2010-01-30 17:57:40 +01:00
|
|
|
/*
|
|
|
|
* This file is part of MPlayer.
|
|
|
|
*
|
|
|
|
* MPlayer is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* MPlayer is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
|
|
* with MPlayer; if not, write to the Free Software Foundation, Inc.,
|
|
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*/
|
2007-08-05 00:12:49 +02:00
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
2014-06-17 22:44:13 +02:00
|
|
|
#include <limits.h>
|
2013-11-28 19:28:38 +01:00
|
|
|
#include <pthread.h>
|
2012-12-12 00:43:36 +01:00
|
|
|
#include <assert.h>
|
2007-08-05 00:12:49 +02:00
|
|
|
|
2012-12-31 01:58:25 +01:00
|
|
|
#include <libavutil/mem.h>
|
|
|
|
#include <libavutil/common.h>
|
2012-12-26 21:13:58 +01:00
|
|
|
#include <libavutil/bswap.h>
|
2013-06-28 21:14:43 +02:00
|
|
|
#include <libavcodec/avcodec.h>
|
2012-12-31 01:58:25 +01:00
|
|
|
|
2011-10-06 20:46:01 +02:00
|
|
|
#include "talloc.h"
|
2007-08-05 00:12:49 +02:00
|
|
|
|
2013-03-09 20:21:12 +01:00
|
|
|
#include "img_format.h"
|
|
|
|
#include "mp_image.h"
|
|
|
|
#include "sws_utils.h"
|
|
|
|
#include "memcpy_pic.h"
|
|
|
|
#include "fmt-conversion.h"
|
2007-08-05 00:12:49 +02:00
|
|
|
|
2013-11-03 23:55:16 +01:00
|
|
|
#include "video/filter/vf.h"
|
|
|
|
|
2013-07-28 00:10:47 +02:00
|
|
|
static pthread_mutex_t refcount_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
#define refcount_lock() pthread_mutex_lock(&refcount_mutex)
|
|
|
|
#define refcount_unlock() pthread_mutex_unlock(&refcount_mutex)
|
|
|
|
|
2012-12-12 00:43:36 +01:00
|
|
|
struct m_refcount {
|
|
|
|
void *arg;
|
|
|
|
// free() is called if refcount reaches 0.
|
|
|
|
void (*free)(void *arg);
|
|
|
|
// External refcounted object (such as libavcodec DR buffers). This assumes
|
|
|
|
// that the actual data is managed by the external object, not by
|
|
|
|
// m_refcount. The .ext_* calls use that external object's refcount
|
2013-03-09 20:21:12 +01:00
|
|
|
// primitives.
|
2012-12-12 00:43:36 +01:00
|
|
|
void (*ext_ref)(void *arg);
|
|
|
|
void (*ext_unref)(void *arg);
|
|
|
|
bool (*ext_is_unique)(void *arg);
|
|
|
|
// Native refcount (there may be additional references if .ext_* are set)
|
|
|
|
int refcount;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Only for checking API usage
|
2013-10-13 01:16:30 +02:00
|
|
|
static void m_refcount_destructor(void *ptr)
|
2012-12-12 00:43:36 +01:00
|
|
|
{
|
|
|
|
struct m_refcount *ref = ptr;
|
|
|
|
assert(ref->refcount == 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Starts out with refcount==1, caller can set .arg and .free and .ext_*
|
|
|
|
static struct m_refcount *m_refcount_new(void)
|
|
|
|
{
|
|
|
|
struct m_refcount *ref = talloc_ptrtype(NULL, ref);
|
|
|
|
*ref = (struct m_refcount) { .refcount = 1 };
|
|
|
|
talloc_set_destructor(ref, m_refcount_destructor);
|
|
|
|
return ref;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void m_refcount_ref(struct m_refcount *ref)
|
|
|
|
{
|
2013-07-28 00:10:47 +02:00
|
|
|
refcount_lock();
|
2012-12-12 00:43:36 +01:00
|
|
|
ref->refcount++;
|
2013-07-28 00:10:47 +02:00
|
|
|
refcount_unlock();
|
|
|
|
|
2012-12-12 00:43:36 +01:00
|
|
|
if (ref->ext_ref)
|
|
|
|
ref->ext_ref(ref->arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void m_refcount_unref(struct m_refcount *ref)
|
|
|
|
{
|
|
|
|
if (ref->ext_unref)
|
|
|
|
ref->ext_unref(ref->arg);
|
2013-07-28 00:10:47 +02:00
|
|
|
|
|
|
|
bool dead;
|
|
|
|
refcount_lock();
|
|
|
|
assert(ref->refcount > 0);
|
2012-12-12 00:43:36 +01:00
|
|
|
ref->refcount--;
|
2013-07-28 00:10:47 +02:00
|
|
|
dead = ref->refcount == 0;
|
|
|
|
refcount_unlock();
|
|
|
|
|
|
|
|
if (dead) {
|
2012-12-12 00:43:36 +01:00
|
|
|
if (ref->free)
|
|
|
|
ref->free(ref->arg);
|
|
|
|
talloc_free(ref);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool m_refcount_is_unique(struct m_refcount *ref)
|
|
|
|
{
|
2013-07-28 00:10:47 +02:00
|
|
|
bool nonunique;
|
|
|
|
refcount_lock();
|
|
|
|
nonunique = ref->refcount > 1;
|
|
|
|
refcount_unlock();
|
|
|
|
|
|
|
|
if (nonunique)
|
2012-12-12 00:43:36 +01:00
|
|
|
return false;
|
|
|
|
if (ref->ext_is_unique)
|
|
|
|
return ref->ext_is_unique(ref->arg); // referenced only by us
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
static bool mp_image_alloc_planes(struct mp_image *mpi)
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
{
|
|
|
|
assert(!mpi->planes[0]);
|
2012-12-12 00:43:36 +01:00
|
|
|
|
2014-06-17 22:44:13 +02:00
|
|
|
if (!mp_image_params_valid(&mpi->params))
|
|
|
|
return false;
|
|
|
|
|
2013-08-06 20:09:31 +02:00
|
|
|
// Note: for non-mod-2 4:2:0 YUV frames, we have to allocate an additional
|
|
|
|
// top/right border. This is needed for correct handling of such
|
|
|
|
// images in filter and VO code (e.g. vo_vdpau or vo_opengl).
|
|
|
|
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
size_t plane_size[MP_MAX_PLANES];
|
|
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
2013-05-17 23:45:55 +02:00
|
|
|
int alloc_h = MP_ALIGN_UP(mpi->h, 32) >> mpi->fmt.ys[n];
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
int line_bytes = (mpi->plane_w[n] * mpi->fmt.bpp[n] + 7) / 8;
|
|
|
|
mpi->stride[n] = FFALIGN(line_bytes, SWS_MIN_BYTE_ALIGN);
|
2013-05-17 23:45:55 +02:00
|
|
|
plane_size[n] = mpi->stride[n] * alloc_h;
|
2007-08-05 00:12:49 +02:00
|
|
|
}
|
2013-12-01 20:45:44 +01:00
|
|
|
if (mpi->fmt.flags & MP_IMGFLAG_PAL)
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
plane_size[1] = MP_PALETTE_SIZE;
|
2010-01-01 00:09:35 +01:00
|
|
|
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
size_t sum = 0;
|
|
|
|
for (int n = 0; n < MP_MAX_PLANES; n++)
|
|
|
|
sum += plane_size[n];
|
|
|
|
|
|
|
|
uint8_t *data = av_malloc(FFMAX(sum, 1));
|
|
|
|
if (!data)
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
return false;
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
|
|
|
|
for (int n = 0; n < MP_MAX_PLANES; n++) {
|
|
|
|
mpi->planes[n] = plane_size[n] ? data : NULL;
|
|
|
|
data += plane_size[n];
|
|
|
|
}
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
return true;
|
2007-08-05 00:12:49 +02:00
|
|
|
}
|
2010-04-15 07:39:36 +02:00
|
|
|
|
2014-03-17 18:19:57 +01:00
|
|
|
void mp_image_setfmt(struct mp_image *mpi, int out_fmt)
|
2012-12-31 01:58:25 +01:00
|
|
|
{
|
|
|
|
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
|
2014-04-20 21:27:45 +02:00
|
|
|
mpi->params.imgfmt = fmt.id;
|
2012-12-31 01:58:25 +01:00
|
|
|
mpi->fmt = fmt;
|
2013-07-18 13:49:28 +02:00
|
|
|
mpi->flags = fmt.flags;
|
2012-12-31 01:58:25 +01:00
|
|
|
mpi->imgfmt = fmt.id;
|
|
|
|
mpi->chroma_x_shift = fmt.chroma_xs;
|
|
|
|
mpi->chroma_y_shift = fmt.chroma_ys;
|
|
|
|
mpi->num_planes = fmt.num_planes;
|
|
|
|
mp_image_set_size(mpi, mpi->w, mpi->h);
|
2010-04-15 07:39:36 +02:00
|
|
|
}
|
|
|
|
|
2013-10-13 01:16:30 +02:00
|
|
|
static void mp_image_destructor(void *ptr)
|
2011-10-06 20:46:01 +02:00
|
|
|
{
|
|
|
|
mp_image_t *mpi = ptr;
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
m_refcount_unref(mpi->refcount);
|
2011-10-06 20:46:01 +02:00
|
|
|
}
|
|
|
|
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
static int mp_chroma_div_up(int size, int shift)
|
2012-12-12 00:43:36 +01:00
|
|
|
{
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
return (size + (1 << shift) - 1) >> shift;
|
2010-04-15 07:39:36 +02:00
|
|
|
}
|
|
|
|
|
2012-11-10 02:02:24 +01:00
|
|
|
// Caller has to make sure this doesn't exceed the allocated plane data/strides.
|
|
|
|
void mp_image_set_size(struct mp_image *mpi, int w, int h)
|
|
|
|
{
|
2014-06-17 22:44:13 +02:00
|
|
|
assert(w >= 0 && h >= 0);
|
2014-04-29 13:31:59 +02:00
|
|
|
mpi->w = mpi->params.w = mpi->params.d_w = w;
|
|
|
|
mpi->h = mpi->params.h = mpi->params.d_h = h;
|
2012-12-31 01:58:25 +01:00
|
|
|
for (int n = 0; n < mpi->num_planes; n++) {
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
mpi->plane_w[n] = mp_chroma_div_up(mpi->w, mpi->fmt.xs[n]);
|
|
|
|
mpi->plane_h[n] = mp_chroma_div_up(mpi->h, mpi->fmt.ys[n]);
|
2012-12-31 01:58:25 +01:00
|
|
|
}
|
|
|
|
mpi->chroma_width = mpi->plane_w[1];
|
|
|
|
mpi->chroma_height = mpi->plane_h[1];
|
2012-11-10 02:02:24 +01:00
|
|
|
}
|
|
|
|
|
2014-04-20 21:27:45 +02:00
|
|
|
void mp_image_set_params(struct mp_image *image,
|
|
|
|
const struct mp_image_params *params)
|
|
|
|
{
|
2014-05-01 14:24:20 +02:00
|
|
|
// possibly initialize other stuff
|
2014-04-20 21:27:45 +02:00
|
|
|
mp_image_setfmt(image, params->imgfmt);
|
|
|
|
mp_image_set_size(image, params->w, params->h);
|
2014-05-01 14:24:20 +02:00
|
|
|
image->params = *params;
|
2014-04-20 21:27:45 +02:00
|
|
|
}
|
|
|
|
|
2014-03-17 18:19:57 +01:00
|
|
|
struct mp_image *mp_image_alloc(int imgfmt, int w, int h)
|
2012-12-12 00:43:36 +01:00
|
|
|
{
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
|
|
|
|
talloc_set_destructor(mpi, mp_image_destructor);
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
mpi->refcount = m_refcount_new();
|
|
|
|
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
mp_image_set_size(mpi, w, h);
|
2012-12-12 00:43:36 +01:00
|
|
|
mp_image_setfmt(mpi, imgfmt);
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
if (!mp_image_alloc_planes(mpi)) {
|
|
|
|
talloc_free(mpi);
|
|
|
|
return NULL;
|
|
|
|
}
|
2012-12-12 00:43:36 +01:00
|
|
|
mpi->refcount->free = av_free;
|
|
|
|
mpi->refcount->arg = mpi->planes[0];
|
|
|
|
return mpi;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct mp_image *mp_image_new_copy(struct mp_image *img)
|
|
|
|
{
|
|
|
|
struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
if (!new)
|
|
|
|
return NULL;
|
2012-12-12 00:43:36 +01:00
|
|
|
mp_image_copy(new, img);
|
|
|
|
mp_image_copy_attributes(new, img);
|
|
|
|
|
|
|
|
// Normally these are covered by the reference to the original image data
|
|
|
|
// (like the AVFrame in vd_lavc.c), but we can't manage it on our own.
|
|
|
|
new->qscale = NULL;
|
|
|
|
new->qstride = 0;
|
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make dst take over the image data of src, and free src.
|
|
|
|
// This is basically a safe version of *dst = *src; free(src);
|
|
|
|
// Only works with ref-counted images, and can't change image size/format.
|
|
|
|
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
|
|
|
|
{
|
|
|
|
assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
|
|
|
|
assert(dst->refcount && src->refcount);
|
|
|
|
|
|
|
|
for (int p = 0; p < MP_MAX_PLANES; p++) {
|
|
|
|
dst->planes[p] = src->planes[p];
|
|
|
|
dst->stride[p] = src->stride[p];
|
|
|
|
}
|
|
|
|
mp_image_copy_attributes(dst, src);
|
|
|
|
|
|
|
|
m_refcount_unref(dst->refcount);
|
|
|
|
dst->refcount = src->refcount;
|
|
|
|
talloc_set_destructor(src, NULL);
|
|
|
|
talloc_free(src);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return a new reference to img. The returned reference is owned by the caller,
|
|
|
|
// while img is left untouched.
|
|
|
|
struct mp_image *mp_image_new_ref(struct mp_image *img)
|
|
|
|
{
|
|
|
|
if (!img->refcount)
|
|
|
|
return mp_image_new_copy(img);
|
|
|
|
|
|
|
|
struct mp_image *new = talloc_ptrtype(NULL, new);
|
|
|
|
talloc_set_destructor(new, mp_image_destructor);
|
|
|
|
*new = *img;
|
|
|
|
|
|
|
|
m_refcount_ref(new->refcount);
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return a reference counted reference to img. If the reference count reaches
|
|
|
|
// 0, call free(free_arg). The data passed by img must not be free'd before
|
|
|
|
// that. The new reference will be writeable.
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
// On allocation failure, unref the frame and return NULL.
|
2012-12-12 00:43:36 +01:00
|
|
|
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
|
|
|
|
void (*free)(void *arg))
|
|
|
|
{
|
2013-03-09 20:21:12 +01:00
|
|
|
return mp_image_new_external_ref(img, free_arg, NULL, NULL, NULL, free);
|
2012-12-12 00:43:36 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Return a reference counted reference to img. ref/unref/is_unique are used to
|
|
|
|
// connect to an external refcounting API. It is assumed that the new object
|
2013-03-09 20:21:12 +01:00
|
|
|
// has an initial reference to that external API. If free is given, that is
|
|
|
|
// called after the last unref. All function pointers are optional.
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
// On allocation failure, unref the frame and return NULL.
|
2012-12-12 00:43:36 +01:00
|
|
|
struct mp_image *mp_image_new_external_ref(struct mp_image *img, void *arg,
|
|
|
|
void (*ref)(void *arg),
|
|
|
|
void (*unref)(void *arg),
|
2013-03-09 20:21:12 +01:00
|
|
|
bool (*is_unique)(void *arg),
|
|
|
|
void (*free)(void *arg))
|
2012-12-12 00:43:36 +01:00
|
|
|
{
|
|
|
|
struct mp_image *new = talloc_ptrtype(NULL, new);
|
|
|
|
talloc_set_destructor(new, mp_image_destructor);
|
|
|
|
*new = *img;
|
|
|
|
|
|
|
|
new->refcount = m_refcount_new();
|
|
|
|
new->refcount->ext_ref = ref;
|
|
|
|
new->refcount->ext_unref = unref;
|
|
|
|
new->refcount->ext_is_unique = is_unique;
|
2013-03-09 20:21:12 +01:00
|
|
|
new->refcount->free = free;
|
2012-12-12 00:43:36 +01:00
|
|
|
new->refcount->arg = arg;
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool mp_image_is_writeable(struct mp_image *img)
|
|
|
|
{
|
|
|
|
if (!img->refcount)
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
return true; // not ref-counted => always considered writeable
|
2012-12-12 00:43:36 +01:00
|
|
|
return m_refcount_is_unique(img->refcount);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make the image data referenced by img writeable. This allocates new data
|
|
|
|
// if the data wasn't already writeable, and img->planes[] and img->stride[]
|
|
|
|
// will be set to the copy.
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
// Returns success; if false is returned, the image could not be made writeable.
|
|
|
|
bool mp_image_make_writeable(struct mp_image *img)
|
2012-12-12 00:43:36 +01:00
|
|
|
{
|
|
|
|
if (mp_image_is_writeable(img))
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
return true;
|
2012-12-12 00:43:36 +01:00
|
|
|
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
struct mp_image *new = mp_image_new_copy(img);
|
|
|
|
if (!new)
|
|
|
|
return false;
|
|
|
|
mp_image_steal_data(img, new);
|
2012-12-12 00:43:36 +01:00
|
|
|
assert(mp_image_is_writeable(img));
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
return true;
|
2012-12-12 00:43:36 +01:00
|
|
|
}
|
|
|
|
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
// Helper function: unrefs *p_img, and sets *p_img to a new ref of new_value.
|
|
|
|
// Only unrefs *p_img and sets it to NULL if out of memory.
|
2012-12-12 00:43:36 +01:00
|
|
|
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
|
|
|
|
{
|
|
|
|
if (*p_img != new_value) {
|
|
|
|
talloc_free(*p_img);
|
|
|
|
*p_img = new_value ? mp_image_new_ref(new_value) : NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Mere helper function (mp_image can be directly free'd with talloc_free)
|
|
|
|
void mp_image_unrefp(struct mp_image **p_img)
|
|
|
|
{
|
|
|
|
talloc_free(*p_img);
|
|
|
|
*p_img = NULL;
|
2010-04-15 07:39:36 +02:00
|
|
|
}
|
|
|
|
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
void mp_image_copy(struct mp_image *dst, struct mp_image *src)
|
|
|
|
{
|
|
|
|
assert(dst->imgfmt == src->imgfmt);
|
|
|
|
assert(dst->w == src->w && dst->h == src->h);
|
|
|
|
assert(mp_image_is_writeable(dst));
|
|
|
|
for (int n = 0; n < dst->num_planes; n++) {
|
|
|
|
int line_bytes = (dst->plane_w[n] * dst->fmt.bpp[n] + 7) / 8;
|
|
|
|
memcpy_pic(dst->planes[n], src->planes[n], line_bytes, dst->plane_h[n],
|
|
|
|
dst->stride[n], src->stride[n]);
|
|
|
|
}
|
2014-09-21 09:33:51 +02:00
|
|
|
// Watch out for AV_PIX_FMT_FLAG_PSEUDOPAL retardation
|
|
|
|
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && dst->planes[1] && src->planes[1])
|
2012-12-19 12:04:38 +01:00
|
|
|
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
|
mp_image: simplify image allocation
mp_image_alloc_planes() allocated images with minimal stride, even if
the resulting stride was unaligned. It was the responsibility of
vf_get_image() to set an image's width to something larger than
required to get an aligned stride, and then crop it. Always allocate
with aligned strides instead.
Get rid of IMGFMT_IF09 special handling. This format is not used
anymore. (IF09 has 4x4 chroma sub-sampling, and that is what it was
mainly used for - this is still supported.) Get rid of swapped chroma
plane allocation. This is not used anywhere, and VOs like vo_xv,
vo_direct3d and vo_sdl do their own swapping.
Always round chroma width/height up instead of down. Consider 4:2:0 and
an uneven image size. For luma, the size was left uneven, and the chroma
size was rounded down. This doesn't make sense, because chroma would be
missing for the bottom/right border.
Remove mp_image_new_empty() and mp_image_alloc_planes(), they were not
used anymore, except in draw_bmp.c. (It's still allowed to setup
mp_images manually, you just can't allocate image data with them
anymore - this is also done in draw_bmp.c.)
2012-12-19 12:04:32 +01:00
|
|
|
}
|
|
|
|
|
2012-12-19 12:04:57 +01:00
|
|
|
void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
|
|
|
|
{
|
|
|
|
dst->pict_type = src->pict_type;
|
|
|
|
dst->fields = src->fields;
|
|
|
|
dst->qscale_type = src->qscale_type;
|
|
|
|
dst->pts = src->pts;
|
2014-08-30 23:24:46 +02:00
|
|
|
dst->params.stereo_in = src->params.stereo_in;
|
|
|
|
dst->params.stereo_out = src->params.stereo_out;
|
2012-12-19 12:04:57 +01:00
|
|
|
if (dst->w == src->w && dst->h == src->h) {
|
2014-04-29 13:31:59 +02:00
|
|
|
dst->params.d_w = src->params.d_w;
|
|
|
|
dst->params.d_h = src->params.d_h;
|
2012-12-19 12:04:57 +01:00
|
|
|
}
|
|
|
|
if ((dst->flags & MP_IMGFLAG_YUV) == (src->flags & MP_IMGFLAG_YUV)) {
|
2014-04-20 21:27:45 +02:00
|
|
|
dst->params.colorspace = src->params.colorspace;
|
|
|
|
dst->params.colorlevels = src->params.colorlevels;
|
2014-03-26 01:46:38 +01:00
|
|
|
dst->params.primaries = src->params.primaries;
|
2014-04-20 21:27:45 +02:00
|
|
|
dst->params.chroma_location = src->params.chroma_location;
|
2012-12-19 12:04:57 +01:00
|
|
|
}
|
2013-12-01 20:45:44 +01:00
|
|
|
if ((dst->fmt.flags & MP_IMGFLAG_PAL) && (src->fmt.flags & MP_IMGFLAG_PAL)) {
|
2013-06-28 20:30:37 +02:00
|
|
|
if (dst->planes[1] && src->planes[1])
|
|
|
|
memcpy(dst->planes[1], src->planes[1], MP_PALETTE_SIZE);
|
2012-12-19 12:04:57 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-12-25 22:29:49 +01:00
|
|
|
// Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
|
|
|
|
// x0/y0 must be naturally aligned.
|
|
|
|
void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
|
|
|
|
{
|
|
|
|
assert(x0 >= 0 && y0 >= 0);
|
|
|
|
assert(x0 <= x1 && y0 <= y1);
|
|
|
|
assert(x1 <= img->w && y1 <= img->h);
|
|
|
|
assert(!(x0 & (img->fmt.align_x - 1)));
|
|
|
|
assert(!(y0 & (img->fmt.align_y - 1)));
|
|
|
|
|
|
|
|
for (int p = 0; p < img->num_planes; ++p) {
|
|
|
|
img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
|
|
|
|
(x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
|
|
|
|
}
|
|
|
|
mp_image_set_size(img, x1 - x0, y1 - y0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
|
|
|
|
{
|
|
|
|
mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
|
|
|
|
}
|
|
|
|
|
2012-12-26 21:13:58 +01:00
|
|
|
// Bottom/right border is allowed not to be aligned, but it might implicitly
|
|
|
|
// overwrite pixel data until the alignment (align_x/align_y) is reached.
|
|
|
|
void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
|
2012-12-19 12:04:57 +01:00
|
|
|
{
|
2012-12-26 21:13:58 +01:00
|
|
|
assert(x0 >= 0 && y0 >= 0);
|
|
|
|
assert(x0 <= x1 && y0 <= y1);
|
|
|
|
assert(x1 <= img->w && y1 <= img->h);
|
|
|
|
assert(!(x0 & (img->fmt.align_x - 1)));
|
|
|
|
assert(!(y0 & (img->fmt.align_y - 1)));
|
|
|
|
|
|
|
|
struct mp_image area = *img;
|
|
|
|
mp_image_crop(&area, x0, y0, x1, y1);
|
|
|
|
|
|
|
|
uint32_t plane_clear[MP_MAX_PLANES] = {0};
|
|
|
|
|
|
|
|
if (area.imgfmt == IMGFMT_YUYV) {
|
|
|
|
plane_clear[0] = av_le2ne16(0x8000);
|
|
|
|
} else if (area.imgfmt == IMGFMT_UYVY) {
|
|
|
|
plane_clear[0] = av_le2ne16(0x0080);
|
|
|
|
} else if (area.imgfmt == IMGFMT_NV12 || area.imgfmt == IMGFMT_NV21) {
|
|
|
|
plane_clear[1] = 0x8080;
|
|
|
|
} else if (area.flags & MP_IMGFLAG_YUV_P) {
|
|
|
|
uint16_t chroma_clear = (1 << area.fmt.plane_bits) / 2;
|
|
|
|
if (!(area.flags & MP_IMGFLAG_NE))
|
|
|
|
chroma_clear = av_bswap16(chroma_clear);
|
|
|
|
if (area.num_planes > 2)
|
|
|
|
plane_clear[1] = plane_clear[2] = chroma_clear;
|
2012-12-19 12:04:57 +01:00
|
|
|
}
|
2012-12-26 21:13:58 +01:00
|
|
|
|
|
|
|
for (int p = 0; p < area.num_planes; p++) {
|
|
|
|
int bpp = area.fmt.bpp[p];
|
|
|
|
int bytes = (area.plane_w[p] * bpp + 7) / 8;
|
|
|
|
if (bpp <= 8) {
|
|
|
|
memset_pic(area.planes[p], plane_clear[p], bytes,
|
|
|
|
area.plane_h[p], area.stride[p]);
|
|
|
|
} else {
|
|
|
|
memset16_pic(area.planes[p], plane_clear[p], (bytes + 1) / 2,
|
|
|
|
area.plane_h[p], area.stride[p]);
|
|
|
|
}
|
2012-12-19 12:04:57 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-03-01 11:28:59 +01:00
|
|
|
void mp_image_vflip(struct mp_image *img)
|
|
|
|
{
|
|
|
|
for (int p = 0; p < img->num_planes; p++) {
|
|
|
|
img->planes[p] = img->planes[p] + img->stride[p] * (img->plane_h[p] - 1);
|
|
|
|
img->stride[p] = -img->stride[p];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-06-17 22:44:13 +02:00
|
|
|
// Return whether the image parameters are valid.
|
|
|
|
// Some non-essential fields are allowed to be unset (like colorspace flags).
|
|
|
|
bool mp_image_params_valid(const struct mp_image_params *p)
|
|
|
|
{
|
|
|
|
// av_image_check_size has similar checks and triggers around 16000*16000
|
|
|
|
// It's mostly needed to deal with the fact that offsets are sometimes
|
|
|
|
// ints. We also should (for now) do the same as FFmpeg, to be sure large
|
|
|
|
// images don't crash with libswscale or when wrapping with AVFrame and
|
|
|
|
// passing the result to filters.
|
|
|
|
// Unlike FFmpeg, consider 0x0 valid (might be needed for OSD/screenshots).
|
|
|
|
if (p->w < 0 || p->h < 0 || (p->w + 128LL) * (p->h + 128LL) >= INT_MAX / 8)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (p->d_w < 0 || p->d_h < 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (p->rotate < 0 || p->rotate >= 360)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(p->imgfmt);
|
|
|
|
if (!desc.id)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2014-06-17 23:30:16 +02:00
|
|
|
bool mp_image_params_equal(const struct mp_image_params *p1,
|
|
|
|
const struct mp_image_params *p2)
|
2012-10-27 18:01:51 +02:00
|
|
|
{
|
2013-07-18 13:17:56 +02:00
|
|
|
return p1->imgfmt == p2->imgfmt &&
|
|
|
|
p1->w == p2->w && p1->h == p2->h &&
|
|
|
|
p1->d_w == p2->d_w && p1->d_h == p2->d_h &&
|
|
|
|
p1->colorspace == p2->colorspace &&
|
2013-07-25 23:02:23 +02:00
|
|
|
p1->colorlevels == p2->colorlevels &&
|
2014-03-28 23:13:41 +01:00
|
|
|
p1->outputlevels == p2->outputlevels &&
|
2014-03-26 01:46:38 +01:00
|
|
|
p1->primaries == p2->primaries &&
|
2014-04-20 21:28:09 +02:00
|
|
|
p1->chroma_location == p2->chroma_location &&
|
2014-08-30 23:24:46 +02:00
|
|
|
p1->rotate == p2->rotate &&
|
|
|
|
p1->stereo_in == p2->stereo_in &&
|
|
|
|
p1->stereo_out == p2->stereo_out;
|
2012-10-27 18:01:51 +02:00
|
|
|
}
|
|
|
|
|
2013-11-03 23:55:16 +01:00
|
|
|
// Set most image parameters, but not image format or size.
|
|
|
|
// Display size is used to set the PAR.
|
|
|
|
void mp_image_set_attributes(struct mp_image *image,
|
|
|
|
const struct mp_image_params *params)
|
|
|
|
{
|
|
|
|
struct mp_image_params nparams = *params;
|
|
|
|
nparams.imgfmt = image->imgfmt;
|
|
|
|
nparams.w = image->w;
|
|
|
|
nparams.h = image->h;
|
|
|
|
if (nparams.imgfmt != params->imgfmt)
|
|
|
|
mp_image_params_guess_csp(&nparams);
|
|
|
|
if (nparams.w != params->w || nparams.h != params->h) {
|
|
|
|
if (nparams.d_w && nparams.d_h) {
|
|
|
|
vf_rescale_dsize(&nparams.d_w, &nparams.d_h,
|
|
|
|
params->w, params->h, nparams.w, nparams.h);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mp_image_set_params(image, &nparams);
|
|
|
|
}
|
|
|
|
|
2013-06-30 00:27:50 +02:00
|
|
|
// If details like params->colorspace/colorlevels are missing, guess them from
|
|
|
|
// the other settings. Also, even if they are set, make them consistent with
|
|
|
|
// the colorspace as implied by the pixel format.
|
|
|
|
void mp_image_params_guess_csp(struct mp_image_params *params)
|
|
|
|
{
|
|
|
|
struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(params->imgfmt);
|
|
|
|
if (!fmt.id)
|
|
|
|
return;
|
|
|
|
if (fmt.flags & MP_IMGFLAG_YUV) {
|
2013-07-15 00:50:01 +02:00
|
|
|
if (params->colorspace != MP_CSP_BT_601 &&
|
|
|
|
params->colorspace != MP_CSP_BT_709 &&
|
2014-03-25 18:45:08 +01:00
|
|
|
params->colorspace != MP_CSP_BT_2020_NC &&
|
2014-03-26 23:00:09 +01:00
|
|
|
params->colorspace != MP_CSP_BT_2020_C &&
|
2013-07-15 00:50:01 +02:00
|
|
|
params->colorspace != MP_CSP_SMPTE_240M &&
|
|
|
|
params->colorspace != MP_CSP_YCGCO)
|
|
|
|
{
|
|
|
|
// Makes no sense, so guess instead
|
|
|
|
// YCGCO should be separate, but libavcodec disagrees
|
|
|
|
params->colorspace = MP_CSP_AUTO;
|
|
|
|
}
|
2013-06-30 00:27:50 +02:00
|
|
|
if (params->colorspace == MP_CSP_AUTO)
|
|
|
|
params->colorspace = mp_csp_guess_colorspace(params->w, params->h);
|
|
|
|
if (params->colorlevels == MP_CSP_LEVELS_AUTO)
|
|
|
|
params->colorlevels = MP_CSP_LEVELS_TV;
|
2014-03-26 01:46:38 +01:00
|
|
|
if (params->primaries == MP_CSP_PRIM_AUTO) {
|
2014-04-02 00:40:36 +02:00
|
|
|
// Guess based on the colormatrix as a first priority
|
2014-03-26 23:00:09 +01:00
|
|
|
if (params->colorspace == MP_CSP_BT_2020_NC ||
|
|
|
|
params->colorspace == MP_CSP_BT_2020_C) {
|
2014-03-26 01:46:38 +01:00
|
|
|
params->primaries = MP_CSP_PRIM_BT_2020;
|
2014-04-02 00:40:36 +02:00
|
|
|
} else if (params->colorspace == MP_CSP_BT_709) {
|
2014-03-26 01:46:38 +01:00
|
|
|
params->primaries = MP_CSP_PRIM_BT_709;
|
2014-04-02 00:40:36 +02:00
|
|
|
} else {
|
|
|
|
// Ambiguous colormatrix for BT.601, guess based on res
|
|
|
|
params->primaries = mp_csp_guess_primaries(params->w, params->h);
|
2014-03-26 01:46:38 +01:00
|
|
|
}
|
|
|
|
}
|
2013-06-30 00:27:50 +02:00
|
|
|
} else if (fmt.flags & MP_IMGFLAG_RGB) {
|
|
|
|
params->colorspace = MP_CSP_RGB;
|
|
|
|
params->colorlevels = MP_CSP_LEVELS_PC;
|
2014-03-26 01:46:38 +01:00
|
|
|
|
|
|
|
// The majority of RGB content is either sRGB or (rarely) some other
|
|
|
|
// color space which we don't even handle, like AdobeRGB or
|
|
|
|
// ProPhotoRGB. The only reasonable thing we can do is assume it's
|
|
|
|
// sRGB and hope for the best, which should usually just work out fine.
|
|
|
|
// Note: sRGB primaries = BT.709 primaries
|
|
|
|
if (params->primaries == MP_CSP_PRIM_AUTO)
|
|
|
|
params->primaries = MP_CSP_PRIM_BT_709;
|
2013-06-30 00:27:50 +02:00
|
|
|
} else if (fmt.flags & MP_IMGFLAG_XYZ) {
|
|
|
|
params->colorspace = MP_CSP_XYZ;
|
|
|
|
params->colorlevels = MP_CSP_LEVELS_PC;
|
2014-03-26 01:46:38 +01:00
|
|
|
|
|
|
|
// The default XYZ matrix converts it to BT.709 color space
|
|
|
|
// since that's the most likely scenario. Proper VOs should ignore
|
|
|
|
// this field as well as the matrix and treat XYZ input as absolute,
|
|
|
|
// but for VOs which use the matrix (and hence, consult this field)
|
2014-03-31 04:51:47 +02:00
|
|
|
// this is the correct parameter. This doubles as a reasonable output
|
|
|
|
// gamut for VOs which *do* use the specialized XYZ matrix but don't
|
|
|
|
// know any better output gamut other than whatever the source is
|
|
|
|
// tagged with.
|
2014-03-26 01:46:38 +01:00
|
|
|
if (params->primaries == MP_CSP_PRIM_AUTO)
|
|
|
|
params->primaries = MP_CSP_PRIM_BT_709;
|
2012-10-27 18:01:51 +02:00
|
|
|
} else {
|
2013-06-30 00:27:50 +02:00
|
|
|
// We have no clue.
|
|
|
|
params->colorspace = MP_CSP_AUTO;
|
|
|
|
params->colorlevels = MP_CSP_LEVELS_AUTO;
|
2014-03-26 01:46:38 +01:00
|
|
|
params->primaries = MP_CSP_PRIM_AUTO;
|
2012-10-27 18:01:51 +02:00
|
|
|
}
|
|
|
|
}
|
2013-03-09 20:21:12 +01:00
|
|
|
|
|
|
|
// Copy properties and data of the AVFrame into the mp_image, without taking
|
|
|
|
// care of memory management issues.
|
|
|
|
void mp_image_copy_fields_from_av_frame(struct mp_image *dst,
|
|
|
|
struct AVFrame *src)
|
|
|
|
{
|
|
|
|
mp_image_setfmt(dst, pixfmt2imgfmt(src->format));
|
|
|
|
mp_image_set_size(dst, src->width, src->height);
|
|
|
|
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
dst->planes[i] = src->data[i];
|
|
|
|
dst->stride[i] = src->linesize[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
dst->pict_type = src->pict_type;
|
2013-03-15 14:21:42 +01:00
|
|
|
|
2013-03-09 20:21:12 +01:00
|
|
|
dst->fields = MP_IMGFIELD_ORDERED;
|
|
|
|
if (src->interlaced_frame)
|
|
|
|
dst->fields |= MP_IMGFIELD_INTERLACED;
|
|
|
|
if (src->top_field_first)
|
|
|
|
dst->fields |= MP_IMGFIELD_TOP_FIRST;
|
|
|
|
if (src->repeat_pict == 1)
|
|
|
|
dst->fields |= MP_IMGFIELD_REPEAT_FIRST;
|
2013-03-15 14:21:42 +01:00
|
|
|
|
|
|
|
#if HAVE_AVUTIL_QP_API
|
|
|
|
dst->qscale = av_frame_get_qp_table(src, &dst->qstride, &dst->qscale_type);
|
|
|
|
#endif
|
2013-03-09 20:21:12 +01:00
|
|
|
}
|
2013-03-09 20:50:06 +01:00
|
|
|
|
2013-07-27 21:17:31 +02:00
|
|
|
// Not strictly related, but was added in a similar timeframe.
|
|
|
|
#define HAVE_AVFRAME_COLORSPACE HAVE_AVCODEC_CHROMA_POS_API
|
|
|
|
|
2013-03-10 19:30:48 +01:00
|
|
|
// Copy properties and data of the mp_image into the AVFrame, without taking
|
|
|
|
// care of memory management issues.
|
|
|
|
void mp_image_copy_fields_to_av_frame(struct AVFrame *dst,
|
|
|
|
struct mp_image *src)
|
|
|
|
{
|
|
|
|
dst->format = imgfmt2pixfmt(src->imgfmt);
|
|
|
|
dst->width = src->w;
|
|
|
|
dst->height = src->h;
|
|
|
|
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
dst->data[i] = src->planes[i];
|
|
|
|
dst->linesize[i] = src->stride[i];
|
|
|
|
}
|
|
|
|
dst->extended_data = dst->data;
|
|
|
|
|
|
|
|
dst->pict_type = src->pict_type;
|
|
|
|
if (src->fields & MP_IMGFIELD_INTERLACED)
|
|
|
|
dst->interlaced_frame = 1;
|
|
|
|
if (src->fields & MP_IMGFIELD_TOP_FIRST)
|
|
|
|
dst->top_field_first = 1;
|
|
|
|
if (src->fields & MP_IMGFIELD_REPEAT_FIRST)
|
|
|
|
dst->repeat_pict = 1;
|
2013-07-27 21:17:31 +02:00
|
|
|
|
|
|
|
#if HAVE_AVFRAME_COLORSPACE
|
2014-04-20 21:27:45 +02:00
|
|
|
dst->colorspace = mp_csp_to_avcol_spc(src->params.colorspace);
|
|
|
|
dst->color_range = mp_csp_levels_to_avcol_range(src->params.colorlevels);
|
2013-07-27 21:17:31 +02:00
|
|
|
#endif
|
2013-03-10 19:30:48 +01:00
|
|
|
}
|
|
|
|
|
2013-03-09 20:50:06 +01:00
|
|
|
static void frame_free(void *p)
|
|
|
|
{
|
|
|
|
AVFrame *frame = p;
|
|
|
|
av_frame_free(&frame);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool frame_is_unique(void *p)
|
|
|
|
{
|
|
|
|
AVFrame *frame = p;
|
|
|
|
return av_frame_is_writable(frame);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create a new mp_image reference to av_frame.
|
|
|
|
struct mp_image *mp_image_from_av_frame(struct AVFrame *av_frame)
|
|
|
|
{
|
|
|
|
AVFrame *new_ref = av_frame_clone(av_frame);
|
|
|
|
if (!new_ref)
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
return NULL;
|
2013-03-09 20:50:06 +01:00
|
|
|
struct mp_image t = {0};
|
|
|
|
mp_image_copy_fields_from_av_frame(&t, new_ref);
|
|
|
|
return mp_image_new_external_ref(&t, new_ref, NULL, NULL, frame_is_unique,
|
|
|
|
frame_free);
|
|
|
|
}
|
|
|
|
|
2013-03-10 19:30:48 +01:00
|
|
|
static void free_img(void *opaque, uint8_t *data)
|
|
|
|
{
|
|
|
|
struct mp_image *img = opaque;
|
|
|
|
talloc_free(img);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convert the mp_image reference to a AVFrame reference.
|
|
|
|
// Warning: img is unreferenced (i.e. free'd). This is asymmetric to
|
|
|
|
// mp_image_from_av_frame(). It's done this way to allow marking the
|
|
|
|
// resulting AVFrame as writeable if img is the only reference (in
|
|
|
|
// other words, it's an optimization).
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
// On failure, img is only unreffed.
|
2013-03-10 19:30:48 +01:00
|
|
|
struct AVFrame *mp_image_to_av_frame_and_unref(struct mp_image *img)
|
|
|
|
{
|
|
|
|
struct mp_image *new_ref = mp_image_new_ref(img); // ensure it's refcounted
|
|
|
|
talloc_free(img);
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
if (!new_ref)
|
|
|
|
return NULL;
|
2013-03-10 19:30:48 +01:00
|
|
|
AVFrame *frame = av_frame_alloc();
|
|
|
|
mp_image_copy_fields_to_av_frame(frame, new_ref);
|
|
|
|
// Caveat: if img has shared references, and all other references disappear
|
|
|
|
// at a later point, the AVFrame will still be read-only.
|
|
|
|
int flags = 0;
|
|
|
|
if (!mp_image_is_writeable(new_ref))
|
|
|
|
flags |= AV_BUFFER_FLAG_READONLY;
|
2013-07-24 19:47:05 +02:00
|
|
|
for (int n = 0; n < new_ref->num_planes; n++) {
|
|
|
|
// Make it so that the actual image data is freed only if _all_ buffers
|
|
|
|
// are unreferenced.
|
|
|
|
struct mp_image *dummy_ref = mp_image_new_ref(new_ref);
|
video: introduce failure path for image allocations
Until now, failure to allocate image data resulted in a crash (i.e.
abort() was called). This was intentional, because it's pretty silly to
degrade playback, and in almost all situations, the OOM will probably
kill you anyway. (And then there's the standard Linux overcommit
behavior, which also will kill you at some point.)
But I changed my opinion, so here we go. This change does not affect
_all_ memory allocations, just image data. Now in most failure cases,
the output will just be skipped. For video filters, this coincidentally
means that failure is treated as EOF (because the playback core assumes
EOF if nothing comes out of the video filter chain). In other
situations, output might be in some way degraded, like skipping frames,
not scaling OSD, and such.
Functions whose return values changed semantics:
mp_image_alloc
mp_image_new_copy
mp_image_new_ref
mp_image_make_writeable
mp_image_setrefp
mp_image_to_av_frame_and_unref
mp_image_from_av_frame
mp_image_new_external_ref
mp_image_new_custom_ref
mp_image_pool_make_writeable
mp_image_pool_get
mp_image_pool_new_copy
mp_vdpau_mixed_frame_create
vf_alloc_out_image
vf_make_out_image_writeable
glGetWindowScreenshot
2014-06-17 22:43:43 +02:00
|
|
|
if (!dummy_ref)
|
|
|
|
abort(); // out of memory (for the ref, not real image data)
|
2013-07-24 19:47:05 +02:00
|
|
|
void *ptr = new_ref->planes[n];
|
|
|
|
size_t size = new_ref->stride[n] * new_ref->h;
|
|
|
|
frame->buf[n] = av_buffer_create(ptr, size, free_img, dummy_ref, flags);
|
|
|
|
}
|
|
|
|
talloc_free(new_ref);
|
2013-03-10 19:30:48 +01:00
|
|
|
return frame;
|
|
|
|
}
|