1
mirror of https://github.com/mpv-player/mpv synced 2024-11-14 22:48:35 +01:00
mpv/video/out/opengl/hwdec_vaegl.c

481 lines
14 KiB
C
Raw Normal View History

/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stddef.h>
#include <string.h>
#include <assert.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <va/va_drmcommon.h>
#include <libavutil/hwcontext.h>
#include <libavutil/hwcontext_vaapi.h>
#include "config.h"
#include "hwdec.h"
#include "video/vaapi.h"
#include "video/img_fourcc.h"
#include "video/mp_image_pool.h"
#include "common.h"
#ifndef GL_OES_EGL_image
typedef void* GLeglImageOES;
#endif
#ifndef EGL_KHR_image
typedef void *EGLImageKHR;
#endif
#ifndef EGL_LINUX_DMA_BUF_EXT
#define EGL_LINUX_DMA_BUF_EXT 0x3270
#define EGL_LINUX_DRM_FOURCC_EXT 0x3271
#define EGL_DMA_BUF_PLANE0_FD_EXT 0x3272
#define EGL_DMA_BUF_PLANE0_OFFSET_EXT 0x3273
#define EGL_DMA_BUF_PLANE0_PITCH_EXT 0x3274
#endif
#if HAVE_VAAPI_X11
#include <va/va_x11.h>
static VADisplay *create_x11_va_display(GL *gl)
{
Display *x11 = gl->MPGetNativeDisplay("x11");
return x11 ? vaGetDisplay(x11) : NULL;
}
#endif
#if HAVE_VAAPI_WAYLAND
#include <va/va_wayland.h>
static VADisplay *create_wayland_va_display(GL *gl)
{
struct wl_display *wl = gl->MPGetNativeDisplay("wl");
return wl ? vaGetDisplayWl(wl) : NULL;
}
#endif
#if HAVE_VAAPI_DRM
#include <va/va_drm.h>
static VADisplay *create_drm_va_display(GL *gl)
{
int drm_fd = (intptr_t)gl->MPGetNativeDisplay("drm");
// Note: yes, drm_fd==0 could be valid - but it's rare and doesn't fit with
// our slightly crappy way of passing it through, so consider 0 not
// valid.
return drm_fd ? vaGetDisplayDRM(drm_fd) : NULL;
}
#endif
struct va_create_native {
const char *name;
VADisplay *(*create)(GL *gl);
};
static const struct va_create_native create_native_cbs[] = {
#if HAVE_VAAPI_X11
{"x11", create_x11_va_display},
#endif
#if HAVE_VAAPI_WAYLAND
{"wayland", create_wayland_va_display},
#endif
#if HAVE_VAAPI_DRM
{"drm", create_drm_va_display},
#endif
};
static VADisplay *create_native_va_display(GL *gl, struct mp_log *log)
{
if (!gl->MPGetNativeDisplay)
return NULL;
for (int n = 0; n < MP_ARRAY_SIZE(create_native_cbs); n++) {
const struct va_create_native *disp = &create_native_cbs[n];
mp_verbose(log, "Trying to open a %s VA display...\n", disp->name);
VADisplay *display = disp->create(gl);
if (display)
return display;
}
return NULL;
}
struct priv {
struct mp_log *log;
struct mp_vaapi_ctx *ctx;
VADisplay *display;
GLuint gl_textures[4];
EGLImageKHR images[4];
VAImage current_image;
bool buffer_acquired;
vo_opengl: refactor how hwdec interop exports textures Rename gl_hwdec_driver.map_image to map_frame, and let it fill out a struct gl_hwdec_frame describing the exact texture layout. This gives more flexibility to what the hwdec interop can export. In particular, it can export strange component orders/permutations and textures with padded size. (The latter originating from cropped video.) The way gl_hwdec_frame works is in the spirit of the rest of the vo_opengl video processing code, which tends to put as much information in immediate state (as part of the dataflow), instead of declaring it globally. To some degree this duplicates the texplane and img_tex structs, but until we somehow unify those, it's better to give the hwdec state its own struct. The fact that changing the hwdec struct would require changes and testing on at least 4 platform/GPU combinations makes duplicating it almost a requirement to avoid pain later. Make gl_hwdec_driver.reinit set the new image format and remove the gl_hwdec.converted_imgfmt field. Likewise, gl_hwdec.gl_texture_target is replaced with gl_hwdec_plane.gl_target. Split out a init_image_desc function from init_format. The latter is not called in the hwdec case at all anymore. Setting up most of struct texplane is also completely separate in the hwdec and normal cases. video.c does not check whether the hwdec "mapped" image format is supported. This should not really happen anyway, and if it does, the hwdec interop backend must fail at creation time, so this is not an issue.
2016-05-10 18:29:10 +02:00
int current_mpfmt;
int *formats;
bool probing_formats; // temporary during init
EGLImageKHR (EGLAPIENTRY *CreateImageKHR)(EGLDisplay, EGLContext,
EGLenum, EGLClientBuffer,
const EGLint *);
EGLBoolean (EGLAPIENTRY *DestroyImageKHR)(EGLDisplay, EGLImageKHR);
void (EGLAPIENTRY *EGLImageTargetTexture2DOES)(GLenum, GLeglImageOES);
};
static void determine_working_formats(struct gl_hwdec *hw);
vo_opengl: refactor how hwdec interop exports textures Rename gl_hwdec_driver.map_image to map_frame, and let it fill out a struct gl_hwdec_frame describing the exact texture layout. This gives more flexibility to what the hwdec interop can export. In particular, it can export strange component orders/permutations and textures with padded size. (The latter originating from cropped video.) The way gl_hwdec_frame works is in the spirit of the rest of the vo_opengl video processing code, which tends to put as much information in immediate state (as part of the dataflow), instead of declaring it globally. To some degree this duplicates the texplane and img_tex structs, but until we somehow unify those, it's better to give the hwdec state its own struct. The fact that changing the hwdec struct would require changes and testing on at least 4 platform/GPU combinations makes duplicating it almost a requirement to avoid pain later. Make gl_hwdec_driver.reinit set the new image format and remove the gl_hwdec.converted_imgfmt field. Likewise, gl_hwdec.gl_texture_target is replaced with gl_hwdec_plane.gl_target. Split out a init_image_desc function from init_format. The latter is not called in the hwdec case at all anymore. Setting up most of struct texplane is also completely separate in the hwdec and normal cases. video.c does not check whether the hwdec "mapped" image format is supported. This should not really happen anyway, and if it does, the hwdec interop backend must fail at creation time, so this is not an issue.
2016-05-10 18:29:10 +02:00
static void unmap_frame(struct gl_hwdec *hw)
{
struct priv *p = hw->priv;
VAStatus status;
for (int n = 0; n < 4; n++) {
if (p->images[n])
p->DestroyImageKHR(eglGetCurrentDisplay(), p->images[n]);
p->images[n] = 0;
}
if (p->buffer_acquired) {
status = vaReleaseBufferHandle(p->display, p->current_image.buf);
CHECK_VA_STATUS(p, "vaReleaseBufferHandle()");
p->buffer_acquired = false;
}
if (p->current_image.image_id != VA_INVALID_ID) {
status = vaDestroyImage(p->display, p->current_image.image_id);
CHECK_VA_STATUS(p, "vaDestroyImage()");
p->current_image.image_id = VA_INVALID_ID;
}
}
static void destroy_textures(struct gl_hwdec *hw)
{
struct priv *p = hw->priv;
GL *gl = hw->gl;
gl->DeleteTextures(4, p->gl_textures);
for (int n = 0; n < 4; n++)
p->gl_textures[n] = 0;
}
static void destroy(struct gl_hwdec *hw)
{
struct priv *p = hw->priv;
vo_opengl: refactor how hwdec interop exports textures Rename gl_hwdec_driver.map_image to map_frame, and let it fill out a struct gl_hwdec_frame describing the exact texture layout. This gives more flexibility to what the hwdec interop can export. In particular, it can export strange component orders/permutations and textures with padded size. (The latter originating from cropped video.) The way gl_hwdec_frame works is in the spirit of the rest of the vo_opengl video processing code, which tends to put as much information in immediate state (as part of the dataflow), instead of declaring it globally. To some degree this duplicates the texplane and img_tex structs, but until we somehow unify those, it's better to give the hwdec state its own struct. The fact that changing the hwdec struct would require changes and testing on at least 4 platform/GPU combinations makes duplicating it almost a requirement to avoid pain later. Make gl_hwdec_driver.reinit set the new image format and remove the gl_hwdec.converted_imgfmt field. Likewise, gl_hwdec.gl_texture_target is replaced with gl_hwdec_plane.gl_target. Split out a init_image_desc function from init_format. The latter is not called in the hwdec case at all anymore. Setting up most of struct texplane is also completely separate in the hwdec and normal cases. video.c does not check whether the hwdec "mapped" image format is supported. This should not really happen anyway, and if it does, the hwdec interop backend must fail at creation time, so this is not an issue.
2016-05-10 18:29:10 +02:00
unmap_frame(hw);
destroy_textures(hw);
if (p->ctx)
hwdec_devices_remove(hw->devs, &p->ctx->hwctx);
va_destroy(p->ctx);
}
static int create(struct gl_hwdec *hw)
{
GL *gl = hw->gl;
struct priv *p = talloc_zero(hw, struct priv);
hw->priv = p;
p->current_image.buf = p->current_image.image_id = VA_INVALID_ID;
p->log = hw->log;
if (!eglGetCurrentContext())
return -1;
const char *exts = eglQueryString(eglGetCurrentDisplay(), EGL_EXTENSIONS);
if (!exts)
return -1;
if (!strstr(exts, "EXT_image_dma_buf_import") ||
!strstr(exts, "EGL_KHR_image_base") ||
!strstr(gl->extensions, "GL_OES_EGL_image") ||
!(gl->mpgl_caps & MPGL_CAP_TEX_RG))
return -1;
// EGL_KHR_image_base
p->CreateImageKHR = (void *)eglGetProcAddress("eglCreateImageKHR");
p->DestroyImageKHR = (void *)eglGetProcAddress("eglDestroyImageKHR");
// GL_OES_EGL_image
p->EGLImageTargetTexture2DOES =
(void *)eglGetProcAddress("glEGLImageTargetTexture2DOES");
if (!p->CreateImageKHR || !p->DestroyImageKHR ||
!p->EGLImageTargetTexture2DOES)
return -1;
p->display = create_native_va_display(gl, hw->log);
if (!p->display) {
MP_VERBOSE(hw, "Could not create a VA display.\n");
return -1;
}
p->ctx = va_initialize(p->display, p->log, true);
if (!p->ctx) {
vaTerminate(p->display);
return -1;
}
if (!p->ctx->av_device_ref) {
MP_VERBOSE(hw, "libavutil vaapi code rejected the driver?\n");
destroy(hw);
return -1;
}
if (hw->probing && va_guess_if_emulated(p->ctx)) {
destroy(hw);
return -1;
}
MP_VERBOSE(p, "using VAAPI EGL interop\n");
determine_working_formats(hw);
if (!p->formats || !p->formats[0]) {
destroy(hw);
return -1;
}
p->ctx->hwctx.supported_formats = p->formats;
p->ctx->hwctx.driver_name = hw->driver->name;
hwdec_devices_add(hw->devs, &p->ctx->hwctx);
return 0;
}
static bool check_fmt(struct priv *p, int fmt)
{
for (int n = 0; p->formats[n]; n++) {
if (p->formats[n] == fmt)
return true;
}
return false;
}
static int reinit(struct gl_hwdec *hw, struct mp_image_params *params)
{
struct priv *p = hw->priv;
GL *gl = hw->gl;
// Recreate them to get rid of all previous image data (possibly).
destroy_textures(hw);
gl->GenTextures(4, p->gl_textures);
for (int n = 0; n < 4; n++) {
gl->BindTexture(GL_TEXTURE_2D, p->gl_textures[n]);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
gl->BindTexture(GL_TEXTURE_2D, 0);
p->current_mpfmt = params->hw_subfmt;
if (!p->probing_formats && !check_fmt(p, p->current_mpfmt)) {
vaapi: determine surface format in decoder, not in renderer Until now, we have made the assumption that a driver will use only 1 hardware surface format. the format is dictated by the driver (you don't create surfaces with a specific format - you just pass a rt_format and get a surface that will be in a specific driver-chosen format). In particular, the renderer created a dummy surface to probe the format, and hoped the decoder would produce the same format. Due to a driver bug this required a workaround to actually get the same format as the driver did. Change this so that the format is determined in the decoder. The format is then passed down as hw_subfmt, which allows the renderer to configure itself with the correct format. If the hardware surface changes its format midstream, the renderer can be reconfigured using the normal mechanisms. This calls va_surface_init_subformat() each time after the decoder returns a surface. Since libavcodec/AVFrame has no concept of sub- formats, this is unavoidable. It creates and destroys a derived VAImage, but this shouldn't have any bad performance effects (at least I didn't notice any measurable effects). Note that vaDeriveImage() failures are silently ignored as some drivers (the vdpau wrapper) support neither vaDeriveImage, nor EGL interop. In addition, we still probe whether we can map an image in the EGL interop code. This is important as it's the only way to determine whether EGL interop is supported at all. With respect to the driver bug mentioned above, it doesn't matter which format the test surface has. In vf_vavpp, also remove the rt_format guessing business. I think the existing logic was a bit meaningless anyway. It's not even a given that vavpp produces the same rt_format for output.
2016-04-11 20:46:05 +02:00
MP_FATAL(p, "unsupported VA image format %s\n",
mp_imgfmt_to_name(p->current_mpfmt));
vaapi: determine surface format in decoder, not in renderer Until now, we have made the assumption that a driver will use only 1 hardware surface format. the format is dictated by the driver (you don't create surfaces with a specific format - you just pass a rt_format and get a surface that will be in a specific driver-chosen format). In particular, the renderer created a dummy surface to probe the format, and hoped the decoder would produce the same format. Due to a driver bug this required a workaround to actually get the same format as the driver did. Change this so that the format is determined in the decoder. The format is then passed down as hw_subfmt, which allows the renderer to configure itself with the correct format. If the hardware surface changes its format midstream, the renderer can be reconfigured using the normal mechanisms. This calls va_surface_init_subformat() each time after the decoder returns a surface. Since libavcodec/AVFrame has no concept of sub- formats, this is unavoidable. It creates and destroys a derived VAImage, but this shouldn't have any bad performance effects (at least I didn't notice any measurable effects). Note that vaDeriveImage() failures are silently ignored as some drivers (the vdpau wrapper) support neither vaDeriveImage, nor EGL interop. In addition, we still probe whether we can map an image in the EGL interop code. This is important as it's the only way to determine whether EGL interop is supported at all. With respect to the driver bug mentioned above, it doesn't matter which format the test surface has. In vf_vavpp, also remove the rt_format guessing business. I think the existing logic was a bit meaningless anyway. It's not even a given that vavpp produces the same rt_format for output.
2016-04-11 20:46:05 +02:00
return -1;
}
vo_opengl: refactor how hwdec interop exports textures Rename gl_hwdec_driver.map_image to map_frame, and let it fill out a struct gl_hwdec_frame describing the exact texture layout. This gives more flexibility to what the hwdec interop can export. In particular, it can export strange component orders/permutations and textures with padded size. (The latter originating from cropped video.) The way gl_hwdec_frame works is in the spirit of the rest of the vo_opengl video processing code, which tends to put as much information in immediate state (as part of the dataflow), instead of declaring it globally. To some degree this duplicates the texplane and img_tex structs, but until we somehow unify those, it's better to give the hwdec state its own struct. The fact that changing the hwdec struct would require changes and testing on at least 4 platform/GPU combinations makes duplicating it almost a requirement to avoid pain later. Make gl_hwdec_driver.reinit set the new image format and remove the gl_hwdec.converted_imgfmt field. Likewise, gl_hwdec.gl_texture_target is replaced with gl_hwdec_plane.gl_target. Split out a init_image_desc function from init_format. The latter is not called in the hwdec case at all anymore. Setting up most of struct texplane is also completely separate in the hwdec and normal cases. video.c does not check whether the hwdec "mapped" image format is supported. This should not really happen anyway, and if it does, the hwdec interop backend must fail at creation time, so this is not an issue.
2016-05-10 18:29:10 +02:00
params->imgfmt = p->current_mpfmt;
params->hw_subfmt = 0;
vaapi: determine surface format in decoder, not in renderer Until now, we have made the assumption that a driver will use only 1 hardware surface format. the format is dictated by the driver (you don't create surfaces with a specific format - you just pass a rt_format and get a surface that will be in a specific driver-chosen format). In particular, the renderer created a dummy surface to probe the format, and hoped the decoder would produce the same format. Due to a driver bug this required a workaround to actually get the same format as the driver did. Change this so that the format is determined in the decoder. The format is then passed down as hw_subfmt, which allows the renderer to configure itself with the correct format. If the hardware surface changes its format midstream, the renderer can be reconfigured using the normal mechanisms. This calls va_surface_init_subformat() each time after the decoder returns a surface. Since libavcodec/AVFrame has no concept of sub- formats, this is unavoidable. It creates and destroys a derived VAImage, but this shouldn't have any bad performance effects (at least I didn't notice any measurable effects). Note that vaDeriveImage() failures are silently ignored as some drivers (the vdpau wrapper) support neither vaDeriveImage, nor EGL interop. In addition, we still probe whether we can map an image in the EGL interop code. This is important as it's the only way to determine whether EGL interop is supported at all. With respect to the driver bug mentioned above, it doesn't matter which format the test surface has. In vf_vavpp, also remove the rt_format guessing business. I think the existing logic was a bit meaningless anyway. It's not even a given that vavpp produces the same rt_format for output.
2016-04-11 20:46:05 +02:00
return 0;
}
#define ADD_ATTRIB(name, value) \
do { \
assert(num_attribs + 3 < MP_ARRAY_SIZE(attribs)); \
attribs[num_attribs++] = (name); \
attribs[num_attribs++] = (value); \
attribs[num_attribs] = EGL_NONE; \
} while(0)
vo_opengl: refactor how hwdec interop exports textures Rename gl_hwdec_driver.map_image to map_frame, and let it fill out a struct gl_hwdec_frame describing the exact texture layout. This gives more flexibility to what the hwdec interop can export. In particular, it can export strange component orders/permutations and textures with padded size. (The latter originating from cropped video.) The way gl_hwdec_frame works is in the spirit of the rest of the vo_opengl video processing code, which tends to put as much information in immediate state (as part of the dataflow), instead of declaring it globally. To some degree this duplicates the texplane and img_tex structs, but until we somehow unify those, it's better to give the hwdec state its own struct. The fact that changing the hwdec struct would require changes and testing on at least 4 platform/GPU combinations makes duplicating it almost a requirement to avoid pain later. Make gl_hwdec_driver.reinit set the new image format and remove the gl_hwdec.converted_imgfmt field. Likewise, gl_hwdec.gl_texture_target is replaced with gl_hwdec_plane.gl_target. Split out a init_image_desc function from init_format. The latter is not called in the hwdec case at all anymore. Setting up most of struct texplane is also completely separate in the hwdec and normal cases. video.c does not check whether the hwdec "mapped" image format is supported. This should not really happen anyway, and if it does, the hwdec interop backend must fail at creation time, so this is not an issue.
2016-05-10 18:29:10 +02:00
static int map_frame(struct gl_hwdec *hw, struct mp_image *hw_image,
struct gl_hwdec_frame *out_frame)
{
struct priv *p = hw->priv;
GL *gl = hw->gl;
VAStatus status;
VAImage *va_image = &p->current_image;
vo_opengl: refactor how hwdec interop exports textures Rename gl_hwdec_driver.map_image to map_frame, and let it fill out a struct gl_hwdec_frame describing the exact texture layout. This gives more flexibility to what the hwdec interop can export. In particular, it can export strange component orders/permutations and textures with padded size. (The latter originating from cropped video.) The way gl_hwdec_frame works is in the spirit of the rest of the vo_opengl video processing code, which tends to put as much information in immediate state (as part of the dataflow), instead of declaring it globally. To some degree this duplicates the texplane and img_tex structs, but until we somehow unify those, it's better to give the hwdec state its own struct. The fact that changing the hwdec struct would require changes and testing on at least 4 platform/GPU combinations makes duplicating it almost a requirement to avoid pain later. Make gl_hwdec_driver.reinit set the new image format and remove the gl_hwdec.converted_imgfmt field. Likewise, gl_hwdec.gl_texture_target is replaced with gl_hwdec_plane.gl_target. Split out a init_image_desc function from init_format. The latter is not called in the hwdec case at all anymore. Setting up most of struct texplane is also completely separate in the hwdec and normal cases. video.c does not check whether the hwdec "mapped" image format is supported. This should not really happen anyway, and if it does, the hwdec interop backend must fail at creation time, so this is not an issue.
2016-05-10 18:29:10 +02:00
unmap_frame(hw);
status = vaDeriveImage(p->display, va_surface_id(hw_image), va_image);
if (!CHECK_VA_STATUS(p, "vaDeriveImage()"))
goto err;
VABufferInfo buffer_info = {.mem_type = VA_SURFACE_ATTRIB_MEM_TYPE_DRM_PRIME};
status = vaAcquireBufferHandle(p->display, va_image->buf, &buffer_info);
if (!CHECK_VA_STATUS(p, "vaAcquireBufferHandle()"))
goto err;
p->buffer_acquired = true;
struct mp_image layout = {0};
mp_image_set_params(&layout, &hw_image->params);
mp_image_setfmt(&layout, p->current_mpfmt);
struct mp_imgfmt_desc fmt = layout.fmt;
int drm_fmts[8] = {
// 1 bytes per component, 1-4 components
MP_FOURCC('R', '8', ' ', ' '), // DRM_FORMAT_R8
MP_FOURCC('G', 'R', '8', '8'), // DRM_FORMAT_GR88
0, // untested (DRM_FORMAT_RGB888?)
0, // untested (DRM_FORMAT_RGBA8888?)
// 2 bytes per component, 1-4 components
MP_FOURCC('R', '1', '6', ' '), // proposed DRM_FORMAT_R16
MP_FOURCC('G', 'R', '3', '2'), // proposed DRM_FORMAT_GR32
0, // N/A
0, // N/A
};
for (int n = 0; n < layout.num_planes; n++) {
int attribs[20] = {EGL_NONE};
int num_attribs = 0;
int fmt_index = -1;
int cbits = fmt.component_bits;
if ((fmt.flags & (MP_IMGFLAG_YUV_P | MP_IMGFLAG_YUV_NV)) &&
(fmt.flags & MP_IMGFLAG_NE) && cbits >= 8 && cbits <= 16)
{
// Regular planar and semi-planar formats.
fmt_index = fmt.components[n] - 1 + 4 * ((cbits + 7) / 8 - 1);
} else if (fmt.id == IMGFMT_RGB0 || fmt.id == IMGFMT_BGR0) {
fmt_index = 3 + 4 * ((cbits + 7) / 8 - 1);
}
if (fmt_index < 0 || fmt_index >= 8 || !drm_fmts[fmt_index])
goto err;
ADD_ATTRIB(EGL_LINUX_DRM_FOURCC_EXT, drm_fmts[fmt_index]);
ADD_ATTRIB(EGL_WIDTH, mp_image_plane_w(&layout, n));
ADD_ATTRIB(EGL_HEIGHT, mp_image_plane_h(&layout, n));
ADD_ATTRIB(EGL_DMA_BUF_PLANE0_FD_EXT, buffer_info.handle);
ADD_ATTRIB(EGL_DMA_BUF_PLANE0_OFFSET_EXT, va_image->offsets[n]);
ADD_ATTRIB(EGL_DMA_BUF_PLANE0_PITCH_EXT, va_image->pitches[n]);
p->images[n] = p->CreateImageKHR(eglGetCurrentDisplay(),
EGL_NO_CONTEXT, EGL_LINUX_DMA_BUF_EXT, NULL, attribs);
if (!p->images[n])
goto err;
gl->BindTexture(GL_TEXTURE_2D, p->gl_textures[n]);
p->EGLImageTargetTexture2DOES(GL_TEXTURE_2D, p->images[n]);
vo_opengl: refactor how hwdec interop exports textures Rename gl_hwdec_driver.map_image to map_frame, and let it fill out a struct gl_hwdec_frame describing the exact texture layout. This gives more flexibility to what the hwdec interop can export. In particular, it can export strange component orders/permutations and textures with padded size. (The latter originating from cropped video.) The way gl_hwdec_frame works is in the spirit of the rest of the vo_opengl video processing code, which tends to put as much information in immediate state (as part of the dataflow), instead of declaring it globally. To some degree this duplicates the texplane and img_tex structs, but until we somehow unify those, it's better to give the hwdec state its own struct. The fact that changing the hwdec struct would require changes and testing on at least 4 platform/GPU combinations makes duplicating it almost a requirement to avoid pain later. Make gl_hwdec_driver.reinit set the new image format and remove the gl_hwdec.converted_imgfmt field. Likewise, gl_hwdec.gl_texture_target is replaced with gl_hwdec_plane.gl_target. Split out a init_image_desc function from init_format. The latter is not called in the hwdec case at all anymore. Setting up most of struct texplane is also completely separate in the hwdec and normal cases. video.c does not check whether the hwdec "mapped" image format is supported. This should not really happen anyway, and if it does, the hwdec interop backend must fail at creation time, so this is not an issue.
2016-05-10 18:29:10 +02:00
out_frame->planes[n] = (struct gl_hwdec_plane){
.gl_texture = p->gl_textures[n],
.gl_target = GL_TEXTURE_2D,
.tex_w = mp_image_plane_w(&layout, n),
.tex_h = mp_image_plane_h(&layout, n),
};
}
gl->BindTexture(GL_TEXTURE_2D, 0);
if (va_image->format.fourcc == VA_FOURCC_YV12)
vo_opengl: refactor how hwdec interop exports textures Rename gl_hwdec_driver.map_image to map_frame, and let it fill out a struct gl_hwdec_frame describing the exact texture layout. This gives more flexibility to what the hwdec interop can export. In particular, it can export strange component orders/permutations and textures with padded size. (The latter originating from cropped video.) The way gl_hwdec_frame works is in the spirit of the rest of the vo_opengl video processing code, which tends to put as much information in immediate state (as part of the dataflow), instead of declaring it globally. To some degree this duplicates the texplane and img_tex structs, but until we somehow unify those, it's better to give the hwdec state its own struct. The fact that changing the hwdec struct would require changes and testing on at least 4 platform/GPU combinations makes duplicating it almost a requirement to avoid pain later. Make gl_hwdec_driver.reinit set the new image format and remove the gl_hwdec.converted_imgfmt field. Likewise, gl_hwdec.gl_texture_target is replaced with gl_hwdec_plane.gl_target. Split out a init_image_desc function from init_format. The latter is not called in the hwdec case at all anymore. Setting up most of struct texplane is also completely separate in the hwdec and normal cases. video.c does not check whether the hwdec "mapped" image format is supported. This should not really happen anyway, and if it does, the hwdec interop backend must fail at creation time, so this is not an issue.
2016-05-10 18:29:10 +02:00
MPSWAP(struct gl_hwdec_plane, out_frame->planes[1], out_frame->planes[2]);
return 0;
err:
if (!p->probing_formats)
MP_FATAL(p, "mapping VAAPI EGL image failed\n");
vo_opengl: refactor how hwdec interop exports textures Rename gl_hwdec_driver.map_image to map_frame, and let it fill out a struct gl_hwdec_frame describing the exact texture layout. This gives more flexibility to what the hwdec interop can export. In particular, it can export strange component orders/permutations and textures with padded size. (The latter originating from cropped video.) The way gl_hwdec_frame works is in the spirit of the rest of the vo_opengl video processing code, which tends to put as much information in immediate state (as part of the dataflow), instead of declaring it globally. To some degree this duplicates the texplane and img_tex structs, but until we somehow unify those, it's better to give the hwdec state its own struct. The fact that changing the hwdec struct would require changes and testing on at least 4 platform/GPU combinations makes duplicating it almost a requirement to avoid pain later. Make gl_hwdec_driver.reinit set the new image format and remove the gl_hwdec.converted_imgfmt field. Likewise, gl_hwdec.gl_texture_target is replaced with gl_hwdec_plane.gl_target. Split out a init_image_desc function from init_format. The latter is not called in the hwdec case at all anymore. Setting up most of struct texplane is also completely separate in the hwdec and normal cases. video.c does not check whether the hwdec "mapped" image format is supported. This should not really happen anyway, and if it does, the hwdec interop backend must fail at creation time, so this is not an issue.
2016-05-10 18:29:10 +02:00
unmap_frame(hw);
return -1;
}
static bool try_format(struct gl_hwdec *hw, struct mp_image *surface)
{
bool ok = false;
struct mp_image_params params = surface->params;
if (reinit(hw, &params) >= 0) {
struct gl_hwdec_frame frame = {0};
ok = map_frame(hw, surface, &frame) >= 0;
}
unmap_frame(hw);
return ok;
}
static void determine_working_formats(struct gl_hwdec *hw)
{
struct priv *p = hw->priv;
int num_formats = 0;
int *formats = NULL;
p->probing_formats = true;
if (HAVE_VAAPI_HWACCEL_OLD) {
struct mp_image_pool *alloc = mp_image_pool_new(1);
va_pool_set_allocator(alloc, p->ctx, VA_RT_FORMAT_YUV420);
struct mp_image *s = mp_image_pool_get(alloc, IMGFMT_VAAPI, 64, 64);
if (s) {
va_surface_init_subformat(s);
if (try_format(hw, s))
MP_TARRAY_APPEND(p, formats, num_formats, IMGFMT_NV12);
}
talloc_free(s);
talloc_free(alloc);
} else {
AVHWFramesConstraints *fc =
av_hwdevice_get_hwframe_constraints(p->ctx->av_device_ref, NULL);
if (!fc) {
MP_WARN(hw, "failed to retrieve libavutil frame constaints\n");
goto done;
}
for (int n = 0; fc->valid_sw_formats[n] != AV_PIX_FMT_NONE; n++) {
AVBufferRef *fref = NULL;
struct mp_image *s = NULL;
AVFrame *frame = NULL;
fref = av_hwframe_ctx_alloc(p->ctx->av_device_ref);
if (!fref)
goto err;
AVHWFramesContext *fctx = (void *)fref->data;
fctx->format = AV_PIX_FMT_VAAPI;
fctx->sw_format = fc->valid_sw_formats[n];
fctx->width = 128;
fctx->height = 128;
if (av_hwframe_ctx_init(fref) < 0)
goto err;
frame = av_frame_alloc();
if (!frame)
goto err;
if (av_hwframe_get_buffer(fref, frame, 0) < 0)
goto err;
s = mp_image_from_av_frame(frame);
if (!s || !mp_image_params_valid(&s->params))
goto err;
if (try_format(hw, s))
MP_TARRAY_APPEND(p, formats, num_formats, s->params.hw_subfmt);
err:
talloc_free(s);
av_frame_free(&frame);
av_buffer_unref(&fref);
}
av_hwframe_constraints_free(&fc);
}
done:
MP_TARRAY_APPEND(p, formats, num_formats, 0); // terminate it
p->formats = formats;
p->probing_formats = false;
MP_VERBOSE(hw, "Supported formats:\n");
for (int n = 0; formats[n]; n++)
MP_VERBOSE(hw, " %s\n", mp_imgfmt_to_name(formats[n]));
}
const struct gl_hwdec_driver gl_hwdec_vaegl = {
.name = "vaapi-egl",
.api = HWDEC_VAAPI,
.imgfmt = IMGFMT_VAAPI,
.create = create,
.reinit = reinit,
vo_opengl: refactor how hwdec interop exports textures Rename gl_hwdec_driver.map_image to map_frame, and let it fill out a struct gl_hwdec_frame describing the exact texture layout. This gives more flexibility to what the hwdec interop can export. In particular, it can export strange component orders/permutations and textures with padded size. (The latter originating from cropped video.) The way gl_hwdec_frame works is in the spirit of the rest of the vo_opengl video processing code, which tends to put as much information in immediate state (as part of the dataflow), instead of declaring it globally. To some degree this duplicates the texplane and img_tex structs, but until we somehow unify those, it's better to give the hwdec state its own struct. The fact that changing the hwdec struct would require changes and testing on at least 4 platform/GPU combinations makes duplicating it almost a requirement to avoid pain later. Make gl_hwdec_driver.reinit set the new image format and remove the gl_hwdec.converted_imgfmt field. Likewise, gl_hwdec.gl_texture_target is replaced with gl_hwdec_plane.gl_target. Split out a init_image_desc function from init_format. The latter is not called in the hwdec case at all anymore. Setting up most of struct texplane is also completely separate in the hwdec and normal cases. video.c does not check whether the hwdec "mapped" image format is supported. This should not really happen anyway, and if it does, the hwdec interop backend must fail at creation time, so this is not an issue.
2016-05-10 18:29:10 +02:00
.map_frame = map_frame,
.unmap = unmap_frame,
.destroy = destroy,
};