This was there originally to detect too-old versions of ffmpeg. We now
only support >= 4.0, so it's not relevant. We just need the dependencies
to be present.
The CUDA dynamic loader was broken out of ffmpeg into its own repo
and package. This gives us an opportunity to re-use it in mpv and
remove our custom loader logic.
libavcodec normally drops subtitle lines that fail a check for invalid
UTF-8 (their check is slightly broken too, by the way). This was always
annoying and inconvenient, but now there is a mechanism to prevent
it from doing this. Requires newst libavcodec.
This includes codec/muxer/demuxer iteration (different iteration
function, registration functions deprecated), and the renaming of
AVFormatContext.filename to url (plus making it a malloced string).
Libav doesn't have the new API yet, so it will break. I hope they will
add the new APIs too.
this is meant to replace the old and not properly working vo_gpu/opengl
cocoa backend in the future. the problems are various shortcomings of
Apple's opengl implementation and buggy behaviour in certain
circumstances that couldn't be properly worked around. there are also
certain regressions on newer macOS versions from 10.11 onwards.
- awful opengl performance with a none layer backed context
- huge amount of dropped frames with an early context flush
- flickering of system elements like the dock or volume indicator
- double buffering not properly working with a none layer backed context
- bad performance in fullscreen because of system optimisations
all the problems were caused by using a normal opengl context, that
seems somewhat abandoned by apple, and are fixed by using a layer backed
opengl context instead. problems that couldn't be fixed could be
properly worked around.
this has all features our old backend has sans the wid embedding,
the possibility to disable the automatic GPU switching and taking
screenshots of the window content. the first was deemed unnecessary by
me for now, since i just use the libmpv API that others can use anyway.
second is technically not possible atm because we have to pre-allocate
our opengl context at a time the config isn't read yet, so we can't get
the needed property. third one is a bit tricky because of deadlocking
and it needed to be in sync, hopefully i can work around that in the
future.
this also has at least one additional feature or eye-candy. a properly
working fullscreen animation with the native fs. also since this is a
direct port of the old backend of the parts that could be used, though
with adaptions and improvements, this looks a lot cleaner and easier to
understand.
some credit goes to @pigoz for the initial swift build support which
i could improve upon.
Fixes: #5478, #5393, #5152, #5151, #4615, #4476, #3978, #3746, #3739,
#2392, #2217
This seems to fix issues when building on windows where compiling mpv.rc
after a `waf clean` resulted in a failure because version.h was not
always present
Libav has been broken due to the hwdec changes. This was always a
temporary situation (depended on pending patches to be merged), although
it took a bit longer. This also restores the travis config.
One code change is needed in vd_lavc.c, because it checks the AV_PIX_FMT
for videotoolbox (as opposed to the mpv format identifier), which is not
available in Libav. Add an ifdef; the affected code is for a deprecated
option anyway.
vo_x11 and vo_xv need this. According to the Linux manpage, all involved
functions are POSIX-2001 anyway. (I just assumed they were not, because
they're mostly System V UNIX legacy garbage.)
Looks like this is covered by LGPL relicensing agreements now.
Notes about contributors who could not be reached or who didn't agree:
Commit 7fccb6486e has tons of mp_msg changes look like they are not
copyrightable (even if they were, all mp_msg calls were rewritten in
mpv times again). The additional play() change looks suspicious, but
the function was rewritten several times anyway (first time after that
commit in 4f40ec312).
Commit 89ed1748ae was rewritten in commit 325311af3 and then again
several times after that. Basically all this code is unnecessary in
modern mpv and has been removed.
No code survived from the following commits: 4d31c3c53, 61ecf838f2,
d38968bd, 4deb67c3f. At least two cosmetic typo fixes are not
considered as well.
Commit 22bb046ad is reverted (this wasn't a valid warning anyway, just
a C++-ism icc applied to C). Using the constants is nicer, but at least
I don't have to decide whether that change was copyrightable.
The shader cache in ra_d3d11 caches the result of shaderc, crossc and
the D3DCompiler DLL, so it should be invalidated when any of those
components are updated. This should make the cache more reliable, which
makes it safer to enable gpu-shader-cache-dir. Shader compilation is
slow with D3D11, so gpu-shader-cache-dir is highly necessary
This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL
generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross.
What works:
- All of mpv's internal shaders should work, including compute shaders.
- Some external shaders have been tested and work, including RAVU and
adaptive-sharpen.
- Non-dumb mode works, even on very old hardware. Most features work at
feature level 9_3 and all features work at feature level 10_0. Some
features also work at feature level 9_1 and 9_2, but without high-bit-
depth FBOs, it's not very useful. (Hardware this old is probably not
fast enough for advanced features anyway.)
Note: This is more compatible than ANGLE, which requires 9_3 to work
at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.)
- Hardware decoding with D3D11VA, including decoding of 10-bit formats
without truncation to 8-bit.
What doesn't work / can be improved:
- PBO upload and direct rendering does not work yet. Direct rendering
requires persistent-mapped PBOs because the decoder needs to be able
to read data from images that have already been decoded and uploaded.
Unfortunately, it seems like persistent-mapped PBOs are fundamentally
incompatible with D3D11, which requires all resources to use driver-
managed memory and requires memory to be unmapped (and hence pointers
to be invalidated) when a resource is used in a draw or copy
operation.
However it might be possible to use D3D11's limited multithreading
capabilities to emulate some features of PBOs, like asynchronous
texture uploading.
- The blit() and clear() operations don't have equivalents in the D3D11
API that handle all cases, so in most cases, they have to be emulated
with a shader. This is currently done inside ra_d3d11, but ideally it
would be done in generic code, so it can take advantage of mpv's
shader generation utilities.
- SPIRV-Cross is used through a NIH C-compatible wrapper library, since
it does not expose a C interface itself.
The library is available here: https://github.com/rossy/crossc
- The D3D11 context could be made to support more modern DXGI features
in future. For example, it should be possible to add support for
high-bit-depth and HDR output with DXGI 1.5/1.6.
Apparently some people want this. Actually making it compile is still
their problem, though, and I expect that build with FFmpeg upstream will
occasionally be broken (as it is right now). This is because mpv also
relies on API provided by Libav, and if FFmpeg hasn't merged that yet,
it's not our problem - we provide a version of FFmpeg upstream with
those changes merged, and it's called ffmpeg-mpv.
Also adjust the README which still talked about FFmpeg releases.
This is required now. Can't have FFmpeg upstream randomly break us and
then not fix it (like this recent EOF issue).
Upstream FFmpeg is of course still supported, but you will need to edit
the build scripts. Official support is only with the master branch of
our own repo.
This removes the need for codec- and API-specific knowledge in the
libavcodec hardware acceleration API user. For mpv, this removes the
need for vd_lavc_hwdec.pixfmt_map and a few other things. (For now, we
still keep the "old" parts for the sake of supporting older Libav, and
FFgarbage.)
This commit allows to use the AV_PIX_FMT_DRM_PRIME newly introduced
format in ffmpeg that allows decoders to provide an AVDRMFrameDescriptor
struct.
That struct holds dmabuf fds and information allowing zerocopy rendering
using KMS / DRM Atomic.
This has been tested on RockChip ROCK64 device.
Rename --enable-preliminary-lgpl2 to --enable-gpl. This concludes the
relicensing. Some things are still to do (relicensing some still-GPL
optional code), but we consider the code included by --enable-gpl to be
fully relicensed.
The relicensing was performed by asking every known author for
permission for relicensing it to LGPL version 2.1 "or later". If an
author could not be contacted or permission could not be obtained, and
the contribution was considered relevant for copyright purposes, the
affected code was either excluded from LGPL mode (not built), or removed
or rewritten. This is the standard in open source relicensing processes.
Keep in mind that using LGPL mode is still on the user's own risk. Even
though I claim that the relicensing was pretty clean and thorough
(measured on the standards of the open source community¹), and I
followed the advice of some actual experts, there is still a residual
uncertainty due to the fact that I'm not an all-knowing entity (authors
could have taken someone else's code and pretend it's their own) nor a
lawyer (meaning I might lack associated authority or expertise), and the
fact that the judicial system is far from deterministic. The relicensing
was performed merely to the best of my knowledge. I reject all
responsibility outside of that.
This commit also cleans up the "Copyright" file to reflect the finalized
relicensing process.
¹ Not to imply that the standards of commercial companies are much
higher. Some major tech companies get away with stuff I would not
consider clean.
See #2033.
At the moment, rendering on Android requires ``--vo=opengl-cb`` and
a lot of java<->c++ bridging code to receive the receive and react to
the render callback in java. Performance also suffers with opengl-cb,
due to the overhead of context switching in JNI.
With this patch, Android can render using ``--vo=gpu --gpu-context=android``
(after setting ``--wid`` to point to an android.view.Surface on-screen).
iive agreed to relicense things that are still in mpv to LGPLv2.1. So
change the licenses of the affected files, and rename the configure
switch for LGPL mode to --enable-preliminary-lgpl2.
(The "preliminary" part will probably be removed from the configure
switch soon as well.)
Also player/main.c hasn't had GPL parts since a few commits ago.
The wayland code was written more than 4 years ago when wayland wasn't
even at version 1.0. This commit rewrites everything in a more modern way,
switches to using the new xdg v6 shell interface which solves a lot of bugs
and makes mpv tiling-friedly, adds support for drag and drop, adds support
for touchscreens, adds support for KDE's server decorations protocol,
and finally adds support for the new idle-inhibitor protocol.
It does not yet use the frame callback as a main rendering loop driver,
this will happen with a later commit.
Originally mpv vaapi support was based on the MPlayer-vaapi patches.
These were never merged in upstream MPlayer. The license headers
indicated they were GPL-only. Although the actual author agreed to
relicensing, the company employing him to write this code did not, so
the original code is unusable to us.
Fortunately, vaapi support was refactored and rewritten several times,
meaning little code is actually left. The previous commits removed or
moved that to GPL-only code. Namely, vo_vaapi.c remains GPL-only. The
other code went away or became unnecessary mainly because libavcodec
itself gained the ability to manage the hw decoder, and libavutil
provides code to manage vaapi surfaces. We also changed to mainly using
EGL interop, making any of the old rendering code unnecessary.
hwdec_vaglx.c is still GPL. It's possibly relicensable, because much of
it was changed, but I'm not too sure and further investigation would be
required. Also, this has been disabled by default for a while now, so
bothering with this is a waste of time. This commit simply disables it
at compile time as well in LGPL mode.
Now you need FFmpeg git, or something.
This also gets rid of the last real use of gpu_memcpy(). libavutil does
that itself. (vaapi.c still used it, but it was essentially unused,
because the code path isn't really in use anymore. It wasn't even
included due to the d3d-hwaccel dependency in wscript.)
In addition to the built-in nvidia compiler, we now also support a
backend based on libshaderc. shaderc is sort of like glslang except it
has a C API and is available as a dynamic library.
The generated SPIR-V is now cached alongside the VkPipeline in the
cached_program. We use a special cache header to ensure validity of this
cache before passing it blindly to the vulkan implementation, since
passing invalid SPIR-V can cause all sorts of nasty things. It's also
designed to self-invalidate if the compiler gets better, by offering a
catch-all `int compiler_version` that implementations can use as a cache
invalidation marker.
This time based on ra/vo_gpu. 2017 is the year of the vulkan desktop!
Current problems / limitations / improvement opportunities:
1. The swapchain/flipping code violates the vulkan spec, by assuming
that the presentation queue will be bounded (in cases where rendering
is significantly faster than vsync). But apparently, there's simply
no better way to do this right now, to the point where even the
stupid cube.c examples from LunarG etc. do it wrong.
(cf. https://github.com/KhronosGroup/Vulkan-Docs/issues/370)
2. The memory allocator could be improved. (This is a universal
constant)
3. Could explore using push descriptors instead of descriptor sets,
especially since we expect to switch descriptors semi-often for some
passes (like interpolation). Probably won't make a difference, but
the synchronization overhead might be a factor. Who knows.
4. Parallelism across frames / async transfer is not well-defined, we
either need to use a better semaphore / command buffer strategy or a
resource pooling layer to safely handle cross-frame parallelism.
(That said, I gave resource pooling a try and was not happy with the
result at all - so I'm still exploring the semaphore strategy)
5. We aggressively use pipeline barriers where events would offer a much
more fine-grained synchronization mechanism. As a result of this, we
might be suffering from GPU bubbles due to too-short dependencies on
objects. (That said, I'm also exploring the use of semaphores as a an
ordering tactic which would allow cross-frame time slicing in theory)
Some minor changes to the vo_gpu and infrastructure, but nothing
consequential.
NOTE: For safety, all use of asynchronous commands / multiple command
pools is currently disabled completely. There are some left-over relics
of this in the code (e.g. the distinction between dev_poll and
pool_poll), but that is kept in place mostly because this will be
re-extended in the future (vulkan rev 2).
The queue count is also currently capped to 1, because of the lack of
cross-frame semaphores means we need the implicit synchronization from
the same-queue semantics to guarantee a correct result.