This was a bit confused, and I bet nobody understood whether to use
--sub-file or --sub-files, and what the difference is. Explicitly
mention that both variants exist, and how they are related.
Previously when using a libmpv instance to play multiple videos,
once --start was set there was no clear way to unset it. You could
use --start=0, but 0 does not always mean the beginning of the file
(especially when using --rebase-start-time=no). Looking up the start
timestamp and passing that in also does not always work, particularly
when the first timestamp is negative (since negative values to --start
have a special meaning).
This commit adds a new "none" value which maps to the internal
REL_TIME_NONE, matching the default value of the play_start option.
Most options that change the playback endpoint coexist and playback
stops when it reaches any of them. (e.g. --ab-loop-b, --end, or
--chapter). This patch extends that behavior to --length so it isn't
automatically trumped by --end if both are present. These two will
interact now as the other options do.
This change is also documented in DOCS/man/options.rst.
Change it from explicit metadata about every hwaccel method to trying to
get it from libavcodec. As shown by add_all_hwdec_methods(), this is a
quite bumpy road, and a bit worse than expected.
This will probably cause a bunch of regressions. In particular I didn't
check all the strange decoder wrappers, which all cause some sort of
special cases each. You're volunteering for beta testing by using this
commit.
One interesting thing is that we completely get rid of mp_hwdec_ctx in
vd_lavc.c, and that HWDEC_* mostly goes away (some filters still use it,
and the VO hwdec interops still have a lot of code to set it up, so it's
not going away completely for now).
The libavcodec mediacodec support does not conform to the new hwaccel
APIs yet. It has been agreed uppon that this glue code can be deleted
for now, and support for it will be restored at a later point.
Readding would require that it supports the AVCodecContext.hw_device_ctx
API. The hw_device_ctx would then contain the surface ID.
vo_mediacodec_embed would actually perform the task of creating
vo.hwdec_devs and adding a mp_hwdec_ctx, whose av_device_ref is a
AVHWDeviceContext containing the android surface.
Make the VO<->decoder interface capable of supporting multiple hwdec
APIs at once. The main gain is that this simplifies autoprobing a lot.
Before this change, it could happen that the VO loaded the "wrong" hwdec
API, and the decoder was stuck with the choice (breaking hw decoding).
With the change applied, the VO simply loads all available APIs, so
autoprobing trickery is left entirely to the decoder.
In the past, we were quite careful about not accidentally loading the
wrong interop drivers. This was in part to make sure autoprobing works,
but also because libva had this obnoxious bug of dumping garbage to
stderr when using the API. libva was fixed, so this is not a problem
anymore.
The --opengl-hwdec-interop option is changed in various ways (again...),
and renamed to --gpu-hwdec-interop. It does not have much use anymore,
other than debugging. It's notable that the order in the hwdec interop
array ra_hwdec_drivers[] still matters if multiple drivers support the
same image formats, so the option can explicitly force one, if that
should ever be necessary, or more likely, for debugging. One example are
the ra_hwdec_d3d11egl and ra_hwdec_d3d11eglrgb drivers, which both
support d3d11 input.
vo_gpu now always loads the interop lazily by default, but when it does,
it loads them all. vo_opengl_cb now always loads them when the GL
context handle is initialized. I don't expect that this causes any
problems.
It's now possible to do things like changing between vdpau and nvdec
decoding at runtime.
This is also preparation for cleaning up vd_lavc.c hwdec autoprobing.
It's another reason why hwdec_devices_request_all() does not take a
hwdec type anymore.
These couldn't be relicensed, and won't survive the LGPL transition. The
other existing filters are mostly LGPL (except libaf glue code).
This remove the deprecated pan option. I guess it could be restored by
inserting a libavfilter filter (if there's one), but for now let it be
gone.
This temporarily breaks volume control (and things related to it, like
replaygain).
The internal stereo3d filter was removed due to being GPL only, and due
to being a mess that somehow used libavfilter's filter. Without this
filter, it's hard to remove our internal stereo3d image attribute, so
even using libavfilter's stereo3d filter would not work too well (unless
someone fixes it and makes it able to use AVFrame metadata, which we
then could mirror in mp_image).
This was never well thought-through anyway, so just drop it. I think
some "downsampling" support would still make sense, maybe that can be
readded later.
Almost all of them had their guts removed and replaced by libavfilter
long ago, but remove them anyway. They're pointless and have been
scheduled for deprecation.
Still leave vf_format (because we need it in some form) and vf_sub (not
sure).
This will break some builtin functionality: lavfi yadif defaults are
different, auto rotation and stereo3d downconversion are broken. These
might be fixed later.
The option for enabling it has now an "auto" choice, which is the
default, and which will enable it if the media is thought to be via
network or if the stream cache is enabled (same logic as --cache-secs).
Also bump the --cache-secs default from 10 to 120.
Some back buffer is required to make the immediate forward range
seekable. This is because the back buffer limit is strictly enforced.
Just set a rather high back buffer by default. It's not use if
--demuxer-seekable-cache is disabled, so this is without risk.
Until now, the demuxer cache was limited to a single range. Extend this
to multiple range. Should be useful for slow network streams.
This commit changes a lot in the internal demuxer cache logic, so
there's a lot of room for bugs and regressions. The logic without
demuxer cache is mostly untouched, but also involved with the code
changes. Or in other words, this commit probably fucks up shit.
There are two things which makes multiple cached ranges rather hard:
1. the need to resume the demuxer at the end of a cached range when
seeking to it
2. joining two adjacent ranges when the lowe range "grows" into it (and
resuming the demuxer at the end of the new joined range)
"Resuming" the demuxer means that we perform a low level seek to the end
of a cached range, and properly append new packets to it, without adding
packets multiple times or creating holes due to missing packets.
Since audio and video never line up exactly, there is no clean "cut"
possible, at which you could resume the demuxer cleanly (for 1.) or
which you could use to detect that two ranges are perfectly adjacent
(for 2.). The way how the demuxer interleaves multiple streams is also
unpredictable. Typically you will have to expect that it randomly allows
one of the streams to be ahead by a bit, and so on.
To deal with this, we have heuristics in place to detect when one packet
equals or is "behind" a packet that was demuxed earlier. We reuse the
refresh seek logic (used to "reread" packets into the demuxer cache when
enabling a track), which checks for certain packet invariants.
Currently, it observes whether either the raw packet position, or the
packet DTS is strictly monotonically increasing. If none of them are
true, we discard old ranges when creating a new one.
This heavily depends on the file format and the demuxer behavior. For
example, not all file formats have DTS, and the packet position can be
unset due to libavformat not always setting it (e.g. when parsers are
used).
At the same time, we must deal with all the complicated state used to
track prefetching and seek ranges. In some complicated corner cases, we
just give up and discard other seek ranges, even if the previously
mentioned packet invariants are fulfilled.
To handle joining, we're being particularly dumb, and require a small
overlap to be confident that two ranges join perfectly. (This could be
done incrementally with as little overlap as 1 packet, but corner cases
would eat us: each stream needs to be joined separately, and the cache
pruning logic could remove overlapping packets for other streams again.)
Another restriction is that switching the cached range will always
trigger an asynchronous low level seek to resume demuxing at the new
range. Some users might find this annoying.
Dealing with interleaved subtitles is not fully handled yet. It will
clamp the seekable range to where subtitle packets are.
Like the manual says, this is technically undefined behaviour. See:
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476085.aspx
In particular, MSDN says texture arrays created with the BIND_DECODER
flag cannot be used with CreateShaderResourceView, which means they
can't be sampled through SRVs like normal Direct3D textures. However,
some programs (Google Chrome included) do this anyway for performance
and power-usage reasons, and it appears to work with most drivers.
Older AMD drivers had a "bug" with zero-copy decoding, but this appears
to have been fixed. See #3255, #3464 and http://crbug.com/623029.
This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL
generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross.
What works:
- All of mpv's internal shaders should work, including compute shaders.
- Some external shaders have been tested and work, including RAVU and
adaptive-sharpen.
- Non-dumb mode works, even on very old hardware. Most features work at
feature level 9_3 and all features work at feature level 10_0. Some
features also work at feature level 9_1 and 9_2, but without high-bit-
depth FBOs, it's not very useful. (Hardware this old is probably not
fast enough for advanced features anyway.)
Note: This is more compatible than ANGLE, which requires 9_3 to work
at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.)
- Hardware decoding with D3D11VA, including decoding of 10-bit formats
without truncation to 8-bit.
What doesn't work / can be improved:
- PBO upload and direct rendering does not work yet. Direct rendering
requires persistent-mapped PBOs because the decoder needs to be able
to read data from images that have already been decoded and uploaded.
Unfortunately, it seems like persistent-mapped PBOs are fundamentally
incompatible with D3D11, which requires all resources to use driver-
managed memory and requires memory to be unmapped (and hence pointers
to be invalidated) when a resource is used in a draw or copy
operation.
However it might be possible to use D3D11's limited multithreading
capabilities to emulate some features of PBOs, like asynchronous
texture uploading.
- The blit() and clear() operations don't have equivalents in the D3D11
API that handle all cases, so in most cases, they have to be emulated
with a shader. This is currently done inside ra_d3d11, but ideally it
would be done in generic code, so it can take advantage of mpv's
shader generation utilities.
- SPIRV-Cross is used through a NIH C-compatible wrapper library, since
it does not expose a C interface itself.
The library is available here: https://github.com/rossy/crossc
- The D3D11 context could be made to support more modern DXGI features
in future. For example, it should be possible to add support for
high-bit-depth and HDR output with DXGI 1.5/1.6.
The main purpose of this commit is avoiding any hidden O(n^2) algorithms
in the code for pruning the demuxer cache, and for determining the
seekable boundaries of the cache. The old code could loop over the whole
packet queue on every packet pruned in certain corner cases.
There are two ways how to reach the goal:
1) commit a cardinal sin
2) do everything incrementally
The cardinal sin is adding an extra field to demux_packet, which caches
the determined seekable range for a keyframe range. demux_packet is a
rather general data structure and thus shouldn't have any fields that
are not inherent to its use, and are only needed as an implementation
detail of code using it. But what are you gonna do, sue me?
In the future, demux.c might have its own packet struct though. Then the
other existing cardinal sin (the "next" field, from MPlayer times) could
be removed as well.
This commit also changes slightly how the seek end is determined. There
is a note on the manpage in case anyone finds the new behavior
confusing. It's somewhat cleaner and might be needed for supporting
multiple ranges (although that's unclear).
We don't hope to auto-detect them at load time, as that would be too
much of a pain - even FFmpeg requires fetching and parsing of video
packets, and exposes the information only via deprecated API.
But there still needs to be a way to select them by default. This is
also needed to get the first CC packet at all (without seeking back).
This commit also attempts to clean up locking a bit, which is a PITA,
but it's better be careful & clean.
See manpage additions.
(In ffmpeg-mpv and Libav, this is still called "cuvid". Libav won't work
yet, because it has no frame params support yet, but this could get
fixed soon.)
Even if the demuxer cache does not multiple ranges yet. This is to
reduce the pain should caching of multiple ranges ever be implemented.
Also change it from the sub properties stuff to return a mpv_node
directly, which is less roundabout. Sub-property access won't work
anymore, though.
Remove the seekable-start/-end fields as well, as they're redundant with
the ranges.
All this would normally be considered an API change, but since it's been
only a few days with no known users, change it immediately.
This adds some node.c helpers as well, as the code would be too damn
fugly otherwise.
Comparing mpv's implementation against the ACES ODR reference samples
and algorithms, it seems like they're happy desaturating highlights
_way_ more aggressively than mpv currently does. And indeed, looking at
some example clips like The Redwoods (which is actually well-mastered),
the current desaturation produces unnatural-looking brightness fringes
where the sky meets the treeline.
Adjust the algorithm to make it apply to a much larger, more gradual
brightness region; and change the interpretation of the parameter. As a
bonus, the new parameter is actually sanely scaled (higher values = more
desaturation). Also, make it scale based on the signal level instead of
the luminance, to avoid under-desaturating bright blues.
This commit allows to use the AV_PIX_FMT_DRM_PRIME newly introduced
format in ffmpeg that allows decoders to provide an AVDRMFrameDescriptor
struct.
That struct holds dmabuf fds and information allowing zerocopy rendering
using KMS / DRM Atomic.
This has been tested on RockChip ROCK64 device.
This improves upon the previous commit, and partially rewrites it (and
other code). It does:
- disable the seeking within cache by default, and add an option to
control it
- mess with the buffer estimation reporting code, which will most likely
lead to funny regressions even if the new features are not enabled
- add a back buffer to the packet cache
- enhance the seek code so you can seek into the back buffer
- unnecessarily change a bunch of other stuff for no reason
- fuck up everything and vomit ponies and rainbows
This should actually be pretty usable. One thing we should add are some
properties to report the proper buffer state. Then the OSC could show a
nice buffer range. Also configuration of the buffers could be made
simpler. Once this has been tested enough, it can be enabled by default,
and might replace the stream cache's byte ringbuffer.
In addition it may or may not be possible to keep other buffer ranges
when seeking outside of the current range, but that would be much more
complex.
This should be functionally identical to rgba16f, since the formats only
differ in their representation on the CPU, but it could be useful for RA
backends that don't expose rgba16f, like Vulkan. It's definitely useful
for the WIP D3D11 backend.
It seems this will be useful for Rokchip DRM hwcontext integration.
DRM hwcontexts have additional internal structure which can be different
depending on the decoder, and which is not part of the generic hwcontext
API. Rockchip has 1 layer, which EGL interop happens to translate to a
RGB texture, while VAAPI (mapped as DRM hwcontext) will use multiple
layers. Both will use sw_format=nv12, and thus are indistinguishable on
the mp_image_params level. But this is needed to initialize the EGL
mapping and the vo_gpu video renderer correctly.
We hope that the layer count is enough to tell whether EGL will
translate the data to a RGB texture (vs. 2 texture resembling raw nv12
data). For that we introduce MP_IMAGE_HW_FLAG_OPAQUE.
This commit adds the flag, infrastructure to set it, and an "example"
for D3D11.
The D3D11 addition is quite useless at this point. But later we want to
get rid of d3d11_update_image_attribs() anyway, while we still need a
way to force d3d11vpp filter insertion, so maybe it has some
justification (who knows). In any case it makes testing this easier.
Obviously it also adds some basic support for triggering the opaque
format for decoding, which will use a driver-specific format, but which
is not supported in shaders. The opaque flag is not used to determine
whether d3d11vpp needs to be inserted, though.
Mostly an obscure option for testing. But --videotoolbox-format can be
deprecated, as it becomes redundant.
We rely on the libavutil hwcontext implementation to reject invalid
pixfmts, or not to blow up if they are incompatible.
This was confusing at best. Change it to output the actual choices.
(Seems like in the end it's always me who has to clean up other people's
bullshit.)
Context names were not unique - but they should be, so fix it. The whole
point of the original --opengl-backend option was to side-step the
tricky auto-detection, so you know exactly what you get. The goal of
this commit is to make --gpu-context work the same way. Fix the
non-unique names by appending "vk" to the names.
Keep in mind that this was not suitable for slecting the "UI" backend
anyway, since "x11" would force GLX, whereas people on not-NVIDIA
actually want "x11egl". Users trying to use --gpu-context=x11 to force
the X11 backend would always end up with GLX, which would at least break
VAAPI hardware decoding for them. Basically the idea that this option
could select the "UI" type is completely broken - it selects an
implementation, which implies a UI. Selecting the UI type This would
require a separate mechanism. (Although in theory this separate
mechanism could be part of the --gpu-context option - in any case,
someone would have to implement it.)
To achieve help output that can actually be understood, just duplicate
the code. Most of that code is duplicated anyway, and trying to share
just the list code with the result of making the output unreadable
doesn't make too much sense. If we wanted to save code/effort, we could
just remove the help output altogether.
--gpu-api has non-unique entries, and it would be nice to group them
(e.g. list all OpenGL capable contexts with "opengl"), but C makes this
simple idea too much of a pain, so don't do it.
Also remove a stray tab from the android entry on the manpage.
Signed-off-by: wm4 <wm4@nowhere>
Rename --stats to --load-stats-overlay and add an entry to options.rst
over the original commit.
Signed-off-by: wm4 <wm4@nowhere>
At the moment, rendering on Android requires ``--vo=opengl-cb`` and
a lot of java<->c++ bridging code to receive the receive and react to
the render callback in java. Performance also suffers with opengl-cb,
due to the overhead of context switching in JNI.
With this patch, Android can render using ``--vo=gpu --gpu-context=android``
(after setting ``--wid`` to point to an android.view.Surface on-screen).