mirror of
https://github.com/mpv-player/mpv
synced 2024-11-14 22:48:35 +01:00
Moving fast_memcpy to separate file (Size optimization)
git-svn-id: svn://svn.mplayerhq.hu/mplayer/trunk@699 b3059339-0415-0410-9bf9-f77b7e298cf2
This commit is contained in:
parent
3fc8a79f68
commit
ada40a6be6
@ -3,8 +3,8 @@ include config.mak
|
||||
|
||||
LIBNAME = libvo.a
|
||||
|
||||
SRCS=osd.c font_load.c rgb15to16mmx.c yuv2rgb_mmx.c yuv2rgb.c video_out.c vo_null.c vo_pgm.c vo_md5.c vo_odivx.c x11_common.c $(OPTIONAL_SRCS)
|
||||
OBJS=osd.o font_load.o rgb15to16mmx.o yuv2rgb_mmx.o yuv2rgb.o video_out.o vo_null.o vo_pgm.o vo_md5.o vo_odivx.o x11_common.o $(OPTIONAL_OBJS)
|
||||
SRCS=aclib.c osd.c font_load.c rgb15to16mmx.c yuv2rgb_mmx.c yuv2rgb.c video_out.c vo_null.c vo_pgm.c vo_md5.c vo_odivx.c x11_common.c $(OPTIONAL_SRCS)
|
||||
OBJS=aclib.o osd.o font_load.o rgb15to16mmx.o yuv2rgb_mmx.o yuv2rgb.o video_out.o vo_null.o vo_pgm.o vo_md5.o vo_odivx.o x11_common.o $(OPTIONAL_OBJS)
|
||||
|
||||
CFLAGS = $(OPTFLAGS) -I. -I.. -DMPG12PLAY
|
||||
# -I/usr/X11R6/include/
|
||||
|
249
libvo/aclib.c
Normal file
249
libvo/aclib.c
Normal file
@ -0,0 +1,249 @@
|
||||
#include "../config.h"
|
||||
|
||||
#ifdef USE_FASTMEMCPY
|
||||
/*
|
||||
aclib - advanced C library ;)
|
||||
This file contains functions which improve and expand standard C-library
|
||||
*/
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
/* Enable this code, if SSE version works (faster) for you! */
|
||||
#if 1
|
||||
#undef HAVE_SSE
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
This part of code was taken by me from Linux-2.4.3 and slightly modified
|
||||
for MMX, MMX2, SSE instruction set. I have done it since linux uses page aligned
|
||||
blocks but mplayer uses weakly ordered data and original sources can not
|
||||
speedup them. Only using PREFETCHNTA and MOVNTQ together have effect!
|
||||
|
||||
>From IA-32 Intel Architecture Software Developer's Manual Volume 1,
|
||||
|
||||
Order Number 245470:
|
||||
"10.4.6. Cacheability Control, Prefetch, and Memory Ordering Instructions"
|
||||
|
||||
Data referenced by a program can be temporal (data will be used again) or
|
||||
non-temporal (data will be referenced once and not reused in the immediate
|
||||
future). To make efficient use of the processor's caches, it is generally
|
||||
desirable to cache temporal data and not cache non-temporal data. Overloading
|
||||
the processor's caches with non-temporal data is sometimes referred to as
|
||||
"polluting the caches".
|
||||
The non-temporal data is written to memory with Write-Combining semantics.
|
||||
|
||||
The PREFETCHh instructions permits a program to load data into the processor
|
||||
at a suggested cache level, so that it is closer to the processors load and
|
||||
store unit when it is needed. If the data is already present in a level of
|
||||
the cache hierarchy that is closer to the processor, the PREFETCHh instruction
|
||||
will not result in any data movement.
|
||||
But we should you PREFETCHNTA: Non-temporal data fetch data into location
|
||||
close to the processor, minimizing cache pollution.
|
||||
|
||||
The MOVNTQ (store quadword using non-temporal hint) instruction stores
|
||||
packed integer data from an MMX register to memory, using a non-temporal hint.
|
||||
The MOVNTPS (store packed single-precision floating-point values using
|
||||
non-temporal hint) instruction stores packed floating-point data from an
|
||||
XMM register to memory, using a non-temporal hint.
|
||||
|
||||
The SFENCE (Store Fence) instruction controls write ordering by creating a
|
||||
fence for memory store operations. This instruction guarantees that the results
|
||||
of every store instruction that precedes the store fence in program order is
|
||||
globally visible before any store instruction that follows the fence. The
|
||||
SFENCE instruction provides an efficient way of ensuring ordering between
|
||||
procedures that produce weakly-ordered data and procedures that consume that
|
||||
data.
|
||||
|
||||
If you have questions please contact with me: Nick Kurshev: nickols_k@mail.ru.
|
||||
*/
|
||||
|
||||
// 3dnow memcpy support from kernel 2.4.2
|
||||
// by Pontscho/fresh!mindworkz
|
||||
|
||||
#if defined( HAVE_MMX2 ) || defined( HAVE_3DNOW ) || defined( HAVE_MMX )
|
||||
|
||||
#undef HAVE_MMX1
|
||||
#if defined(HAVE_MMX) && !defined(HAVE_MMX2) && !defined(HAVE_3DNOW) && !defined(HAVE_SSE)
|
||||
/* means: mmx v.1. Note: Since we added alignment of destinition it speedups
|
||||
of memory copying on PentMMX, Celeron-1 and P2 upto 12% versus
|
||||
standard (non MMX-optimized) version.
|
||||
Note: on K6-2+ it speedups memory copying upto 25% and
|
||||
on K7 and P3 about 500% (5 times). */
|
||||
#define HAVE_MMX1
|
||||
#endif
|
||||
|
||||
|
||||
#undef HAVE_K6_2PLUS
|
||||
#if !defined( HAVE_MMX2) && defined( HAVE_3DNOW)
|
||||
#define HAVE_K6_2PLUS
|
||||
#endif
|
||||
|
||||
/* for small memory blocks (<256 bytes) this version is faster */
|
||||
#define small_memcpy(to,from,n)\
|
||||
{\
|
||||
register unsigned long int dummy;\
|
||||
__asm__ __volatile__(\
|
||||
"rep; movsb"\
|
||||
:"=&D"(to), "=&S"(from), "=&c"(dummy)\
|
||||
/* It's most portable way to notify compiler */\
|
||||
/* that edi, esi and ecx are clobbered in asm block. */\
|
||||
/* Thanks to A'rpi for hint!!! */\
|
||||
:"0" (to), "1" (from),"2" (n)\
|
||||
: "memory");\
|
||||
}
|
||||
|
||||
#ifdef HAVE_SSE
|
||||
#define MMREG_SIZE 16
|
||||
#else
|
||||
#define MMREG_SIZE 8
|
||||
#endif
|
||||
|
||||
/* Small defines (for readability only) ;) */
|
||||
#ifdef HAVE_K6_2PLUS
|
||||
#define PREFETCH "prefetch"
|
||||
/* On K6 femms is faster of emms. On K7 femms is directly mapped on emms. */
|
||||
#define EMMS "femms"
|
||||
#else
|
||||
#define PREFETCH "prefetchnta"
|
||||
#define EMMS "emms"
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_MMX2
|
||||
#define MOVNTQ "movntq"
|
||||
#else
|
||||
#define MOVNTQ "movq"
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_MMX1
|
||||
#define MIN_LEN 0x800 /* 2K blocks */
|
||||
#else
|
||||
#define MIN_LEN 0x40 /* 64-byte blocks */
|
||||
#endif
|
||||
|
||||
void * fast_memcpy(void * to, const void * from, size_t len)
|
||||
{
|
||||
void *retval;
|
||||
size_t i;
|
||||
retval = to;
|
||||
#ifndef HAVE_MMX1
|
||||
/* PREFETCH has effect even for MOVSB instruction ;) */
|
||||
__asm__ __volatile__ (
|
||||
PREFETCH" (%0)\n"
|
||||
PREFETCH" 64(%0)\n"
|
||||
PREFETCH" 128(%0)\n"
|
||||
PREFETCH" 192(%0)\n"
|
||||
PREFETCH" 256(%0)\n"
|
||||
: : "r" (from) );
|
||||
#endif
|
||||
if(len >= MIN_LEN)
|
||||
{
|
||||
register unsigned long int delta;
|
||||
/* Align destinition to MMREG_SIZE -boundary */
|
||||
delta = ((unsigned long int)to)&(MMREG_SIZE-1);
|
||||
if(delta)
|
||||
{
|
||||
delta=MMREG_SIZE-delta;
|
||||
len -= delta;
|
||||
small_memcpy(to, from, delta);
|
||||
}
|
||||
i = len >> 6; /* len/64 */
|
||||
len&=63;
|
||||
/*
|
||||
This algorithm is top effective when the code consequently
|
||||
reads and writes blocks which have size of cache line.
|
||||
Size of cache line is processor-dependent.
|
||||
It will, however, be a minimum of 32 bytes on any processors.
|
||||
It would be better to have a number of instructions which
|
||||
perform reading and writing to be multiple to a number of
|
||||
processor's decoders, but it's not always possible.
|
||||
*/
|
||||
#ifdef HAVE_SSE /* Only P3 (may be Cyrix3) */
|
||||
if(((unsigned long)from) & 15)
|
||||
/* if SRC is misaligned */
|
||||
for(; i>0; i--)
|
||||
{
|
||||
__asm__ __volatile__ (
|
||||
PREFETCH" 320(%0)\n"
|
||||
"movups (%0), %%xmm0\n"
|
||||
"movups 16(%0), %%xmm1\n"
|
||||
"movups 32(%0), %%xmm2\n"
|
||||
"movups 48(%0), %%xmm3\n"
|
||||
"movntps %%xmm0, (%1)\n"
|
||||
"movntps %%xmm1, 16(%1)\n"
|
||||
"movntps %%xmm2, 32(%1)\n"
|
||||
"movntps %%xmm3, 48(%1)\n"
|
||||
:: "r" (from), "r" (to) : "memory");
|
||||
((const unsigned char *)from)+=64;
|
||||
((unsigned char *)to)+=64;
|
||||
}
|
||||
else
|
||||
/*
|
||||
Only if SRC is aligned on 16-byte boundary.
|
||||
It allows to use movaps instead of movups, which required data
|
||||
to be aligned or a general-protection exception (#GP) is generated.
|
||||
*/
|
||||
for(; i>0; i--)
|
||||
{
|
||||
__asm__ __volatile__ (
|
||||
PREFETCH" 320(%0)\n"
|
||||
"movaps (%0), %%xmm0\n"
|
||||
"movaps 16(%0), %%xmm1\n"
|
||||
"movaps 32(%0), %%xmm2\n"
|
||||
"movaps 48(%0), %%xmm3\n"
|
||||
"movntps %%xmm0, (%1)\n"
|
||||
"movntps %%xmm1, 16(%1)\n"
|
||||
"movntps %%xmm2, 32(%1)\n"
|
||||
"movntps %%xmm3, 48(%1)\n"
|
||||
:: "r" (from), "r" (to) : "memory");
|
||||
((const unsigned char *)from)+=64;
|
||||
((unsigned char *)to)+=64;
|
||||
}
|
||||
#else
|
||||
for(; i>0; i--)
|
||||
{
|
||||
__asm__ __volatile__ (
|
||||
#ifndef HAVE_MMX1
|
||||
PREFETCH" 320(%0)\n"
|
||||
#endif
|
||||
"movq (%0), %%mm0\n"
|
||||
"movq 8(%0), %%mm1\n"
|
||||
"movq 16(%0), %%mm2\n"
|
||||
"movq 24(%0), %%mm3\n"
|
||||
"movq 32(%0), %%mm4\n"
|
||||
"movq 40(%0), %%mm5\n"
|
||||
"movq 48(%0), %%mm6\n"
|
||||
"movq 56(%0), %%mm7\n"
|
||||
MOVNTQ" %%mm0, (%1)\n"
|
||||
MOVNTQ" %%mm1, 8(%1)\n"
|
||||
MOVNTQ" %%mm2, 16(%1)\n"
|
||||
MOVNTQ" %%mm3, 24(%1)\n"
|
||||
MOVNTQ" %%mm4, 32(%1)\n"
|
||||
MOVNTQ" %%mm5, 40(%1)\n"
|
||||
MOVNTQ" %%mm6, 48(%1)\n"
|
||||
MOVNTQ" %%mm7, 56(%1)\n"
|
||||
:: "r" (from), "r" (to) : "memory");
|
||||
((const unsigned char *)from)+=64;
|
||||
((unsigned char *)to)+=64;
|
||||
}
|
||||
#endif /* Have SSE */
|
||||
#ifdef HAVE_MMX2
|
||||
/* since movntq is weakly-ordered, a "sfence"
|
||||
* is needed to become ordered again. */
|
||||
__asm__ __volatile__ ("sfence":::"memory");
|
||||
#endif
|
||||
#ifndef HAVE_SSE
|
||||
/* enables to use FPU */
|
||||
__asm__ __volatile__ (EMMS:::"memory");
|
||||
#endif
|
||||
}
|
||||
/*
|
||||
* Now do the tail of the block
|
||||
*/
|
||||
if(len) small_memcpy(to, from, len);
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
#endif /* #if defined( HAVE_MMX2 ) || defined( HAVE_3DNOW ) || defined( HAVE_MMX ) */
|
||||
#endif /* USE_FASTMEMCPY */
|
249
libvo/aclib_template.c
Normal file
249
libvo/aclib_template.c
Normal file
@ -0,0 +1,249 @@
|
||||
#include "../config.h"
|
||||
|
||||
#ifdef USE_FASTMEMCPY
|
||||
/*
|
||||
aclib - advanced C library ;)
|
||||
This file contains functions which improve and expand standard C-library
|
||||
*/
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
/* Enable this code, if SSE version works (faster) for you! */
|
||||
#if 1
|
||||
#undef HAVE_SSE
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
This part of code was taken by me from Linux-2.4.3 and slightly modified
|
||||
for MMX, MMX2, SSE instruction set. I have done it since linux uses page aligned
|
||||
blocks but mplayer uses weakly ordered data and original sources can not
|
||||
speedup them. Only using PREFETCHNTA and MOVNTQ together have effect!
|
||||
|
||||
>From IA-32 Intel Architecture Software Developer's Manual Volume 1,
|
||||
|
||||
Order Number 245470:
|
||||
"10.4.6. Cacheability Control, Prefetch, and Memory Ordering Instructions"
|
||||
|
||||
Data referenced by a program can be temporal (data will be used again) or
|
||||
non-temporal (data will be referenced once and not reused in the immediate
|
||||
future). To make efficient use of the processor's caches, it is generally
|
||||
desirable to cache temporal data and not cache non-temporal data. Overloading
|
||||
the processor's caches with non-temporal data is sometimes referred to as
|
||||
"polluting the caches".
|
||||
The non-temporal data is written to memory with Write-Combining semantics.
|
||||
|
||||
The PREFETCHh instructions permits a program to load data into the processor
|
||||
at a suggested cache level, so that it is closer to the processors load and
|
||||
store unit when it is needed. If the data is already present in a level of
|
||||
the cache hierarchy that is closer to the processor, the PREFETCHh instruction
|
||||
will not result in any data movement.
|
||||
But we should you PREFETCHNTA: Non-temporal data fetch data into location
|
||||
close to the processor, minimizing cache pollution.
|
||||
|
||||
The MOVNTQ (store quadword using non-temporal hint) instruction stores
|
||||
packed integer data from an MMX register to memory, using a non-temporal hint.
|
||||
The MOVNTPS (store packed single-precision floating-point values using
|
||||
non-temporal hint) instruction stores packed floating-point data from an
|
||||
XMM register to memory, using a non-temporal hint.
|
||||
|
||||
The SFENCE (Store Fence) instruction controls write ordering by creating a
|
||||
fence for memory store operations. This instruction guarantees that the results
|
||||
of every store instruction that precedes the store fence in program order is
|
||||
globally visible before any store instruction that follows the fence. The
|
||||
SFENCE instruction provides an efficient way of ensuring ordering between
|
||||
procedures that produce weakly-ordered data and procedures that consume that
|
||||
data.
|
||||
|
||||
If you have questions please contact with me: Nick Kurshev: nickols_k@mail.ru.
|
||||
*/
|
||||
|
||||
// 3dnow memcpy support from kernel 2.4.2
|
||||
// by Pontscho/fresh!mindworkz
|
||||
|
||||
#if defined( HAVE_MMX2 ) || defined( HAVE_3DNOW ) || defined( HAVE_MMX )
|
||||
|
||||
#undef HAVE_MMX1
|
||||
#if defined(HAVE_MMX) && !defined(HAVE_MMX2) && !defined(HAVE_3DNOW) && !defined(HAVE_SSE)
|
||||
/* means: mmx v.1. Note: Since we added alignment of destinition it speedups
|
||||
of memory copying on PentMMX, Celeron-1 and P2 upto 12% versus
|
||||
standard (non MMX-optimized) version.
|
||||
Note: on K6-2+ it speedups memory copying upto 25% and
|
||||
on K7 and P3 about 500% (5 times). */
|
||||
#define HAVE_MMX1
|
||||
#endif
|
||||
|
||||
|
||||
#undef HAVE_K6_2PLUS
|
||||
#if !defined( HAVE_MMX2) && defined( HAVE_3DNOW)
|
||||
#define HAVE_K6_2PLUS
|
||||
#endif
|
||||
|
||||
/* for small memory blocks (<256 bytes) this version is faster */
|
||||
#define small_memcpy(to,from,n)\
|
||||
{\
|
||||
register unsigned long int dummy;\
|
||||
__asm__ __volatile__(\
|
||||
"rep; movsb"\
|
||||
:"=&D"(to), "=&S"(from), "=&c"(dummy)\
|
||||
/* It's most portable way to notify compiler */\
|
||||
/* that edi, esi and ecx are clobbered in asm block. */\
|
||||
/* Thanks to A'rpi for hint!!! */\
|
||||
:"0" (to), "1" (from),"2" (n)\
|
||||
: "memory");\
|
||||
}
|
||||
|
||||
#ifdef HAVE_SSE
|
||||
#define MMREG_SIZE 16
|
||||
#else
|
||||
#define MMREG_SIZE 8
|
||||
#endif
|
||||
|
||||
/* Small defines (for readability only) ;) */
|
||||
#ifdef HAVE_K6_2PLUS
|
||||
#define PREFETCH "prefetch"
|
||||
/* On K6 femms is faster of emms. On K7 femms is directly mapped on emms. */
|
||||
#define EMMS "femms"
|
||||
#else
|
||||
#define PREFETCH "prefetchnta"
|
||||
#define EMMS "emms"
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_MMX2
|
||||
#define MOVNTQ "movntq"
|
||||
#else
|
||||
#define MOVNTQ "movq"
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_MMX1
|
||||
#define MIN_LEN 0x800 /* 2K blocks */
|
||||
#else
|
||||
#define MIN_LEN 0x40 /* 64-byte blocks */
|
||||
#endif
|
||||
|
||||
void * fast_memcpy(void * to, const void * from, size_t len)
|
||||
{
|
||||
void *retval;
|
||||
size_t i;
|
||||
retval = to;
|
||||
#ifndef HAVE_MMX1
|
||||
/* PREFETCH has effect even for MOVSB instruction ;) */
|
||||
__asm__ __volatile__ (
|
||||
PREFETCH" (%0)\n"
|
||||
PREFETCH" 64(%0)\n"
|
||||
PREFETCH" 128(%0)\n"
|
||||
PREFETCH" 192(%0)\n"
|
||||
PREFETCH" 256(%0)\n"
|
||||
: : "r" (from) );
|
||||
#endif
|
||||
if(len >= MIN_LEN)
|
||||
{
|
||||
register unsigned long int delta;
|
||||
/* Align destinition to MMREG_SIZE -boundary */
|
||||
delta = ((unsigned long int)to)&(MMREG_SIZE-1);
|
||||
if(delta)
|
||||
{
|
||||
delta=MMREG_SIZE-delta;
|
||||
len -= delta;
|
||||
small_memcpy(to, from, delta);
|
||||
}
|
||||
i = len >> 6; /* len/64 */
|
||||
len&=63;
|
||||
/*
|
||||
This algorithm is top effective when the code consequently
|
||||
reads and writes blocks which have size of cache line.
|
||||
Size of cache line is processor-dependent.
|
||||
It will, however, be a minimum of 32 bytes on any processors.
|
||||
It would be better to have a number of instructions which
|
||||
perform reading and writing to be multiple to a number of
|
||||
processor's decoders, but it's not always possible.
|
||||
*/
|
||||
#ifdef HAVE_SSE /* Only P3 (may be Cyrix3) */
|
||||
if(((unsigned long)from) & 15)
|
||||
/* if SRC is misaligned */
|
||||
for(; i>0; i--)
|
||||
{
|
||||
__asm__ __volatile__ (
|
||||
PREFETCH" 320(%0)\n"
|
||||
"movups (%0), %%xmm0\n"
|
||||
"movups 16(%0), %%xmm1\n"
|
||||
"movups 32(%0), %%xmm2\n"
|
||||
"movups 48(%0), %%xmm3\n"
|
||||
"movntps %%xmm0, (%1)\n"
|
||||
"movntps %%xmm1, 16(%1)\n"
|
||||
"movntps %%xmm2, 32(%1)\n"
|
||||
"movntps %%xmm3, 48(%1)\n"
|
||||
:: "r" (from), "r" (to) : "memory");
|
||||
((const unsigned char *)from)+=64;
|
||||
((unsigned char *)to)+=64;
|
||||
}
|
||||
else
|
||||
/*
|
||||
Only if SRC is aligned on 16-byte boundary.
|
||||
It allows to use movaps instead of movups, which required data
|
||||
to be aligned or a general-protection exception (#GP) is generated.
|
||||
*/
|
||||
for(; i>0; i--)
|
||||
{
|
||||
__asm__ __volatile__ (
|
||||
PREFETCH" 320(%0)\n"
|
||||
"movaps (%0), %%xmm0\n"
|
||||
"movaps 16(%0), %%xmm1\n"
|
||||
"movaps 32(%0), %%xmm2\n"
|
||||
"movaps 48(%0), %%xmm3\n"
|
||||
"movntps %%xmm0, (%1)\n"
|
||||
"movntps %%xmm1, 16(%1)\n"
|
||||
"movntps %%xmm2, 32(%1)\n"
|
||||
"movntps %%xmm3, 48(%1)\n"
|
||||
:: "r" (from), "r" (to) : "memory");
|
||||
((const unsigned char *)from)+=64;
|
||||
((unsigned char *)to)+=64;
|
||||
}
|
||||
#else
|
||||
for(; i>0; i--)
|
||||
{
|
||||
__asm__ __volatile__ (
|
||||
#ifndef HAVE_MMX1
|
||||
PREFETCH" 320(%0)\n"
|
||||
#endif
|
||||
"movq (%0), %%mm0\n"
|
||||
"movq 8(%0), %%mm1\n"
|
||||
"movq 16(%0), %%mm2\n"
|
||||
"movq 24(%0), %%mm3\n"
|
||||
"movq 32(%0), %%mm4\n"
|
||||
"movq 40(%0), %%mm5\n"
|
||||
"movq 48(%0), %%mm6\n"
|
||||
"movq 56(%0), %%mm7\n"
|
||||
MOVNTQ" %%mm0, (%1)\n"
|
||||
MOVNTQ" %%mm1, 8(%1)\n"
|
||||
MOVNTQ" %%mm2, 16(%1)\n"
|
||||
MOVNTQ" %%mm3, 24(%1)\n"
|
||||
MOVNTQ" %%mm4, 32(%1)\n"
|
||||
MOVNTQ" %%mm5, 40(%1)\n"
|
||||
MOVNTQ" %%mm6, 48(%1)\n"
|
||||
MOVNTQ" %%mm7, 56(%1)\n"
|
||||
:: "r" (from), "r" (to) : "memory");
|
||||
((const unsigned char *)from)+=64;
|
||||
((unsigned char *)to)+=64;
|
||||
}
|
||||
#endif /* Have SSE */
|
||||
#ifdef HAVE_MMX2
|
||||
/* since movntq is weakly-ordered, a "sfence"
|
||||
* is needed to become ordered again. */
|
||||
__asm__ __volatile__ ("sfence":::"memory");
|
||||
#endif
|
||||
#ifndef HAVE_SSE
|
||||
/* enables to use FPU */
|
||||
__asm__ __volatile__ (EMMS:::"memory");
|
||||
#endif
|
||||
}
|
||||
/*
|
||||
* Now do the tail of the block
|
||||
*/
|
||||
if(len) small_memcpy(to, from, len);
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
#endif /* #if defined( HAVE_MMX2 ) || defined( HAVE_3DNOW ) || defined( HAVE_MMX ) */
|
||||
#endif /* USE_FASTMEMCPY */
|
@ -1,242 +1,11 @@
|
||||
#ifndef __MPLAYER_MEMCPY
|
||||
#define __MPLAYER_MEMCPY 1
|
||||
|
||||
#ifdef USE_FASTMEMCPY
|
||||
#if defined( HAVE_MMX2 ) || defined( HAVE_3DNOW ) || defined( HAVE_MMX )
|
||||
#include <stddef.h>
|
||||
|
||||
// Enable this code, if SSE version works (faster) for you!
|
||||
#if 0
|
||||
#ifdef HAVE_SSE
|
||||
#define FASTMEMCPY_SSE
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
This part of code was taken by from Linux-2.4.3 and slightly modified
|
||||
for MMX, MMX2, SSE instruction set. I have done it since linux uses page aligned
|
||||
blocks but mplayer uses weakly ordered data and original sources can not
|
||||
speedup them. Only using PREFETCHNTA and MOVNTQ together have effect!
|
||||
|
||||
>From IA-32 Intel Architecture Software Developer's Manual Volume 1,
|
||||
|
||||
Order Number 245470:
|
||||
"10.4.6. Cacheability Control, Prefetch, and Memory Ordering Instructions"
|
||||
|
||||
Data referenced by a program can be temporal (data will be used again) or
|
||||
non-temporal (data will be referenced once and not reused in the immediate
|
||||
future). To make efficient use of the processor's caches, it is generally
|
||||
desirable to cache temporal data and not cache non-temporal data. Overloading
|
||||
the processor's caches with non-temporal data is sometimes referred to as
|
||||
"polluting the caches".
|
||||
The non-temporal data is written to memory with Write-Combining semantics.
|
||||
|
||||
The PREFETCHh instructions permits a program to load data into the processor
|
||||
at a suggested cache level, so that it is closer to the processors load and
|
||||
store unit when it is needed. If the data is already present in a level of
|
||||
the cache hierarchy that is closer to the processor, the PREFETCHh instruction
|
||||
will not result in any data movement.
|
||||
But we should you PREFETCHNTA: Non-temporal data fetch data into location
|
||||
close to the processor, minimizing cache pollution.
|
||||
|
||||
The MOVNTQ (store quadword using non-temporal hint) instruction stores
|
||||
packed integer data from an MMX register to memory, using a non-temporal hint.
|
||||
The MOVNTPS (store packed single-precision floating-point values using
|
||||
non-temporal hint) instruction stores packed floating-point data from an
|
||||
XMM register to memory, using a non-temporal hint.
|
||||
|
||||
The SFENCE (Store Fence) instruction controls write ordering by creating a
|
||||
fence for memory store operations. This instruction guarantees that the results
|
||||
of every store instruction that precedes the store fence in program order is
|
||||
globally visible before any store instruction that follows the fence. The
|
||||
SFENCE instruction provides an efficient way of ensuring ordering between
|
||||
procedures that produce weakly-ordered data and procedures that consume that
|
||||
data.
|
||||
|
||||
If you have questions please contact with me: Nick Kurshev: nickols_k@mail.ru.
|
||||
*/
|
||||
|
||||
// 3dnow memcpy support from kernel 2.4.2
|
||||
// by Pontscho/fresh!mindworkz
|
||||
|
||||
#if defined( HAVE_MMX2 ) || defined( HAVE_3DNOW ) || defined( HAVE_MMX )
|
||||
|
||||
#undef HAVE_MMX1
|
||||
#if defined(HAVE_MMX) && !defined(HAVE_MMX2) && !defined(HAVE_3DNOW) && !defined(FASTMEMCPY_SSE)
|
||||
/* means: mmx v.1. Note: Since we added alignment of destinition it speedups
|
||||
of memory copying on PentMMX, Celeron-1 and P2 upto 12% versus
|
||||
standard (non MMX-optimized) version.
|
||||
Note: on K6-2+ it speedups memory copying upto 25% and
|
||||
on K7 and P3 about 500% (5 times). */
|
||||
#define HAVE_MMX1
|
||||
#endif
|
||||
|
||||
|
||||
#undef HAVE_K6_2PLUS
|
||||
#if !defined( HAVE_MMX2) && defined( HAVE_3DNOW)
|
||||
#define HAVE_K6_2PLUS
|
||||
#endif
|
||||
|
||||
/* for small memory blocks (<256 bytes) this version is faster */
|
||||
#define small_memcpy(to,from,n)\
|
||||
{\
|
||||
__asm__ __volatile__(\
|
||||
"rep; movsb"\
|
||||
:"=D"(to), "=S"(from), "=c"(n)\
|
||||
/* It's most portable way to notify compiler */\
|
||||
/* that edi, esi and ecx are clobbered in asm block. */\
|
||||
/* Thanks to A'rpi for hint!!! */\
|
||||
:"0" (to), "1" (from),"2" (n)\
|
||||
: "memory");\
|
||||
}
|
||||
|
||||
#ifdef FASTMEMCPY_SSE
|
||||
#define MMREG_SIZE 16
|
||||
#else
|
||||
#define MMREG_SIZE 8
|
||||
#endif
|
||||
|
||||
/* Small defines (for readability only) ;) */
|
||||
#ifdef HAVE_K6_2PLUS
|
||||
#define PREFETCH "prefetch"
|
||||
/* On K6 femms is faster of emms. On K7 femms is directly mapped on emms. */
|
||||
#define EMMS "femms"
|
||||
#else
|
||||
#define PREFETCH "prefetchnta"
|
||||
#define EMMS "emms"
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_MMX2
|
||||
#define MOVNTQ "movntq"
|
||||
#else
|
||||
#define MOVNTQ "movq"
|
||||
#endif
|
||||
|
||||
inline static void * fast_memcpy(void * to, const void * from, size_t len)
|
||||
{
|
||||
void *retval;
|
||||
int i;
|
||||
retval = to;
|
||||
if(len >= 0x200) /* 512-byte blocks */
|
||||
{
|
||||
register unsigned long int delta;
|
||||
/* Align destinition to MMREG_SIZE -boundary */
|
||||
delta = ((unsigned long int)to)&(MMREG_SIZE-1);
|
||||
if(delta)
|
||||
{
|
||||
delta=MMREG_SIZE-delta;
|
||||
len -= delta;
|
||||
small_memcpy(to, from, delta);
|
||||
}
|
||||
i = len >> 6; /* len/64 */
|
||||
len&=63;
|
||||
|
||||
#ifndef HAVE_MMX1
|
||||
__asm__ __volatile__ (
|
||||
PREFETCH" (%0)\n"
|
||||
PREFETCH" 64(%0)\n"
|
||||
PREFETCH" 128(%0)\n"
|
||||
PREFETCH" 192(%0)\n"
|
||||
PREFETCH" 256(%0)\n"
|
||||
: : "r" (from) );
|
||||
#endif
|
||||
/*
|
||||
This algorithm is top effective when the code consequently
|
||||
reads and writes blocks which have size of cache line.
|
||||
Size of cache line is processor-dependent.
|
||||
It will, however, be a minimum of 32 bytes on any processors.
|
||||
It would be better to have a number of instructions which
|
||||
perform reading and writing to be multiple to a number of
|
||||
processor's decoders, but it's not always possible.
|
||||
*/
|
||||
#ifdef FASTMEMCPY_SSE /* Only P3 (may be Cyrix3) */
|
||||
if(((unsigned long)from) & 15)
|
||||
/* if SRC is misaligned */
|
||||
for(; i>0; i--)
|
||||
{
|
||||
__asm__ __volatile__ (
|
||||
PREFETCH" 320(%0)\n"
|
||||
"movups (%0), %%xmm0\n"
|
||||
"movups 16(%0), %%xmm1\n"
|
||||
"movntps %%xmm0, (%1)\n"
|
||||
"movntps %%xmm1, 16(%1)\n"
|
||||
"movups 32(%0), %%xmm0\n"
|
||||
"movups 48(%0), %%xmm1\n"
|
||||
"movntps %%xmm0, 32(%1)\n"
|
||||
"movntps %%xmm1, 48(%1)\n"
|
||||
:: "r" (from), "r" (to) : "memory");
|
||||
((const unsigned char *)from)+=64;
|
||||
((unsigned char *)to)+=64;
|
||||
}
|
||||
else
|
||||
/*
|
||||
Only if SRC is aligned on 16-byte boundary.
|
||||
It allows to use movaps instead of movups, which required data
|
||||
to be aligned or a general-protection exception (#GP) is generated.
|
||||
*/
|
||||
for(; i>0; i--)
|
||||
{
|
||||
__asm__ __volatile__ (
|
||||
PREFETCH" 320(%0)\n"
|
||||
"movaps (%0), %%xmm0\n"
|
||||
"movaps 16(%0), %%xmm1\n"
|
||||
"movntps %%xmm0, (%1)\n"
|
||||
"movntps %%xmm1, 16(%1)\n"
|
||||
"movaps 32(%0), %%xmm0\n"
|
||||
"movaps 48(%0), %%xmm1\n"
|
||||
"movntps %%xmm0, 32(%1)\n"
|
||||
"movntps %%xmm1, 48(%1)\n"
|
||||
:: "r" (from), "r" (to) : "memory");
|
||||
((const unsigned char *)from)+=64;
|
||||
((unsigned char *)to)+=64;
|
||||
}
|
||||
#else
|
||||
for(; i>0; i--)
|
||||
{
|
||||
__asm__ __volatile__ (
|
||||
#ifndef HAVE_MMX1
|
||||
PREFETCH" 320(%0)\n"
|
||||
#endif
|
||||
"movq (%0), %%mm0\n"
|
||||
"movq 8(%0), %%mm1\n"
|
||||
"movq 16(%0), %%mm2\n"
|
||||
"movq 24(%0), %%mm3\n"
|
||||
MOVNTQ" %%mm0, (%1)\n"
|
||||
MOVNTQ" %%mm1, 8(%1)\n"
|
||||
MOVNTQ" %%mm2, 16(%1)\n"
|
||||
MOVNTQ" %%mm3, 24(%1)\n"
|
||||
"movq 32(%0), %%mm0\n"
|
||||
"movq 40(%0), %%mm1\n"
|
||||
"movq 48(%0), %%mm2\n"
|
||||
"movq 56(%0), %%mm3\n"
|
||||
MOVNTQ" %%mm0, 32(%1)\n"
|
||||
MOVNTQ" %%mm1, 40(%1)\n"
|
||||
MOVNTQ" %%mm2, 48(%1)\n"
|
||||
MOVNTQ" %%mm3, 56(%1)\n"
|
||||
:: "r" (from), "r" (to) : "memory");
|
||||
((const unsigned char *)from)+=64;
|
||||
((unsigned char *)to)+=64;
|
||||
}
|
||||
#endif /* Have SSE */
|
||||
#ifdef HAVE_MMX2
|
||||
/* since movntq is weakly-ordered, a "sfence"
|
||||
* is needed to become ordered again. */
|
||||
__asm__ __volatile__ ("sfence":::"memory");
|
||||
#endif
|
||||
#ifndef FASTMEMCPY_SSE
|
||||
/* enables to use FPU */
|
||||
__asm__ __volatile__ (EMMS:::"memory");
|
||||
#endif
|
||||
}
|
||||
/*
|
||||
* Now do the tail of the block
|
||||
*/
|
||||
if(len) small_memcpy(to, from, len);
|
||||
return retval;
|
||||
}
|
||||
extern void * fast_memcpy(void * to, const void * from, size_t len);
|
||||
#define memcpy(a,b,c) fast_memcpy(a,b,c)
|
||||
#undef small_memcpy
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user