mpv/video/out/d3d11/context.c

562 lines
17 KiB
C
Raw Normal View History

vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
/*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common/msg.h"
#include "options/m_config.h"
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
#include "osdep/timer.h"
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
#include "osdep/windows_utils.h"
#include "video/out/gpu/context.h"
#include "video/out/gpu/d3d11_helpers.h"
#include "video/out/gpu/spirv.h"
#include "video/out/w32_common.h"
#include "context.h"
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
#include "ra_d3d11.h"
static int d3d11_validate_adapter(struct mp_log *log,
const struct m_option *opt,
options: Make validation and help possible for all option types Today, validation is only possible for string type options. But there's no particular reason why it needs to be restricted in this way, and there are potential uses, to allow other options to be validated without forcing the option to have to reimplement parsing from scratch. The first part, simply making the validation function an explicit field instead of overloading priv is simple enough. But if we only do that, then the validation function still needs to deal with the raw pre-parsed string. Instead, we want to allow the value to be parsed before it is validated. That in turn leads to us having validator functions that should be type aware. Unfortunately, that means we need to keep the explicit macro like OPT_STRING_VALIDATE() as a way to enforce the correct typing of the function. Otherwise, we'd have to have the validator take a void * and hope the implementation can cast it correctly. For help, we don't have this problem, as help doesn't look at the value. Then, we turn validators that are really help generators into explicit help functions and where a validator is help + validation, we split them into two parts. I have, however, left functions that need to query information for both help and validation as single functions to avoid code duplication. In this change, I have not added an other OPT_FOO_VALIDATE() macros as they are not needed, but I will add some in a separate change to illustrate the pattern.
2021-02-21 01:41:44 +01:00
struct bstr name, const char **value);
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
struct d3d11_opts {
int feature_level;
int warp;
bool flip;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
int sync_interval;
char *adapter_name;
int output_format;
int color_space;
bool exclusive_fs;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
};
#define OPT_BASE_STRUCT struct d3d11_opts
const struct m_sub_options d3d11_conf = {
.opts = (const struct m_option[]) {
{"d3d11-warp", OPT_CHOICE(warp,
{"auto", -1},
{"no", 0},
{"yes", 1})},
{"d3d11-feature-level", OPT_CHOICE(feature_level,
{"12_1", D3D_FEATURE_LEVEL_12_1},
{"12_0", D3D_FEATURE_LEVEL_12_0},
{"11_1", D3D_FEATURE_LEVEL_11_1},
{"11_0", D3D_FEATURE_LEVEL_11_0},
{"10_1", D3D_FEATURE_LEVEL_10_1},
{"10_0", D3D_FEATURE_LEVEL_10_0},
{"9_3", D3D_FEATURE_LEVEL_9_3},
{"9_2", D3D_FEATURE_LEVEL_9_2},
{"9_1", D3D_FEATURE_LEVEL_9_1})},
{"d3d11-flip", OPT_BOOL(flip)},
{"d3d11-sync-interval", OPT_INT(sync_interval), M_RANGE(0, 4)},
{"d3d11-adapter", OPT_STRING_VALIDATE(adapter_name,
options: Make validation and help possible for all option types Today, validation is only possible for string type options. But there's no particular reason why it needs to be restricted in this way, and there are potential uses, to allow other options to be validated without forcing the option to have to reimplement parsing from scratch. The first part, simply making the validation function an explicit field instead of overloading priv is simple enough. But if we only do that, then the validation function still needs to deal with the raw pre-parsed string. Instead, we want to allow the value to be parsed before it is validated. That in turn leads to us having validator functions that should be type aware. Unfortunately, that means we need to keep the explicit macro like OPT_STRING_VALIDATE() as a way to enforce the correct typing of the function. Otherwise, we'd have to have the validator take a void * and hope the implementation can cast it correctly. For help, we don't have this problem, as help doesn't look at the value. Then, we turn validators that are really help generators into explicit help functions and where a validator is help + validation, we split them into two parts. I have, however, left functions that need to query information for both help and validation as single functions to avoid code duplication. In this change, I have not added an other OPT_FOO_VALIDATE() macros as they are not needed, but I will add some in a separate change to illustrate the pattern.
2021-02-21 01:41:44 +01:00
d3d11_validate_adapter)},
{"d3d11-output-format", OPT_CHOICE(output_format,
{"auto", DXGI_FORMAT_UNKNOWN},
{"rgba8", DXGI_FORMAT_R8G8B8A8_UNORM},
{"bgra8", DXGI_FORMAT_B8G8R8A8_UNORM},
{"rgb10_a2", DXGI_FORMAT_R10G10B10A2_UNORM},
{"rgba16f", DXGI_FORMAT_R16G16B16A16_FLOAT})},
{"d3d11-output-csp", OPT_CHOICE(color_space,
{"auto", -1},
{"srgb", DXGI_COLOR_SPACE_RGB_FULL_G22_NONE_P709},
{"linear", DXGI_COLOR_SPACE_RGB_FULL_G10_NONE_P709},
{"pq", DXGI_COLOR_SPACE_RGB_FULL_G2084_NONE_P2020},
{"bt.2020", DXGI_COLOR_SPACE_RGB_FULL_G22_NONE_P2020})},
{"d3d11-exclusive-fs", OPT_BOOL(exclusive_fs)},
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
{0}
},
.defaults = &(const struct d3d11_opts) {
.feature_level = D3D_FEATURE_LEVEL_12_1,
.warp = -1,
.flip = true,
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
.sync_interval = 1,
.adapter_name = NULL,
.output_format = DXGI_FORMAT_UNKNOWN,
.color_space = -1,
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
},
.size = sizeof(struct d3d11_opts)
};
struct priv {
struct d3d11_opts *opts;
struct m_config_cache *opts_cache;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
struct mp_vo_opts *vo_opts;
struct m_config_cache *vo_opts_cache;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
struct ra_tex *backbuffer;
ID3D11Device *device;
IDXGISwapChain *swapchain;
struct mp_colorspace swapchain_csp;
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
int64_t perf_freq;
unsigned last_sync_refresh_count;
int64_t last_sync_qpc_time;
int64_t vsync_duration_qpc;
int64_t last_submit_qpc;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
};
static int d3d11_validate_adapter(struct mp_log *log,
const struct m_option *opt,
options: Make validation and help possible for all option types Today, validation is only possible for string type options. But there's no particular reason why it needs to be restricted in this way, and there are potential uses, to allow other options to be validated without forcing the option to have to reimplement parsing from scratch. The first part, simply making the validation function an explicit field instead of overloading priv is simple enough. But if we only do that, then the validation function still needs to deal with the raw pre-parsed string. Instead, we want to allow the value to be parsed before it is validated. That in turn leads to us having validator functions that should be type aware. Unfortunately, that means we need to keep the explicit macro like OPT_STRING_VALIDATE() as a way to enforce the correct typing of the function. Otherwise, we'd have to have the validator take a void * and hope the implementation can cast it correctly. For help, we don't have this problem, as help doesn't look at the value. Then, we turn validators that are really help generators into explicit help functions and where a validator is help + validation, we split them into two parts. I have, however, left functions that need to query information for both help and validation as single functions to avoid code duplication. In this change, I have not added an other OPT_FOO_VALIDATE() macros as they are not needed, but I will add some in a separate change to illustrate the pattern.
2021-02-21 01:41:44 +01:00
struct bstr name, const char **value)
{
options: Make validation and help possible for all option types Today, validation is only possible for string type options. But there's no particular reason why it needs to be restricted in this way, and there are potential uses, to allow other options to be validated without forcing the option to have to reimplement parsing from scratch. The first part, simply making the validation function an explicit field instead of overloading priv is simple enough. But if we only do that, then the validation function still needs to deal with the raw pre-parsed string. Instead, we want to allow the value to be parsed before it is validated. That in turn leads to us having validator functions that should be type aware. Unfortunately, that means we need to keep the explicit macro like OPT_STRING_VALIDATE() as a way to enforce the correct typing of the function. Otherwise, we'd have to have the validator take a void * and hope the implementation can cast it correctly. For help, we don't have this problem, as help doesn't look at the value. Then, we turn validators that are really help generators into explicit help functions and where a validator is help + validation, we split them into two parts. I have, however, left functions that need to query information for both help and validation as single functions to avoid code duplication. In this change, I have not added an other OPT_FOO_VALIDATE() macros as they are not needed, but I will add some in a separate change to illustrate the pattern.
2021-02-21 01:41:44 +01:00
struct bstr param = bstr0(*value);
bool help = bstr_equals0(param, "help");
bool adapter_matched = false;
struct bstr listing = { 0 };
if (bstr_equals0(param, "")) {
return 0;
}
adapter_matched = mp_d3d11_list_or_verify_adapters(log,
help ? bstr0(NULL) : param,
help ? &listing : NULL);
if (help) {
mp_info(log, "Available D3D11 adapters:\n%.*s",
BSTR_P(listing));
talloc_free(listing.start);
return M_OPT_EXIT;
}
if (!adapter_matched) {
mp_err(log, "No adapter matching '%.*s'!\n", BSTR_P(param));
}
return adapter_matched ? 0 : M_OPT_INVALID;
}
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
static struct ra_tex *get_backbuffer(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv;
ID3D11Texture2D *backbuffer = NULL;
struct ra_tex *tex = NULL;
HRESULT hr;
hr = IDXGISwapChain_GetBuffer(p->swapchain, 0, &IID_ID3D11Texture2D,
(void**)&backbuffer);
if (FAILED(hr)) {
MP_ERR(ctx, "Couldn't get swapchain image\n");
goto done;
}
tex = ra_d3d11_wrap_tex(ctx->ra, (ID3D11Resource *)backbuffer);
done:
SAFE_RELEASE(backbuffer);
return tex;
}
static bool resize(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv;
HRESULT hr;
if (p->backbuffer) {
MP_ERR(ctx, "Attempt at resizing while a frame was in progress!\n");
return false;
}
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
hr = IDXGISwapChain_ResizeBuffers(p->swapchain, 0, ctx->vo->dwidth,
ctx->vo->dheight, DXGI_FORMAT_UNKNOWN, 0);
if (FAILED(hr)) {
MP_FATAL(ctx, "Couldn't resize swapchain: %s\n", mp_HRESULT_to_str(hr));
return false;
}
return true;
}
static bool d3d11_reconfig(struct ra_ctx *ctx)
{
vo_w32_config(ctx->vo);
return resize(ctx);
}
static int d3d11_color_depth(struct ra_swapchain *sw)
{
struct priv *p = sw->priv;
DXGI_SWAP_CHAIN_DESC desc;
HRESULT hr = IDXGISwapChain_GetDesc(p->swapchain, &desc);
if (FAILED(hr)) {
MP_ERR(sw->ctx, "Failed to query swap chain description: %s!\n",
mp_HRESULT_to_str(hr));
return 0;
}
const struct ra_format *ra_fmt =
ra_d3d11_get_ra_format(sw->ctx->ra, desc.BufferDesc.Format);
if (!ra_fmt)
return 0;
return ra_fmt->component_depth[0];
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
}
static bool d3d11_start_frame(struct ra_swapchain *sw, struct ra_fbo *out_fbo)
{
struct priv *p = sw->priv;
if (!out_fbo)
return true;
assert(!p->backbuffer);
p->backbuffer = get_backbuffer(sw->ctx);
if (!p->backbuffer)
return false;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
*out_fbo = (struct ra_fbo) {
.tex = p->backbuffer,
.flip = false,
.color_space = p->swapchain_csp
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
};
return true;
}
static bool d3d11_submit_frame(struct ra_swapchain *sw,
const struct vo_frame *frame)
{
struct priv *p = sw->priv;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
ra_d3d11_flush(sw->ctx->ra);
ra_tex_free(sw->ctx->ra, &p->backbuffer);
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
return true;
}
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
static int64_t qpc_to_us(struct ra_swapchain *sw, int64_t qpc)
{
struct priv *p = sw->priv;
// Convert QPC units (1/perf_freq seconds) to microseconds. This will work
// without overflow because the QPC value is guaranteed not to roll-over
// within 100 years, so perf_freq must be less than 2.9*10^9.
return qpc / p->perf_freq * 1000000 +
qpc % p->perf_freq * 1000000 / p->perf_freq;
}
static int64_t qpc_us_now(struct ra_swapchain *sw)
{
LARGE_INTEGER perf_count;
QueryPerformanceCounter(&perf_count);
return qpc_to_us(sw, perf_count.QuadPart);
}
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
static void d3d11_swap_buffers(struct ra_swapchain *sw)
{
struct priv *p = sw->priv;
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
m_config_cache_update(p->opts_cache);
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
LARGE_INTEGER perf_count;
QueryPerformanceCounter(&perf_count);
p->last_submit_qpc = perf_count.QuadPart;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
IDXGISwapChain_Present(p->swapchain, p->opts->sync_interval, 0);
}
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
static void d3d11_get_vsync(struct ra_swapchain *sw, struct vo_vsync_info *info)
{
struct priv *p = sw->priv;
HRESULT hr;
m_config_cache_update(p->opts_cache);
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
// The calculations below are only valid if mpv presents on every vsync
if (p->opts->sync_interval != 1)
return;
// They're also only valid for flip model swapchains
DXGI_SWAP_CHAIN_DESC desc;
hr = IDXGISwapChain_GetDesc(p->swapchain, &desc);
if (FAILED(hr) || (desc.SwapEffect != DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL &&
desc.SwapEffect != DXGI_SWAP_EFFECT_FLIP_DISCARD))
{
return;
}
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
// GetLastPresentCount returns a sequential ID for the frame submitted by
// the last call to IDXGISwapChain::Present()
UINT submit_count;
hr = IDXGISwapChain_GetLastPresentCount(p->swapchain, &submit_count);
if (FAILED(hr))
return;
// GetFrameStatistics returns two pairs. The first is (PresentCount,
// PresentRefreshCount) which relates a present ID (on the same timeline as
// GetLastPresentCount) to the physical vsync it was displayed on. The
// second is (SyncRefreshCount, SyncQPCTime), which relates a physical vsync
// to a timestamp on the same clock as QueryPerformanceCounter.
DXGI_FRAME_STATISTICS stats;
hr = IDXGISwapChain_GetFrameStatistics(p->swapchain, &stats);
if (hr == DXGI_ERROR_FRAME_STATISTICS_DISJOINT) {
p->last_sync_refresh_count = 0;
p->last_sync_qpc_time = 0;
}
if (FAILED(hr))
return;
// Detecting skipped vsyncs is possible but not supported yet
info->skipped_vsyncs = 0;
// Get the number of physical vsyncs that have passed since the last call.
// Check for 0 here, since sometimes GetFrameStatistics returns S_OK but
// with 0s in some (all?) members of DXGI_FRAME_STATISTICS.
unsigned src_passed = 0;
if (stats.SyncRefreshCount && p->last_sync_refresh_count)
src_passed = stats.SyncRefreshCount - p->last_sync_refresh_count;
p->last_sync_refresh_count = stats.SyncRefreshCount;
// Get the elapsed time passed between the above vsyncs
unsigned sqt_passed = 0;
if (stats.SyncQPCTime.QuadPart && p->last_sync_qpc_time)
sqt_passed = stats.SyncQPCTime.QuadPart - p->last_sync_qpc_time;
p->last_sync_qpc_time = stats.SyncQPCTime.QuadPart;
// If any vsyncs have passed, estimate the physical frame rate
if (src_passed && sqt_passed)
p->vsync_duration_qpc = sqt_passed / src_passed;
if (p->vsync_duration_qpc)
info->vsync_duration = qpc_to_us(sw, p->vsync_duration_qpc);
// If the physical frame rate is known and the other members of
// DXGI_FRAME_STATISTICS are non-0, estimate the timing of the next frame
if (p->vsync_duration_qpc && stats.PresentCount &&
stats.PresentRefreshCount && stats.SyncRefreshCount &&
stats.SyncQPCTime.QuadPart)
{
// It's not clear if PresentRefreshCount and SyncRefreshCount can refer
// to different frames, but in case they can, assuming mpv presents on
// every frame, guess the present count that relates to SyncRefreshCount.
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
unsigned expected_sync_pc = stats.PresentCount +
(stats.SyncRefreshCount - stats.PresentRefreshCount);
// Now guess the timestamp of the last submitted frame based on the
// timestamp of the frame at SyncRefreshCount and the frame rate
int queued_frames = submit_count - expected_sync_pc;
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
int64_t last_queue_display_time_qpc = stats.SyncQPCTime.QuadPart +
queued_frames * p->vsync_duration_qpc;
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
// Only set the estimated display time if it's after the last submission
// time. It could be before if mpv skips a lot of frames.
if (last_queue_display_time_qpc >= p->last_submit_qpc) {
info->last_queue_display_time = mp_time_us() +
(qpc_to_us(sw, last_queue_display_time_qpc) - qpc_us_now(sw));
}
}
}
static bool d3d11_set_fullscreen(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv;
HRESULT hr;
m_config_cache_update(p->opts_cache);
if (!p->swapchain) {
MP_ERR(ctx, "Full screen configuration was requested before D3D11 "
"swap chain was ready!");
return false;
}
// we only want exclusive FS if we are entering FS and
// exclusive FS is enabled. Otherwise disable exclusive FS.
bool enable_exclusive_fs = p->vo_opts->fullscreen &&
p->opts->exclusive_fs;
MP_VERBOSE(ctx, "%s full-screen exclusive mode while %s fullscreen\n",
enable_exclusive_fs ? "Enabling" : "Disabling",
ctx->vo->opts->fullscreen ? "entering" : "leaving");
hr = IDXGISwapChain_SetFullscreenState(p->swapchain,
enable_exclusive_fs, NULL);
if (FAILED(hr))
return false;
if (!resize(ctx))
return false;
return true;
}
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
static int d3d11_control(struct ra_ctx *ctx, int *events, int request, void *arg)
{
struct priv *p = ctx->priv;
int ret = -1;
bool fullscreen_switch_needed = false;
switch (request) {
case VOCTRL_VO_OPTS_CHANGED: {
void *changed_option;
while (m_config_cache_get_next_changed(p->vo_opts_cache,
&changed_option))
{
struct mp_vo_opts *vo_opts = p->vo_opts_cache->opts;
if (changed_option == &vo_opts->fullscreen) {
fullscreen_switch_needed = true;
}
}
break;
}
default:
break;
}
// if leaving full screen, handle d3d11 stuff first, then general
// windowing
if (fullscreen_switch_needed && !p->vo_opts->fullscreen) {
if (!d3d11_set_fullscreen(ctx))
return VO_FALSE;
fullscreen_switch_needed = false;
}
ret = vo_w32_control(ctx->vo, events, request, arg);
// if entering full screen, handle d3d11 after general windowing stuff
if (fullscreen_switch_needed && p->vo_opts->fullscreen) {
if (!d3d11_set_fullscreen(ctx))
return VO_FALSE;
fullscreen_switch_needed = false;
}
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
if (*events & VO_EVENT_RESIZE) {
if (!resize(ctx))
return VO_ERROR;
}
return ret;
}
static void d3d11_uninit(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv;
if (p->swapchain)
IDXGISwapChain_SetFullscreenState(p->swapchain, FALSE, NULL);
if (ctx->ra)
ra_tex_free(ctx->ra, &p->backbuffer);
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
SAFE_RELEASE(p->swapchain);
vo_w32_uninit(ctx->vo);
SAFE_RELEASE(p->device);
2022-04-25 13:27:18 +02:00
// Destroy the RA last to prevent objects we hold from showing up in D3D's
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
// leak checker
if (ctx->ra)
ctx->ra->fns->destroy(ctx->ra);
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
}
static const struct ra_swapchain_fns d3d11_swapchain = {
.color_depth = d3d11_color_depth,
.start_frame = d3d11_start_frame,
.submit_frame = d3d11_submit_frame,
.swap_buffers = d3d11_swap_buffers,
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
.get_vsync = d3d11_get_vsync,
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
};
static bool d3d11_init(struct ra_ctx *ctx)
{
struct priv *p = ctx->priv = talloc_zero(ctx, struct priv);
p->opts_cache = m_config_cache_alloc(ctx, ctx->global, &d3d11_conf);
p->opts = p->opts_cache->opts;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
p->vo_opts_cache = m_config_cache_alloc(ctx, ctx->vo->global, &vo_sub_opts);
p->vo_opts = p->vo_opts_cache->opts;
vo_gpu: d3d11: add support for presentation feedback This adds vsync reporting to the D3D11 backend using the presentation feedback provided by DXGI, which is pretty similar to what's provided by GLX_OML_sync_control in the GLX backend. In DirectX, PresentCount is the SBC, PresentRefreshCount and SyncRefreshCount are kind of like the MSC and SyncQPCTime is the UST. Unlike GLX, the DXGI API makes it possible for PresentCount and SyncQPCTime to refer to different physical vsyncs, in which case PresentRefreshCount and SyncRefreshCount will be different. The code supports this possibility, even though it's not clear whether it can happen when using flip-model presentation. The docs say for flip-model apps, PresentRefreshCount is equal to SyncRefreshCount "when the app presents on every vsync," but on my hardware, they're always equal, even when mpv misses a vsync. They can definitely be different in exclusive fullscreen bitblt mode, though, which mpv doesn't support now, but might support in future. Another difference to GLX is that, at least on my hardware, PresentRefreshCount and SyncRefreshCount always refer to the last physical vsync on which mpv presented a frame, but glxGetSyncValues can apparently return a MSC and UST from the most recent physical vsync, even if mpv didn't present a new frame on it. This might result in different behaviour between the two backends after dropped frames or brief pauses. Also note, the docs for the DXGI presentation feedback APIs are pretty awful, even by Microsoft standards. In particular the docs for DXGI_FRAME_STATISTICS are misleading (PresentCount really is the number of times Present() has been called for that frame, not "the running total count of times that an image was presented to the monitor since the computer booted.") For good documentation, try these: https://docs.microsoft.com/en-us/windows/win32/direct3ddxgi/dxgi-flip-model https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dpresentstats https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/d3dkmthk/ns-d3dkmthk-_d3dkmt_present_stats (Yeah, the docs for the D3D9Ex and even the kernel-mode version of this structure are better than the DXGI ones. It seems possible that they're all rewordings of the same internal Microsoft docs, but whoever wrote the DXGI one didn't really understand it.)
2019-04-17 14:53:42 +02:00
LARGE_INTEGER perf_freq;
QueryPerformanceFrequency(&perf_freq);
p->perf_freq = perf_freq.QuadPart;
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
struct ra_swapchain *sw = ctx->swapchain = talloc_zero(ctx, struct ra_swapchain);
sw->priv = p;
sw->ctx = ctx;
sw->fns = &d3d11_swapchain;
struct d3d11_device_opts dopts = {
.debug = ctx->opts.debug,
.allow_warp = p->opts->warp != 0,
.force_warp = p->opts->warp == 1,
.max_feature_level = p->opts->feature_level,
.max_frame_latency = ctx->vo->opts->swapchain_depth,
.adapter_name = p->opts->adapter_name,
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
};
if (!mp_d3d11_create_present_device(ctx->log, &dopts, &p->device))
goto error;
if (!spirv_compiler_init(ctx))
goto error;
ctx->ra = ra_d3d11_create(p->device, ctx->log, ctx->spirv);
if (!ctx->ra)
goto error;
if (!vo_w32_init(ctx->vo))
goto error;
UINT usage = DXGI_USAGE_RENDER_TARGET_OUTPUT | DXGI_USAGE_SHADER_INPUT;
if (ID3D11Device_GetFeatureLevel(p->device) >= D3D_FEATURE_LEVEL_11_0 &&
p->opts->output_format != DXGI_FORMAT_B8G8R8A8_UNORM)
{
usage |= DXGI_USAGE_UNORDERED_ACCESS;
}
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
struct d3d11_swapchain_opts scopts = {
.window = vo_w32_hwnd(ctx->vo),
.width = ctx->vo->dwidth,
.height = ctx->vo->dheight,
.format = p->opts->output_format,
.color_space = p->opts->color_space,
.configured_csp = &p->swapchain_csp,
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
.flip = p->opts->flip,
// Add one frame for the backbuffer and one frame of "slack" to reduce
// contention with the window manager when acquiring the backbuffer
.length = ctx->vo->opts->swapchain_depth + 2,
.usage = usage,
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
};
if (!mp_d3d11_create_swapchain(p->device, ctx->log, &scopts, &p->swapchain))
goto error;
return true;
error:
d3d11_uninit(ctx);
return false;
}
IDXGISwapChain *ra_d3d11_ctx_get_swapchain(struct ra_ctx *ra)
{
if (ra->swapchain->fns != &d3d11_swapchain)
return NULL;
struct priv *p = ra->priv;
IDXGISwapChain_AddRef(p->swapchain);
return p->swapchain;
}
vo_gpu: d3d11: initial implementation This is a new RA/vo_gpu backend that uses Direct3D 11. The GLSL generated by vo_gpu is cross-compiled to HLSL with SPIRV-Cross. What works: - All of mpv's internal shaders should work, including compute shaders. - Some external shaders have been tested and work, including RAVU and adaptive-sharpen. - Non-dumb mode works, even on very old hardware. Most features work at feature level 9_3 and all features work at feature level 10_0. Some features also work at feature level 9_1 and 9_2, but without high-bit- depth FBOs, it's not very useful. (Hardware this old is probably not fast enough for advanced features anyway.) Note: This is more compatible than ANGLE, which requires 9_3 to work at all (GLES 2.0,) and 10_1 for non-dumb-mode (GLES 3.0.) - Hardware decoding with D3D11VA, including decoding of 10-bit formats without truncation to 8-bit. What doesn't work / can be improved: - PBO upload and direct rendering does not work yet. Direct rendering requires persistent-mapped PBOs because the decoder needs to be able to read data from images that have already been decoded and uploaded. Unfortunately, it seems like persistent-mapped PBOs are fundamentally incompatible with D3D11, which requires all resources to use driver- managed memory and requires memory to be unmapped (and hence pointers to be invalidated) when a resource is used in a draw or copy operation. However it might be possible to use D3D11's limited multithreading capabilities to emulate some features of PBOs, like asynchronous texture uploading. - The blit() and clear() operations don't have equivalents in the D3D11 API that handle all cases, so in most cases, they have to be emulated with a shader. This is currently done inside ra_d3d11, but ideally it would be done in generic code, so it can take advantage of mpv's shader generation utilities. - SPIRV-Cross is used through a NIH C-compatible wrapper library, since it does not expose a C interface itself. The library is available here: https://github.com/rossy/crossc - The D3D11 context could be made to support more modern DXGI features in future. For example, it should be possible to add support for high-bit-depth and HDR output with DXGI 1.5/1.6.
2017-09-07 12:18:06 +02:00
const struct ra_ctx_fns ra_ctx_d3d11 = {
.type = "d3d11",
.name = "d3d11",
.reconfig = d3d11_reconfig,
.control = d3d11_control,
.init = d3d11_init,
.uninit = d3d11_uninit,
};