh_stream *sh = in->streams[n];
if (sh->type == STREAM_AUDIO && !sh->codec->replaygain_data) {
struct replaygain_data *rg = decode_rgain(demuxer->log, sh->tags);
if (!rg)
rg = decode_rgain(demuxer->log, demuxer->metadata);
if (rg)
sh->codec->replaygain_data = talloc_steal(in, rg);
}
}
}
// Copy some fields from src to dst (for initialization).
static void demux_copy(struct demuxer *dst, struct demuxer *src)
{
// Note that we do as shallow copies as possible. We expect the data
// that is not-copied (only referenced) to be immutable.
// This implies e.g. that no chapters are added after initialization.
dst->chapters = src->chapters;
dst->num_chapters = src->num_chapters;
dst->editions = src->editions;
dst->num_editions = src->num_editions;
dst->edition = src->edition;
dst->attachments = src->attachments;
dst->num_attachments = src->num_attachments;
dst->matroska_data = src->matroska_data;
dst->playlist = src->playlist;
dst->seekable = src->seekable;
dst->partially_seekable = src->partially_seekable;
dst->filetype = src->filetype;
dst->ts_resets_possible = src->ts_resets_possible;
dst->fully_read = src->fully_read;
dst->start_time = src->start_time;
dst->duration = src->duration;
dst->is_network = src->is_network;
dst->is_streaming = src->is_streaming;
dst->stream_origin = src->stream_origin;
dst->priv = src->priv;
dst->metadata = mp_tags_dup(dst, src->metadata);
}
// Update metadata after initialization. If sh==NULL, it's global metadata,
// otherwise it's bound to the stream. If pts==NOPTS, use the highest known pts
// in the stream. Caller retains ownership of tags ptr. Called locked.
static void add_timed_metadata(struct demux_internal *in, struct mp_tags *tags,
struct sh_stream *sh, double pts)
{
struct demux_cached_range *r = in->current_range;
if (!r)
return;
// We don't expect this, nor do we find it useful.
if (sh && sh != in->metadata_stream)
return;
if (pts == MP_NOPTS_VALUE) {
for (int n = 0; n < r->num_streams; n++)
pts = MP_PTS_MAX(pts, r->streams[n]->last_ts);
// Tends to happen when doing the initial icy update.
if (pts == MP_NOPTS_VALUE)
pts = in->d_thread->start_time;
}
struct timed_metadata *tm = talloc_zero(NULL, struct timed_metadata);
*tm = (struct timed_metadata){
.pts = pts,
.tags = mp_tags_dup(tm, tags),
.from_stream = !!sh,
};
MP_TARRAY_APPEND(r, r->metadata, r->num_metadata, tm);
}
// This is called by demuxer implementations if sh->tags changed. Note that
// sh->tags itself is never actually changed (it's immutable, because sh->tags
// can be accessed by the playback thread, and there is no synchronization).
// pts is the time at/after which the metadata becomes effective. You're
// supposed to call this ordered by time, and only while a packet is being
// read.
// Ownership of tags goes to the function.
void demux_stream_tags_changed(struct demuxer *demuxer, struct sh_stream *sh,
struct mp_tags *tags, double pts)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_thread);
struct demux_stream *ds = sh ? sh->ds : NULL;
assert(!sh || ds); // stream must have been added
mp_mutex_lock(&in->lock);
if (pts == MP_NOPTS_VALUE) {
MP_WARN(in, "Discarding timed metadata without timestamp.\n");
} else {
add_timed_metadata(in, tags, sh, pts);
}
talloc_free(tags);
mp_mutex_unlock(&in->lock);
}
// This is called by demuxer implementations if demuxer->metadata changed.
// (It will be propagated to the user as timed metadata.)
void demux_metadata_changed(demuxer_t *demuxer)
{
assert(demuxer == demuxer->in->d_thread); // call from demuxer impl. only
struct demux_internal *in = demuxer->in;
mp_mutex_lock(&in->lock);
add_timed_metadata(in, demuxer->metadata, NULL, MP_NOPTS_VALUE);
mp_mutex_unlock(&in->lock);
}
// Called locked, with user demuxer.
static void update_final_metadata(demuxer_t *demuxer, struct timed_metadata *tm)
{
assert(demuxer == demuxer->in->d_user);
struct demux_internal *in = demuxer->in;
struct mp_tags *dyn_tags = NULL;
// Often useful for audio-only files, which have metadata in the audio track
// metadata instead of the main metadata, but can also have cover art
// metadata (which libavformat likes to treat as video streams).
int astreams = 0;
int astream_id = -1;
int vstreams = 0;
for (int n = 0; n < in->num_streams; n++) {
struct sh_stream *sh = in->streams[n];
if (sh->type == STREAM_VIDEO && !sh->attached_picture)
vstreams += 1;
if (sh->type == STREAM_AUDIO) {
astreams += 1;
astream_id = n;
}
}
// Use the metadata_stream tags only if this really seems to be an audio-
// only stream. Otherwise it will happen too often that "uninteresting"
// stream metadata will trash the actual file tags.
if (vstreams == 0 && astreams == 1 &&
in->streams[astream_id] == in->metadata_stream)
{
dyn_tags = in->metadata_stream->tags;
if (tm && tm->from_stream)
dyn_tags = tm->tags;
}
// Global metadata updates.
if (tm && !tm->from_stream)
dyn_tags = tm->tags;
if (dyn_tags)
mp_tags_merge(demuxer->metadata, dyn_tags);
}
static struct timed_metadata *lookup_timed_metadata(struct demux_internal *in,
double pts)
{
struct demux_cached_range *r = in->current_range;
if (!r || !r->num_metadata || pts == MP_NOPTS_VALUE)
return NULL;
int start = 1;
int i = in->cached_metadata_index;
if (i >= 0 && i < r->num_metadata && r->metadata[i]->pts <= pts)
start = i + 1;
in->cached_metadata_index = r->num_metadata - 1;
for (int n = start; n < r->num_metadata; n++) {
if (r->metadata[n]->pts >= pts) {
in->cached_metadata_index = n - 1;
break;
}
}
return r->metadata[in->cached_metadata_index];
}
// Called by the user thread (i.e. player) to update metadata and other things
// from the demuxer thread.
// The pts parameter is the current playback position.
void demux_update(demuxer_t *demuxer, double pts)
{
assert(demuxer == demuxer->in->d_user);
struct demux_internal *in = demuxer->in;
mp_mutex_lock(&in->lock);
if (!in->threading)
update_cache(in);
// This implies this function is actually called from "the" user thread.
in->d_user->filesize = in->stream_size;
pts = MP_ADD_PTS(pts, -in->ts_offset);
struct timed_metadata *prev = lookup_timed_metadata(in, in->last_playback_pts);
struct timed_metadata *cur = lookup_timed_metadata(in, pts);
if (prev != cur || in->force_metadata_update) {
in->force_metadata_update = false;
update_final_metadata(demuxer, cur);
demuxer->events |= DEMUX_EVENT_METADATA;
}
in->last_playback_pts = pts;
demuxer->events |= in->events;
in->events = 0;
if (demuxer->events & (DEMUX_EVENT_METADATA | DEMUX_EVENT_STREAMS))
demux_update_replaygain(demuxer);
if (demuxer->events & DEMUX_EVENT_DURATION)
demuxer->duration = in->duration;
mp_mutex_unlock(&in->lock);
}
static void demux_init_cuesheet(struct demuxer *demuxer)
{
if (demuxer->num_chapters)
return;
struct sh_stream *sh = demuxer->in->metadata_stream;
char *cue = mp_tags_get_str(demuxer->metadata, "cuesheet");
if (!cue && sh)
cue = mp_tags_get_str(sh->tags, "cuesheet");
if (!cue)
return;
struct cue_file *f = mp_parse_cue(bstr0(cue));
if (f) {
if (mp_check_embedded_cue(f) < 0) {
MP_WARN(demuxer, "Embedded cue sheet references more than one file. "
"Ignoring it.\n");
} else {
for (int n = 0; n < f->num_tracks; n++) {
struct cue_track *t = &f->tracks[n];
int idx = demuxer_add_chapter(demuxer, "", t->start, -1);
mp_tags_merge(demuxer->chapters[idx].metadata, t->tags);
}
}
talloc_free(f);
}
}
// A demuxer can use this during opening if all data was read from the stream.
// Calling this after opening was completed is not allowed. Also, if opening
// failed, this must not be called (or trying another demuxer would fail).
// Useful so that e.g. subtitles don't keep the file or socket open.
// If there's ever the situation where we can't allow the demuxer to close
// the stream, this function could ignore the request.
void demux_close_stream(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(!in->threading && demuxer == in->d_thread);
if (!demuxer->stream || !in->owns_stream)
return;
MP_VERBOSE(demuxer, "demuxer read all data; closing stream\n");
free_stream(demuxer->stream);
demuxer->stream = NULL;
in->d_user->stream = NULL;
}
static void demux_init_ccs(struct demuxer *demuxer, struct demux_opts *opts)
{
struct demux_internal *in = demuxer->in;
if (!opts->create_ccs)
return;
mp_mutex_lock(&in->lock);
for (int n = 0; n < in->num_streams; n++) {
struct sh_stream *sh = in->streams[n];
if (sh->type == STREAM_VIDEO && !sh->attached_picture)
demuxer_get_cc_track_locked(sh);
}
mp_mutex_unlock(&in->lock);
}
// Return whether "heavy" caching on this stream is enabled. By default, this
// corresponds to whether the source stream is considered in the network. The
// only effect should be adjusting display behavior (of cache stats etc.), and
// possibly switching between which set of options influence cache settings.
bool demux_is_network_cached(demuxer_t *demuxer)
{
struct demux_internal *in = demuxer->in;
mp_mutex_lock(&in->lock);
bool r = in->using_network_cache_opts;
mp_mutex_unlock(&in->lock);
return r;
}
struct parent_stream_info {
bool seekable;
bool is_network;
bool is_streaming;
int stream_origin;
struct mp_cancel *cancel;
char *filename;
};
static struct demuxer *open_given_type(struct mpv_global *global,
struct mp_log *log,
const struct demuxer_desc *desc,
struct stream *stream,
struct parent_stream_info *sinfo,
struct demuxer_params *params,
enum demux_check check)
{
if (mp_cancel_test(sinfo->cancel))
return NULL;
struct demuxer *demuxer = talloc_ptrtype(NULL, demuxer);
struct m_config_cache *opts_cache =
m_config_cache_alloc(demuxer, global, &demux_conf);
struct demux_opts *opts = opts_cache->opts;
*demuxer = (struct demuxer) {
.desc = desc,
.stream = stream,
.cancel = sinfo->cancel,
.seekable = sinfo->seekable,
.filepos = -1,
.global = global,
.log = mp_log_new(demuxer, log, desc->name),
.glog = log,
.filename = talloc_strdup(demuxer, sinfo->filename),
.is_network = sinfo->is_network,
.is_streaming = sinfo->is_streaming,
.stream_origin = sinfo->stream_origin,
.access_references = opts->access_references,
.opts = opts,
.opts_cache = opts_cache,
.events = DEMUX_EVENT_ALL,
.duration = -1,
};
struct demux_internal *in = demuxer->in = talloc_ptrtype(demuxer, in);
*in = (struct demux_internal){
.global = global,
.log = demuxer->log,
.stats = stats_ctx_create(in, global, "demuxer"),
.can_cache = params && params->is_top_level,
.can_record = params && params->stream_record,
.d_thread = talloc(demuxer, struct demuxer),
.d_user = demuxer,
.after_seek = true, // (assumed identical to initial demuxer state)
.after_seek_to_start = true,
.highest_av_pts = MP_NOPTS_VALUE,
.seeking_in_progress = MP_NOPTS_VALUE,
.demux_ts = MP_NOPTS_VALUE,
.owns_stream = !params->external_stream,
};
mp_mutex_init(&in->lock);
mp_cond_init(&in->wakeup);
*in->d_thread = *demuxer;
in->d_thread->metadata = talloc_zero(in->d_thread, struct mp_tags);
mp_dbg(log, "Trying demuxer: %s (force-level: %s)\n",
desc->name, d_level(check));
if (stream)
stream_seek(stream, 0);
in->d_thread->params = params; // temporary during open()
int ret = demuxer->desc->open(in->d_thread, check);
if (ret >= 0) {
in->d_thread->params = NULL;
if (in->d_thread->filetype)
mp_verbose(log, "Detected file format: %s (%s)\n",
in->d_thread->filetype, desc->desc);
else
mp_verbose(log, "Detected file format: %s\n", desc->desc);
if (!in->d_thread->seekable)
mp_verbose(log, "Stream is not seekable.\n");
if (!in->d_thread->seekable && opts->force_seekable) {
mp_warn(log, "Not seekable, but enabling seeking on user request.\n");
in->d_thread->seekable = true;
in->d_thread->partially_seekable = true;
}
demux_init_cuesheet(in->d_thread);
demux_init_ccs(demuxer, opts);
demux_convert_tags_charset(in->d_thread);
demux_copy(in->d_user, in->d_thread);
in->duration = in->d_thread->duration;
demuxer_sort_chapters(demuxer);
in->events = DEMUX_EVENT_ALL;
struct demuxer *sub = NULL;
if (!(params && params->disable_timeline)) {
struct timeline *tl = timeline_load(global, log, demuxer);
if (tl) {
struct demuxer_params params2 = {0};
params2.timeline = tl;
params2.is_top_level = params && params->is_top_level;
params2.stream_record = params && params->stream_record;
sub =
open_given_type(global, log, &demuxer_desc_timeline,
NULL, sinfo, &params2, DEMUX_CHECK_FORCE);
if (sub) {
in->can_cache = false;
in->can_record = false;
} else {
timeline_destroy(tl);
}
}
}
switch_to_fresh_cache_range(in);
update_opts(demuxer);
demux_update(demuxer, MP_NOPTS_VALUE);
demuxer = sub ? sub : demuxer;
return demuxer;
}
demuxer->stream = NULL;
demux_free(demuxer);
return NULL;
}
static const int d_normal[] = {DEMUX_CHECK_NORMAL, DEMUX_CHECK_UNSAFE, -1};
static const int d_request[] = {DEMUX_CHECK_REQUEST, -1};
static const int d_force[] = {DEMUX_CHECK_FORCE, -1};
// params can be NULL
// This may free the stream parameter on success.
static struct demuxer *demux_open(struct stream *stream,
struct mp_cancel *cancel,
struct demuxer_params *params,
struct mpv_global *global)
{
const int *check_levels = d_normal;
const struct demuxer_desc *check_desc = NULL;
struct mp_log *log = mp_log_new(NULL, global->log, "!demux");
struct demuxer *demuxer = NULL;
char *force_format = params ? params->force_format : NULL;
struct parent_stream_info sinfo = {
.seekable = stream->seekable,
.is_network = stream->is_network,
.is_streaming = stream->streaming,
.stream_origin = stream->stream_origin,
.cancel = cancel,
.filename = talloc_strdup(NULL, stream->url),
};
if (!force_format)
force_format = stream->demuxer;
if (force_format && force_format[0] && !stream->is_directory) {
check_levels = d_request;
if (force_format[0] == '+') {
force_format += 1;
check_levels = d_force;
}
for (int n = 0; demuxer_list[n]; n++) {
if (strcmp(demuxer_list[n]->name, force_format) == 0) {
check_desc = demuxer_list[n];
break;
}
}
if (!check_desc) {
mp_err(log, "Demuxer %s does not exist.\n", force_format);
goto done;
}
}
// Test demuxers from first to last, one pass for each check_levels[] entry
for (int pass = 0; check_levels[pass] != -1; pass++) {
enum demux_check level = check_levels[pass];
mp_verbose(log, "Trying demuxers for level=%s.\n", d_level(level));
for (int n = 0; demuxer_list[n]; n++) {
const struct demuxer_desc *desc = demuxer_list[n];
if (!check_desc || desc == check_desc) {
demuxer = open_given_type(global, log, desc, stream, &sinfo,
params, level);
if (demuxer) {
talloc_steal(demuxer, log);
log = NULL;
goto done;
}
}
}
}
done:
talloc_free(sinfo.filename);
talloc_free(log);
return demuxer;
}
static struct stream *create_webshit_concat_stream(struct mpv_global *global,
struct mp_cancel *c,
bstr init, struct stream *real)
{
struct stream *mem = stream_memory_open(global, init.start, init.len);
assert(mem);
struct stream *streams[2] = {mem, real};
struct stream *concat = stream_concat_open(global, c, streams, 2);
if (!concat) {
free_stream(mem);
free_stream(real);
}
return concat;
}
// Convenience function: open the stream, enable the cache (according to params
// and global opts.), open the demuxer.
// Also for some reason may close the opened stream if it's not needed.
// demuxer->cancel is not the cancel parameter, but is its own object that will
// be a slave (mp_cancel_set_parent()) to provided cancel object.
// demuxer->cancel is automatically freed.
struct demuxer *demux_open_url(const char *url,
struct demuxer_params *params,
struct mp_cancel *cancel,
struct mpv_global *global)
{
if (!params)
return NULL;
struct mp_cancel *priv_cancel = mp_cancel_new(NULL);
if (cancel)
mp_cancel_set_parent(priv_cancel, cancel);
struct stream *s = params->external_stream;
if (!s) {
s = stream_create(url, STREAM_READ | params->stream_flags,
priv_cancel, global);
if (s && params->init_fragment.len) {
s = create_webshit_concat_stream(global, priv_cancel,
params->init_fragment, s);
}
}
if (!s) {
talloc_free(priv_cancel);
return NULL;
}
struct demuxer *d = demux_open(s, priv_cancel, params, global);
if (d) {
talloc_steal(d->in, priv_cancel);
assert(d->cancel);
} else {
params->demuxer_failed = true;
if (!params->external_stream)
free_stream(s);
talloc_free(priv_cancel);
}
return d;
}
// clear the packet queues
void demux_flush(demuxer_t *demuxer)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
mp_mutex_lock(&in->lock);
clear_reader_state(in, true);
for (int n = 0; n < in->num_ranges; n++)
clear_cached_range(in, in->ranges[n]);
free_empty_cached_ranges(in);
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
ds->refreshing = false;
ds->eof = false;
}
in->eof = false;
in->seeking = false;
mp_mutex_unlock(&in->lock);
}
// Does some (but not all) things for switching to another range.
static void switch_current_range(struct demux_internal *in,
struct demux_cached_range *range)
{
struct demux_cached_range *old = in->current_range;
assert(old != range);
set_current_range(in, range);
if (old) {
// Remove packets which can't be used when seeking back to the range.
for (int n = 0; n < in->num_streams; n++) {
struct demux_queue *queue = old->streams[n];
// Remove all packets which cannot be involved in seeking.
while (queue->head && !queue->head->keyframe)
remove_head_packet(queue);
}
// Exclude weird corner cases that break resuming.
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
// This is needed to resume or join the range at all.
if (ds->selected && !(ds->global_correct_dts ||
ds->global_correct_pos))
{
MP_VERBOSE(in, "discarding unseekable range due to stream %d\n", n);
clear_cached_range(in, old);
break;
}
}
}
// Set up reading from new range (as well as writing to it).
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
ds->queue = range->streams[n];
ds->refreshing = false;
ds->eof = false;
}
// No point in keeping any junk (especially if old current_range is empty).
free_empty_cached_ranges(in);
// The change detection doesn't work across ranges.
in->force_metadata_update = true;
}
// Search for the entry with the highest index with entry.pts <= pts true.
static struct demux_packet *search_index(struct demux_queue *queue, double pts)
{
size_t a = 0;
size_t b = queue->num_index;
while (a < b) {
size_t m = a + (b - a) / 2;
struct index_entry *e = &QUEUE_INDEX_ENTRY(queue, m);
bool m_ok = e->pts <= pts;
if (a + 1 == b)
return m_ok ? e->pkt : NULL;
if (m_ok) {
a = m;
} else {
b = m;
}
}
return NULL;
}
static struct demux_packet *find_seek_target(struct demux_queue *queue,
double pts, int flags)
{
pts -= queue->ds->sh->seek_preroll;
struct demux_packet *start = search_index(queue, pts);
if (!start)
start = queue->head;
struct demux_packet *target = NULL;
struct demux_packet *next = NULL;
for (struct demux_packet *dp = start; dp; dp = next) {
next = dp->next;
if (!dp->keyframe)
continue;
double range_pts;
next = compute_keyframe_times(dp, &range_pts, NULL);
if (range_pts == MP_NOPTS_VALUE)
continue;
if (flags & SEEK_FORWARD) {
// Stop on the first packet that is >= pts.
if (target)
break;
if (range_pts < pts)
continue;
} else {
// Stop before the first packet that is > pts.
// This still returns a packet with > pts if there's no better one.
if (target && range_pts > pts)
break;
}
target = dp;
}
return target;
}
// Return a cache range for the given pts/flags, or NULL if none available.
// must be called locked
static struct demux_cached_range *find_cache_seek_range(struct demux_internal *in,
double pts, int flags)
{
// Note about queued low level seeks: in->seeking can be true here, and it
// might come from a previous resume seek to the current range. If we end
// up seeking into the current range (i.e. just changing time offset), the
// seek needs to continue. Otherwise, we override the queued seek anyway.
if ((flags & SEEK_FACTOR) || !in->seekable_cache)
return NULL;
struct demux_cached_range *res = NULL;
for (int n = 0; n < in->num_ranges; n++) {
struct demux_cached_range *r = in->ranges[n];
if (r->seek_start != MP_NOPTS_VALUE) {
MP_VERBOSE(in, "cached range %d: %f <-> %f (bof=%d, eof=%d)\n",
n, r->seek_start, r->seek_end, r->is_bof, r->is_eof);
if ((pts >= r->seek_start || r->is_bof) &&
(pts <= r->seek_end || r->is_eof))
{
MP_VERBOSE(in, "...using this range for in-cache seek.\n");
res = r;
break;
}
}
}
return res;
}
// Adjust the seek target to the found video key frames. Otherwise the
// video will undershoot the seek target, while audio will be closer to it.
// The player frontend will play the additional video without audio, so
// you get silent audio for the amount of "undershoot". Adjusting the seek
// target will make the audio seek to the video target or before.
// (If hr-seeks are used, it's better to skip this, as it would only mean
// that more audio data than necessary would have to be decoded.)
static void adjust_cache_seek_target(struct demux_internal *in,
struct demux_cached_range *range,
double *pts, int *flags)
{
if (*flags & SEEK_HR)
return;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
struct demux_queue *queue = range->streams[n];
if (ds->selected && ds->type == STREAM_VIDEO) {
struct demux_packet *target = find_seek_target(queue, *pts, *flags);
if (target) {
double target_pts;
compute_keyframe_times(target, &target_pts, NULL);
if (target_pts != MP_NOPTS_VALUE) {
MP_VERBOSE(in, "adjust seek target %f -> %f\n",
*pts, target_pts);
// (We assume the find_seek_target() call will return
// the same target for the video stream.)
*pts = target_pts;
*flags &= ~SEEK_FORWARD;
}
}
break;
}
}
}
// must be called locked
// range must be non-NULL and from find_cache_seek_range() using the same pts
// and flags, before any other changes to the cached state
static void execute_cache_seek(struct demux_internal *in,
struct demux_cached_range *range,
double pts, int flags)
{
adjust_cache_seek_target(in, range, &pts, &flags);
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
struct demux_queue *queue = range->streams[n];
struct demux_packet *target = find_seek_target(queue, pts, flags);
ds->reader_head = target;
ds->skip_to_keyframe = !target;
if (ds->reader_head)
ds->base_ts = MP_PTS_OR_DEF(ds->reader_head->pts, ds->reader_head->dts);
MP_VERBOSE(in, "seeking stream %d (%s) to ",
n, stream_type_name(ds->type));
if (target) {
MP_VERBOSE(in, "packet %f/%f\n", target->pts, target->dts);
} else {
MP_VERBOSE(in, "nothing\n");
}
}
// If we seek to another range, we want to seek the low level demuxer to
// there as well, because reader and demuxer queue must be the same.
if (in->current_range != range) {
switch_current_range(in, range);
in->seeking = true;
in->seek_flags = SEEK_HR;
in->seek_pts = range->seek_end - 1.0;
// When new packets are being appended, they could overlap with the old
// range due to demuxer seek imprecisions, or because the queue contains
// packets past the seek target but before the next seek target. Don't
// append them twice, instead skip them until new packets are found.
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
ds->refreshing = ds->selected;
}
MP_VERBOSE(in, "resuming demuxer to end of cached range\n");
}
}
// Create a new blank cache range, and backup the old one. If the seekable
// demuxer cache is disabled, merely reset the current range to a blank state.
static void switch_to_fresh_cache_range(struct demux_internal *in)
{
if (!in->seekable_cache && in->current_range) {
clear_cached_range(in, in->current_range);
return;
}
struct demux_cached_range *range = talloc_ptrtype(NULL, range);
*range = (struct demux_cached_range){
.seek_start = MP_NOPTS_VALUE,
.seek_end = MP_NOPTS_VALUE,
};
MP_TARRAY_APPEND(in, in->ranges, in->num_ranges, range);
add_missing_streams(in, range);
switch_current_range(in, range);
}
int demux_seek(demuxer_t *demuxer, double seek_pts, int flags)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
mp_mutex_lock(&in->lock);
if (!(flags & SEEK_FACTOR))
seek_pts = MP_ADD_PTS(seek_pts, -in->ts_offset);
int res = queue_seek(in, seek_pts, flags, true);
mp_cond_signal(&in->wakeup);
mp_mutex_unlock(&in->lock);
return res;
}
static bool queue_seek(struct demux_internal *in, double seek_pts, int flags,
bool clear_back_state)
{
if (seek_pts == MP_NOPTS_VALUE)
return false;
MP_VERBOSE(in, "queuing seek to %f%s\n", seek_pts,
in->seeking ? " (cascade)" : "");
bool require_cache = flags & SEEK_CACHED;
flags &= ~(unsigned)SEEK_CACHED;
bool set_backwards = flags & SEEK_SATAN;
flags &= ~(unsigned)SEEK_SATAN;
bool force_seek = flags & SEEK_FORCE;
flags &= ~(unsigned)SEEK_FORCE;
bool block = flags & SEEK_BLOCK;
flags &= ~(unsigned)SEEK_BLOCK;
struct demux_cached_range *cache_target =
find_cache_seek_range(in, seek_pts, flags);
if (!cache_target) {
if (require_cache) {
MP_VERBOSE(in, "Cached seek not possible.\n");
return false;
}
if (!in->d_thread->seekable && !force_seek) {
MP_WARN(in, "Cannot seek in this file.\n");
return false;
}
}
in->eof = false;
in->reading = false;
in->back_demuxing = set_backwards;
clear_reader_state(in, clear_back_state);
in->blocked = block;
if (cache_target) {
execute_cache_seek(in, cache_target, seek_pts, flags);
} else {
switch_to_fresh_cache_range(in);
in->seeking = true;
in->seek_flags = flags;
in->seek_pts = seek_pts;
}
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (in->back_demuxing) {
if (ds->back_seek_pos == MP_NOPTS_VALUE)
ds->back_seek_pos = seek_pts;
// Process possibly cached packets.
back_demux_see_packets(in->streams[n]->ds);
}
wakeup_ds(ds);
}
if (!in->threading && in->seeking)
execute_seek(in);
return true;
}
struct sh_stream *demuxer_stream_by_demuxer_id(struct demuxer *d,
enum stream_type t, int id)
{
if (id < 0)
return NULL;
int num = demux_get_num_stream(d);
for (int n = 0; n < num; n++) {
struct sh_stream *s = demux_get_stream(d, n);
if (s->type == t && s->demuxer_id == id)
return s;
}
return NULL;
}
// An obscure mechanism to get stream switching to be executed "faster" (as
// perceived by the user), by making the stream return packets from the
// current position
// On a switch, it seeks back, and then grabs all packets that were
// "missing" from the packet queue of the newly selected stream.
static void initiate_refresh_seek(struct demux_internal *in,
struct demux_stream *stream,
double start_ts)
{
struct demuxer *demux = in->d_thread;
bool seekable = demux->desc->seek && demux->seekable &&
!demux->partially_seekable;
bool normal_seek = true;
bool refresh_possible = true;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (!ds->selected)
continue;
if (ds->type == STREAM_VIDEO || ds->type == STREAM_AUDIO)
start_ts = MP_PTS_MIN(start_ts, ds->base_ts);
// If there were no other streams selected, we can use a normal seek.
normal_seek &= stream == ds;
refresh_possible &= ds->queue->correct_dts || ds->queue->correct_pos;
}
if (start_ts == MP_NOPTS_VALUE || !seekable)
return;
if (!normal_seek) {
if (!refresh_possible) {
MP_VERBOSE(in, "can't issue refresh seek\n");
return;
}
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
bool correct_pos = ds->queue->correct_pos;
bool correct_dts = ds->queue->correct_dts;
// We need to re-read all packets anyway, so discard the buffered
// data. (In theory, we could keep the packets, and be able to use
// it for seeking if partially read streams are deselected again,
// but this causes other problems like queue overflows when
// selecting a new stream.)
ds_clear_reader_queue_state(ds);
clear_queue(ds->queue);
// Streams which didn't have any packets yet will return all packets,
// other streams return packets only starting from the last position.
if (ds->selected && (ds->last_ret_pos != -1 ||
ds->last_ret_dts != MP_NOPTS_VALUE))
{
ds->refreshing = true;
ds->queue->correct_dts = correct_dts;
ds->queue->correct_pos = correct_pos;
ds->queue->last_pos = ds->last_ret_pos;
ds->queue->last_dts = ds->last_ret_dts;
}
update_seek_ranges(in->current_range);
}
start_ts -= 1.0; // small offset to get correct overlap
}
MP_VERBOSE(in, "refresh seek to %f\n", start_ts);
in->seeking = true;
in->seek_flags = SEEK_HR;
in->seek_pts = start_ts;
}
// Set whether the given stream should return packets.
// ref_pts is used only if the stream is enabled. Then it serves as approximate
// start pts for this stream (in the worst case it is ignored).
void demuxer_select_track(struct demuxer *demuxer, struct sh_stream *stream,
double ref_pts, bool selected)
{
struct demux_internal *in = demuxer->in;
struct demux_stream *ds = stream->ds;
mp_mutex_lock(&in->lock);
ref_pts = MP_ADD_PTS(ref_pts, -in->ts_offset);
// don't flush buffers if stream is already selected / unselected
if (ds->selected != selected) {
MP_VERBOSE(in, "%sselect track %d\n", selected ? "" : "de", stream->index);
ds->selected = selected;
update_stream_selection_state(in, ds);
in->tracks_switched = true;
if (ds->selected) {
if (in->back_demuxing)
ds->back_seek_pos = ref_pts;
if (!in->after_seek)
initiate_refresh_seek(in, ds, ref_pts);
}
if (in->threading) {
mp_cond_signal(&in->wakeup);
} else {
execute_trackswitch(in);
}
}
mp_mutex_unlock(&in->lock);
}
// Execute a refresh seek on the given stream.
// ref_pts has the same meaning as with demuxer_select_track()
void demuxer_refresh_track(struct demuxer *demuxer, struct sh_stream *stream,
double ref_pts)
{
struct demux_internal *in = demuxer->in;
struct demux_stream *ds = stream->ds;
mp_mutex_lock(&in->lock);
ref_pts = MP_ADD_PTS(ref_pts, -in->ts_offset);
if (ds->selected) {
MP_VERBOSE(in, "refresh track %d\n", stream->index);
update_stream_selection_state(in, ds);
if (in->back_demuxing)
ds->back_seek_pos = ref_pts;
if (!in->after_seek)
initiate_refresh_seek(in, ds, ref_pts);
}
mp_mutex_unlock(&in->lock);
}
// This is for demuxer implementations only. demuxer_select_track() sets the
// logical state, while this function returns the actual state (in case the
// demuxer attempts to cache even unselected packets for track switching - this
// will potentially be done in the future).
bool demux_stream_is_selected(struct sh_stream *stream)
{
if (!stream)
return false;
bool r = false;
mp_mutex_lock(&stream->ds->in->lock);
r = stream->ds->selected;
mp_mutex_unlock(&stream->ds->in->lock);
return r;
}
void demux_set_stream_wakeup_cb(struct sh_stream *sh,
void (*cb)(void *ctx), void *ctx)
{
mp_mutex_lock(&sh->ds->in->lock);
sh->ds->wakeup_cb = cb;
sh->ds->wakeup_cb_ctx = ctx;
sh->ds->need_wakeup = true;
mp_mutex_unlock(&sh->ds->in->lock);
}
int demuxer_add_attachment(demuxer_t *demuxer, char *name, char *type,
void *data, size_t data_size)
{
if (!(demuxer->num_attachments % 32))
demuxer->attachments = talloc_realloc(demuxer, demuxer->attachments,
struct demux_attachment,
demuxer->num_attachments + 32);
struct demux_attachment *att = &demuxer->attachments[demuxer->num_attachments];
att->name = talloc_strdup(demuxer->attachments, name);
att->type = talloc_strdup(demuxer->attachments, type);
att->data = talloc_memdup(demuxer->attachments, data, data_size);
att->data_size = data_size;
return demuxer->num_attachments++;
}
static int chapter_compare(const void *p1, const void *p2)
{
struct demux_chapter *c1 = (void *)p1;
struct demux_chapter *c2 = (void *)p2;
if (c1->pts > c2->pts)
return 1;
else if (c1->pts < c2->pts)
return -1;
return c1->original_index > c2->original_index ? 1 :-1; // never equal
}
static void demuxer_sort_chapters(demuxer_t *demuxer)
{
if (demuxer->num_chapters) {
qsort(demuxer->chapters, demuxer->num_chapters,
sizeof(struct demux_chapter), chapter_compare);
}
}
int demuxer_add_chapter(demuxer_t *demuxer, char *name,
double pts, uint64_t demuxer_id)
{
struct demux_chapter new = {
.original_index = demuxer->num_chapters,
.pts = pts,
.metadata = talloc_zero(demuxer, struct mp_tags),
.demuxer_id = demuxer_id,
};
mp_tags_set_str(new.metadata, "TITLE", name);
MP_TARRAY_APPEND(demuxer, demuxer->chapters, demuxer->num_chapters, new);
return demuxer->num_chapters - 1;
}
// Disallow reading any packets and make readers think there is no new data
// yet, until a seek is issued.
void demux_block_reading(struct demuxer *demuxer, bool block)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
mp_mutex_lock(&in->lock);
in->blocked = block;
for (int n = 0; n < in->num_streams; n++) {
in->streams[n]->ds->need_wakeup = true;
wakeup_ds(in->streams[n]->ds);
}
mp_cond_signal(&in->wakeup);
mp_mutex_unlock(&in->lock);
}
static void update_bytes_read(struct demux_internal *in)
{
struct demuxer *demuxer = in->d_thread;
int64_t new = in->slave_unbuffered_read_bytes;
in->slave_unbuffered_read_bytes = 0;
int64_t new_seeks = 0;
struct stream *stream = demuxer->stream;
if (stream) {
new += stream->total_unbuffered_read_bytes;
stream->total_unbuffered_read_bytes = 0;
new_seeks += stream->total_stream_seeks;
stream->total_stream_seeks = 0;
}
in->cache_unbuffered_read_bytes += new;
in->hack_unbuffered_read_bytes += new;
in->byte_level_seeks += new_seeks;
}
// must be called locked, temporarily unlocks
static void update_cache(struct demux_internal *in)
{
struct demuxer *demuxer = in->d_thread;
struct stream *stream = demuxer->stream;
int64_t now = mp_time_ns();
int64_t diff = now - in->last_speed_query;
bool do_update = diff >= MP_TIME_S_TO_NS(1) || !in->last_speed_query;
// Don't lock while querying the stream.
mp_mutex_unlock(&in->lock);
int64_t stream_size = -1;
struct mp_tags *stream_metadata = NULL;
if (stream) {
if (do_update)
stream_size = stream_get_size(stream);
stream_control(stream, STREAM_CTRL_GET_METADATA, &stream_metadata);
}
mp_mutex_lock(&in->lock);
update_bytes_read(in);
if (do_update)
in->stream_size = stream_size;
if (stream_metadata) {
add_timed_metadata(in, stream_metadata, NULL, MP_NOPTS_VALUE);
talloc_free(stream_metadata);
}
in->next_cache_update = INT64_MAX;
if (do_update) {
uint64_t bytes = in->cache_unbuffered_read_bytes;
in->cache_unbuffered_read_bytes = 0;
in->last_speed_query = now;
double speed = bytes / (diff / (double)MP_TIME_S_TO_NS(1));
in->bytes_per_second = 0.5 * in->speed_query_prev_sample +
0.5 * speed;
in->speed_query_prev_sample = speed;
}
// The idea is to update as long as there is "activity".
if (in->bytes_per_second)
in->next_cache_update = now + MP_TIME_S_TO_NS(1) + MP_TIME_US_TO_NS(1);
}
static void dumper_close(struct demux_internal *in)
{
if (in->dumper)
mp_recorder_destroy(in->dumper);
in->dumper = NULL;
if (in->dumper_status == CONTROL_TRUE)
in->dumper_status = CONTROL_FALSE; // make abort equal to success
}
static int range_time_compare(const void *p1, const void *p2)
{
struct demux_cached_range *r1 = *((struct demux_cached_range **)p1);
struct demux_cached_range *r2 = *((struct demux_cached_range **)p2);
if (r1->seek_start == r2->seek_start)
return 0;
return r1->seek_start < r2->seek_start ? -1 : 1;
}
static void dump_cache(struct demux_internal *in, double start, double end)
{
in->dumper_status = in->dumper ? CONTROL_TRUE : CONTROL_ERROR;
if (!in->dumper)
return;
// (only in pathological cases there might be more ranges than allowed)
struct demux_cached_range *ranges[MAX_SEEK_RANGES];
int num_ranges = 0;
for (int n = 0; n < MPMIN(MP_ARRAY_SIZE(ranges), in->num_ranges); n++)
ranges[num_ranges++] = in->ranges[n];
qsort(ranges, num_ranges, sizeof(ranges[0]), range_time_compare);
for (int n = 0; n < num_ranges; n++) {
struct demux_cached_range *r = ranges[n];
if (r->seek_start == MP_NOPTS_VALUE)
continue;
if (r->seek_end <= start)
continue;
if (end != MP_NOPTS_VALUE && r->seek_start >= end)
continue;
mp_recorder_mark_discontinuity(in->dumper);
double pts = start;
int flags = 0;
adjust_cache_seek_target(in, r, &pts, &flags);
for (int i = 0; i < r->num_streams; i++) {
struct demux_queue *q = r->streams[i];
struct demux_stream *ds = q->ds;
ds->dump_pos = find_seek_target(q, pts, flags);
}
// We need to reinterleave the separate streams somehow, which makes
// everything more complex.
while (1) {
struct demux_packet *next = NULL;
double next_dts = MP_NOPTS_VALUE;
for (int i = 0; i < r->num_streams; i++) {
struct demux_stream *ds = r->streams[i]->ds;
struct demux_packet *dp = ds->dump_pos;
if (!dp)
continue;
assert(dp->stream == ds->index);
double pdts = MP_PTS_OR_DEF(dp->dts, dp->pts);
// Check for stream EOF. Note that we don't try to EOF
// streams at the same point (e.g. video can take longer
// to finish than audio, so the output file will have no
// audio for the last part of the video). Too much effort.
if (pdts != MP_NOPTS_VALUE && end != MP_NOPTS_VALUE &&
pdts >= end && dp->keyframe)
{
ds->dump_pos = NULL;
continue;
}
if (pdts == MP_NOPTS_VALUE || next_dts == MP_NOPTS_VALUE ||
pdts < next_dts)
{
next_dts = pdts;
next = dp;
}
}
if (!next)
break;
struct demux_stream *ds = in->streams[next->stream]->ds;
ds->dump_pos = next->next;
struct demux_packet *dp = read_packet_from_cache(in, next);
if (!dp) {
in->dumper_status = CONTROL_ERROR;
break;
}
write_dump_packet(in, dp);
talloc_free(dp);
}
if (in->dumper_status != CONTROL_OK)
break;
}
// (strictly speaking unnecessary; for clarity)
for (int n = 0; n < in->num_streams; n++)
in->streams[n]->ds->dump_pos = NULL;
// If dumping (in end==NOPTS mode) doesn't continue at the range that
// was written last, we have a discontinuity.
if (num_ranges && ranges[num_ranges - 1] != in->current_range)
mp_recorder_mark_discontinuity(in->dumper);
// end=NOPTS means the demuxer output continues to be written to the
// dump file.
if (end != MP_NOPTS_VALUE || in->dumper_status != CONTROL_OK)
dumper_close(in);
}
// Set the current cache dumping mode. There is only at most 1 dump process
// active, so calling this aborts the previous dumping. Passing file==NULL
// stops dumping.
// This is synchronous with demux_cache_dump_get_status() (i.e. starting or
// aborting is not asynchronous). On status change, the demuxer wakeup callback
// is invoked (except for this call).
// Returns whether dumping was logically started.
bool demux_cache_dump_set(struct demuxer *demuxer, double start, double end,
char *file)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
bool res = false;
mp_mutex_lock(&in->lock);
start = MP_ADD_PTS(start, -in->ts_offset);
end = MP_ADD_PTS(end, -in->ts_offset);
dumper_close(in);
if (file && file[0] && start != MP_NOPTS_VALUE) {
res = true;
in->dumper = recorder_create(in, file);
// This is not asynchronous and will freeze the shit for a while if the
// user is unlucky. It could be moved to a thread with some effort.
// General idea: iterate over all cache ranges, dump what intersects.
// After that, and if the user requested it, make it dump all newly
// received packets, even if it's awkward (consider the case if the
// current range is not the last range).
dump_cache(in, start, end);
}
mp_mutex_unlock(&in->lock);
return res;
}
// Returns one of CONTROL_*. CONTROL_TRUE means dumping is in progress.
int demux_cache_dump_get_status(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
mp_mutex_lock(&in->lock);
int status = in->dumper_status;
mp_mutex_unlock(&in->lock);
return status;
}
// Return what range demux_cache_dump_set() would (probably) yield. This is a
// conservative amount (in addition to internal consistency of this code, it
// depends on what a player will do with the resulting file).
// Use for_end==true to get the end of dumping, other the start.
// Returns NOPTS if nothing was found.
double demux_probe_cache_dump_target(struct demuxer *demuxer, double pts,
bool for_end)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
double res = MP_NOPTS_VALUE;
if (pts == MP_NOPTS_VALUE)
return pts;
mp_mutex_lock(&in->lock);
pts = MP_ADD_PTS(pts, -in->ts_offset);
// (When determining the end, look before the keyframe at pts, so subtract
// an arbitrary amount to round down.)
double seek_pts = for_end ? pts - 0.001 : pts;
int flags = 0;
struct demux_cached_range *r = find_cache_seek_range(in, seek_pts, flags);
if (r) {
if (!for_end)
adjust_cache_seek_target(in, r, &pts, &flags);
double t[STREAM_TYPE_COUNT];
for (int n = 0; n < STREAM_TYPE_COUNT; n++)
t[n] = MP_NOPTS_VALUE;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
struct demux_queue *q = r->streams[n];
struct demux_packet *dp = find_seek_target(q, pts, flags);
if (dp) {
if (for_end) {
while (dp) {
double pdts = MP_PTS_OR_DEF(dp->dts, dp->pts);
if (pdts != MP_NOPTS_VALUE && pdts >= pts && dp->keyframe)
break;
t[ds->type] = MP_PTS_MAX(t[ds->type], pdts);
dp = dp->next;
}
} else {
double start;
compute_keyframe_times(dp, &start, NULL);
start = MP_PTS_MAX(start, r->seek_start);
t[ds->type] = MP_PTS_MAX(t[ds->type], start);
}
}
}
res = t[STREAM_VIDEO];
if (res == MP_NOPTS_VALUE)
res = t[STREAM_AUDIO];
if (res == MP_NOPTS_VALUE) {
for (int n = 0; n < STREAM_TYPE_COUNT; n++) {
res = t[n];
if (res != MP_NOPTS_VALUE)
break;
}
}
}
res = MP_ADD_PTS(res, in->ts_offset);
mp_mutex_unlock(&in->lock);
return res;
}
// Used by demuxers to report the amount of transferred bytes. This is for
// streams which circumvent demuxer->stream (stream statistics are handled by
// demux.c itself).
void demux_report_unbuffered_read_bytes(struct demuxer *demuxer, int64_t new)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_thread);
in->slave_unbuffered_read_bytes += new;
}
// Return bytes read since last query. It's a hack because it works only if
// the demuxer thread is disabled.
int64_t demux_get_bytes_read_hack(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
// Required because demuxer==in->d_user, and we access in->d_thread.
// Locking won't solve this, because we also need to access struct stream.
assert(!in->threading);
update_bytes_read(in);
int64_t res = in->hack_unbuffered_read_bytes;
in->hack_unbuffered_read_bytes = 0;
return res;
}
void demux_get_bitrate_stats(struct demuxer *demuxer, double *rates)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
mp_mutex_lock(&in->lock);
for (int n = 0; n < STREAM_TYPE_COUNT; n++)
rates[n] = -1;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (ds->selected && ds->bitrate >= 0)
rates[ds->type] = MPMAX(0, rates[ds->type]) + ds->bitrate;
}
mp_mutex_unlock(&in->lock);
}
void demux_get_reader_state(struct demuxer *demuxer, struct demux_reader_state *r)
{
struct demux_internal *in = demuxer->in;
assert(demuxer == in->d_user);
mp_mutex_lock(&in->lock);
*r = (struct demux_reader_state){
.eof = in->eof,
.ts_reader = MP_NOPTS_VALUE,
.ts_end = MP_NOPTS_VALUE,
.ts_duration = -1,
.total_bytes = in->total_bytes,
.seeking = in->seeking_in_progress,
.low_level_seeks = in->low_level_seeks,
.ts_last = in->demux_ts,
.bytes_per_second = in->bytes_per_second,
.byte_level_seeks = in->byte_level_seeks,
.file_cache_bytes = in->cache ? demux_cache_get_size(in->cache) : -1,
};
bool any_packets = false;
for (int n = 0; n < in->num_streams; n++) {
struct demux_stream *ds = in->streams[n]->ds;
if (ds->eager && !(!ds->queue->head && ds->eof) && !ds->ignore_eof) {
r->underrun |= !ds->reader_head && !ds->eof && !ds->still_image;
r->ts_reader = MP_PTS_MAX(r->ts_reader, ds->base_ts);
r->ts_end = MP_PTS_MAX(r->ts_end, ds->queue->last_ts);
any_packets |= !!ds->reader_head;
}
r->fw_bytes += get_forward_buffered_bytes(ds);
}
r->idle = (!in->reading && !r->underrun) || r->eof;
r->underrun &= !r->idle && in->threading;
r->ts_reader = MP_ADD_PTS(r->ts_reader, in->ts_offset);
r->ts_end = MP_ADD_PTS(r->ts_end, in->ts_offset);
if (r->ts_reader != MP_NOPTS_VALUE && r->ts_reader <= r->ts_end)
r->ts_duration = r->ts_end - r->ts_reader;
if (in->seeking || !any_packets)
r->ts_duration = 0;
for (int n = 0; n < MPMIN(in->num_ranges, MAX_SEEK_RANGES); n++) {
struct demux_cached_range *range = in->ranges[n];
if (range->seek_start != MP_NOPTS_VALUE) {
r->seek_ranges[r->num_seek_ranges++] =
(struct demux_seek_range){
.start = MP_ADD_PTS(range->seek_start, in->ts_offset),
.end = MP_ADD_PTS(range->seek_end, in->ts_offset),
};
r->bof_cached |= range->is_bof;
r->eof_cached |= range->is_eof;
}
}
mp_mutex_unlock(&in->lock);
}
bool demux_cancel_test(struct demuxer *demuxer)
{
return mp_cancel_test(demuxer->cancel);
}
struct demux_chapter *demux_copy_chapter_data(struct demux_chapter *c, int num)
{
struct demux_chapter *new = talloc_array(NULL, struct demux_chapter, num);
for (int n = 0; n < num; n++) {
new[n] = c[n];
new[n].metadata = mp_tags_dup(new, new[n].metadata);
}
return new;
}
static void visit_tags(void *ctx, void (*visit)(void *ctx, void *ta, char **s),
struct mp_tags *tags)
{
for (int n = 0; n < (tags ? tags->num_keys : 0); n++)
visit(ctx, tags, &tags->values[n]);
}
static void visit_meta(struct demuxer *demuxer, void *ctx,
void (*visit)(void *ctx, void *ta, char **s))
{
struct demux_internal *in = demuxer->in;
for (int n = 0; n < in->num_streams; n++) {
struct sh_stream *sh = in->streams[n];
visit(ctx, sh, &sh->title);
visit_tags(ctx, visit, sh->tags);
}
for (int n = 0; n < demuxer->num_chapters; n++)
visit_tags(ctx, visit, demuxer->chapters[n].metadata);
visit_tags(ctx, visit, demuxer->metadata);
}
static void visit_detect(void *ctx, void *ta, char **s)
{
char **all = ctx;
if (*s)
*all = talloc_asprintf_append_buffer(*all, "%s\n", *s);
}
static void visit_convert(void *ctx, void *ta, char **s)
{
struct demuxer *demuxer = ctx;
struct demux_internal *in = demuxer->in;
if (!*s)
return;
bstr data = bstr0(*s);
bstr conv = mp_iconv_to_utf8(in->log, data, in->meta_charset,
MP_ICONV_VERBOSE);
if (conv.start && conv.start != data.start) {
char *ns = conv.start; // 0-termination is guaranteed
// (The old string might not be an alloc, but if it is, it's a talloc
// child, and will not leak, even if it stays allocated uselessly.)
*s = ns;
talloc_steal(ta, *s);
}
}
static void demux_convert_tags_charset(struct demuxer *demuxer)
{
struct demux_internal *in = demuxer->in;
char *cp = demuxer->opts->meta_cp;
if (!cp || mp_charset_is_utf8(cp))
return;
char *data = talloc_strdup(NULL, "");
visit_meta(demuxer, &data, visit_detect);
in->meta_charset = (char *)mp_charset_guess(in, in->log, bstr0(data), cp, 0);
if (in->meta_charset && !mp_charset_is_utf8(in->meta_charset)) {
MP_INFO(demuxer, "Using tag charset: %s\n", in->meta_charset);
visit_meta(demuxer, demuxer, visit_convert);
}
talloc_free(data);
}
static bool get_demux_sub_opts(int index, const struct m_sub_options **sub)
{
if (!demuxer_list[index])
return false;
*sub = demuxer_list[index]->options;
return true;
}