This affects vo_opengl_cb in particular: it'll most likely auto-load
VDA, and then the VideoToolbox decoder won't work. And everything fails.
This is mainly caused by FFmpeg using separate pixfmts for the _same_
thing (CVPixelBuffers), simply because libavcodec's architecture demands
that hwaccel backends are selected by pixfmts. (Which makes no sense,
but now we have the mess.)
So instead of duplicating FFmpeg's misdesign, just change the format to
our own canonical one on the image output by the decoder. Now the GL
interop code is exactly the same for VDA and VT, and we use the VT name
only.
The hardware always decodes to nv12 so using this image format causes less cpu
usage than uyvy (which we are currently using, since Apple examples and other
free software use that). The reduction in cpu usage can add up to quite a bit,
especially for 4k or high fps video.
This needs an accompaning commit in libavcodec.
Since the new hwaccel API is now merged in ffmpeg's stable release, we can
finally remove support for the old API.
I pretty much kept lu_zero's new code unchanged and just added some error
printing (that we had with the old glue code) to make the life of our users
less miserable.
The harder work was done in the previous commits. After that this feature comes
out almost for free.
The only problem is I can't get the textures created with CGLTexImageIOSurface2D
to download properly, thus the code performs download using some CoreVideo APIs.
If someone knows why download of textures created with CGLTexImageIOSurface2D
doesn't work please contact me :)
Decoding H264 using Video Decode Acceleration used the custom 'vda_h264_dec'
decoder in FFmpeg.
The Good: This new implementation has some advantages over the previous one:
- It works with Libav: vda_h264_dec never got into Libav since they prefer
client applications to use the hwaccel API.
- It is way more efficient: in my tests this implementation yields a
reduction of CPU usage of roughly ~50% compared to using `vda_h264_dec` and
~65-75% compared to h264 software decoding. This is mainly because
`vo_corevideo` was adapted to perform direct rendering of the
`CVPixelBufferRefs` created by the Video Decode Acceleration API Framework.
The Bad:
- `vo_corevideo` is required to use VDA decoding acceleration.
- only works with versions of ffmpeg/libav new enough (needs reference
refcounting). That is FFmpeg 2.0+ and Libav's git master currently.
The Ugly: VDA was hardcoded to use UYVY (2vuy) for the uploaded video texture.
One one end this makes the code simple since Apple's OpenGL implementation
actually supports this out of the box. It would be nice to support other
output image formats and choose the best format depending on the input, or at
least making it configurable. My tests indicate that CPU usage actually
increases with a 420p IMGFMT output which is not what I would have expected.
NOTE: There is a small memory leak with old versions of FFmpeg and with Libav
since the CVPixelBufferRef is not automatically released when the AVFrame is
deallocated. This can cause leaks inside libavcodec for decoded frames that
are discarded before mpv wraps them inside a refcounted mp_image (this only
happens on seeks).
For frames that enter mpv's refcounting facilities, this is not a problem
since we rewrap the CVPixelBufferRef in our mp_image that properly forwards
CVPixelBufferRetain/CvPixelBufferRelease calls to the underying
CVPixelBufferRef.
So, for FFmpeg use something more recent than `b3d63995` for Libav the patch
was posted to the dev ML in July and in review since, apparently, the proposed
fix is rather hacky.