1
mirror of https://github.com/rapid7/metasploit-payloads synced 2025-01-14 17:37:27 +01:00

import 1cf077a from python 2.7 branch (2.7.10+)

This commit is contained in:
Brent Cook 2015-10-19 21:11:14 -05:00 committed by Brent Cook
parent 2492316f55
commit e878ac3286
875 changed files with 572460 additions and 0 deletions

View File

@ -0,0 +1,535 @@
/* File automatically generated by Parser/asdl_c.py. */
#include "asdl.h"
typedef struct _mod *mod_ty;
typedef struct _stmt *stmt_ty;
typedef struct _expr *expr_ty;
typedef enum _expr_context { Load=1, Store=2, Del=3, AugLoad=4, AugStore=5,
Param=6 } expr_context_ty;
typedef struct _slice *slice_ty;
typedef enum _boolop { And=1, Or=2 } boolop_ty;
typedef enum _operator { Add=1, Sub=2, Mult=3, Div=4, Mod=5, Pow=6, LShift=7,
RShift=8, BitOr=9, BitXor=10, BitAnd=11, FloorDiv=12 }
operator_ty;
typedef enum _unaryop { Invert=1, Not=2, UAdd=3, USub=4 } unaryop_ty;
typedef enum _cmpop { Eq=1, NotEq=2, Lt=3, LtE=4, Gt=5, GtE=6, Is=7, IsNot=8,
In=9, NotIn=10 } cmpop_ty;
typedef struct _comprehension *comprehension_ty;
typedef struct _excepthandler *excepthandler_ty;
typedef struct _arguments *arguments_ty;
typedef struct _keyword *keyword_ty;
typedef struct _alias *alias_ty;
enum _mod_kind {Module_kind=1, Interactive_kind=2, Expression_kind=3,
Suite_kind=4};
struct _mod {
enum _mod_kind kind;
union {
struct {
asdl_seq *body;
} Module;
struct {
asdl_seq *body;
} Interactive;
struct {
expr_ty body;
} Expression;
struct {
asdl_seq *body;
} Suite;
} v;
};
enum _stmt_kind {FunctionDef_kind=1, ClassDef_kind=2, Return_kind=3,
Delete_kind=4, Assign_kind=5, AugAssign_kind=6, Print_kind=7,
For_kind=8, While_kind=9, If_kind=10, With_kind=11,
Raise_kind=12, TryExcept_kind=13, TryFinally_kind=14,
Assert_kind=15, Import_kind=16, ImportFrom_kind=17,
Exec_kind=18, Global_kind=19, Expr_kind=20, Pass_kind=21,
Break_kind=22, Continue_kind=23};
struct _stmt {
enum _stmt_kind kind;
union {
struct {
identifier name;
arguments_ty args;
asdl_seq *body;
asdl_seq *decorator_list;
} FunctionDef;
struct {
identifier name;
asdl_seq *bases;
asdl_seq *body;
asdl_seq *decorator_list;
} ClassDef;
struct {
expr_ty value;
} Return;
struct {
asdl_seq *targets;
} Delete;
struct {
asdl_seq *targets;
expr_ty value;
} Assign;
struct {
expr_ty target;
operator_ty op;
expr_ty value;
} AugAssign;
struct {
expr_ty dest;
asdl_seq *values;
bool nl;
} Print;
struct {
expr_ty target;
expr_ty iter;
asdl_seq *body;
asdl_seq *orelse;
} For;
struct {
expr_ty test;
asdl_seq *body;
asdl_seq *orelse;
} While;
struct {
expr_ty test;
asdl_seq *body;
asdl_seq *orelse;
} If;
struct {
expr_ty context_expr;
expr_ty optional_vars;
asdl_seq *body;
} With;
struct {
expr_ty type;
expr_ty inst;
expr_ty tback;
} Raise;
struct {
asdl_seq *body;
asdl_seq *handlers;
asdl_seq *orelse;
} TryExcept;
struct {
asdl_seq *body;
asdl_seq *finalbody;
} TryFinally;
struct {
expr_ty test;
expr_ty msg;
} Assert;
struct {
asdl_seq *names;
} Import;
struct {
identifier module;
asdl_seq *names;
int level;
} ImportFrom;
struct {
expr_ty body;
expr_ty globals;
expr_ty locals;
} Exec;
struct {
asdl_seq *names;
} Global;
struct {
expr_ty value;
} Expr;
} v;
int lineno;
int col_offset;
};
enum _expr_kind {BoolOp_kind=1, BinOp_kind=2, UnaryOp_kind=3, Lambda_kind=4,
IfExp_kind=5, Dict_kind=6, Set_kind=7, ListComp_kind=8,
SetComp_kind=9, DictComp_kind=10, GeneratorExp_kind=11,
Yield_kind=12, Compare_kind=13, Call_kind=14, Repr_kind=15,
Num_kind=16, Str_kind=17, Attribute_kind=18,
Subscript_kind=19, Name_kind=20, List_kind=21, Tuple_kind=22};
struct _expr {
enum _expr_kind kind;
union {
struct {
boolop_ty op;
asdl_seq *values;
} BoolOp;
struct {
expr_ty left;
operator_ty op;
expr_ty right;
} BinOp;
struct {
unaryop_ty op;
expr_ty operand;
} UnaryOp;
struct {
arguments_ty args;
expr_ty body;
} Lambda;
struct {
expr_ty test;
expr_ty body;
expr_ty orelse;
} IfExp;
struct {
asdl_seq *keys;
asdl_seq *values;
} Dict;
struct {
asdl_seq *elts;
} Set;
struct {
expr_ty elt;
asdl_seq *generators;
} ListComp;
struct {
expr_ty elt;
asdl_seq *generators;
} SetComp;
struct {
expr_ty key;
expr_ty value;
asdl_seq *generators;
} DictComp;
struct {
expr_ty elt;
asdl_seq *generators;
} GeneratorExp;
struct {
expr_ty value;
} Yield;
struct {
expr_ty left;
asdl_int_seq *ops;
asdl_seq *comparators;
} Compare;
struct {
expr_ty func;
asdl_seq *args;
asdl_seq *keywords;
expr_ty starargs;
expr_ty kwargs;
} Call;
struct {
expr_ty value;
} Repr;
struct {
object n;
} Num;
struct {
string s;
} Str;
struct {
expr_ty value;
identifier attr;
expr_context_ty ctx;
} Attribute;
struct {
expr_ty value;
slice_ty slice;
expr_context_ty ctx;
} Subscript;
struct {
identifier id;
expr_context_ty ctx;
} Name;
struct {
asdl_seq *elts;
expr_context_ty ctx;
} List;
struct {
asdl_seq *elts;
expr_context_ty ctx;
} Tuple;
} v;
int lineno;
int col_offset;
};
enum _slice_kind {Ellipsis_kind=1, Slice_kind=2, ExtSlice_kind=3, Index_kind=4};
struct _slice {
enum _slice_kind kind;
union {
struct {
expr_ty lower;
expr_ty upper;
expr_ty step;
} Slice;
struct {
asdl_seq *dims;
} ExtSlice;
struct {
expr_ty value;
} Index;
} v;
};
struct _comprehension {
expr_ty target;
expr_ty iter;
asdl_seq *ifs;
};
enum _excepthandler_kind {ExceptHandler_kind=1};
struct _excepthandler {
enum _excepthandler_kind kind;
union {
struct {
expr_ty type;
expr_ty name;
asdl_seq *body;
} ExceptHandler;
} v;
int lineno;
int col_offset;
};
struct _arguments {
asdl_seq *args;
identifier vararg;
identifier kwarg;
asdl_seq *defaults;
};
struct _keyword {
identifier arg;
expr_ty value;
};
struct _alias {
identifier name;
identifier asname;
};
#define Module(a0, a1) _Py_Module(a0, a1)
mod_ty _Py_Module(asdl_seq * body, PyArena *arena);
#define Interactive(a0, a1) _Py_Interactive(a0, a1)
mod_ty _Py_Interactive(asdl_seq * body, PyArena *arena);
#define Expression(a0, a1) _Py_Expression(a0, a1)
mod_ty _Py_Expression(expr_ty body, PyArena *arena);
#define Suite(a0, a1) _Py_Suite(a0, a1)
mod_ty _Py_Suite(asdl_seq * body, PyArena *arena);
#define FunctionDef(a0, a1, a2, a3, a4, a5, a6) _Py_FunctionDef(a0, a1, a2, a3, a4, a5, a6)
stmt_ty _Py_FunctionDef(identifier name, arguments_ty args, asdl_seq * body,
asdl_seq * decorator_list, int lineno, int col_offset,
PyArena *arena);
#define ClassDef(a0, a1, a2, a3, a4, a5, a6) _Py_ClassDef(a0, a1, a2, a3, a4, a5, a6)
stmt_ty _Py_ClassDef(identifier name, asdl_seq * bases, asdl_seq * body,
asdl_seq * decorator_list, int lineno, int col_offset,
PyArena *arena);
#define Return(a0, a1, a2, a3) _Py_Return(a0, a1, a2, a3)
stmt_ty _Py_Return(expr_ty value, int lineno, int col_offset, PyArena *arena);
#define Delete(a0, a1, a2, a3) _Py_Delete(a0, a1, a2, a3)
stmt_ty _Py_Delete(asdl_seq * targets, int lineno, int col_offset, PyArena
*arena);
#define Assign(a0, a1, a2, a3, a4) _Py_Assign(a0, a1, a2, a3, a4)
stmt_ty _Py_Assign(asdl_seq * targets, expr_ty value, int lineno, int
col_offset, PyArena *arena);
#define AugAssign(a0, a1, a2, a3, a4, a5) _Py_AugAssign(a0, a1, a2, a3, a4, a5)
stmt_ty _Py_AugAssign(expr_ty target, operator_ty op, expr_ty value, int
lineno, int col_offset, PyArena *arena);
#define Print(a0, a1, a2, a3, a4, a5) _Py_Print(a0, a1, a2, a3, a4, a5)
stmt_ty _Py_Print(expr_ty dest, asdl_seq * values, bool nl, int lineno, int
col_offset, PyArena *arena);
#define For(a0, a1, a2, a3, a4, a5, a6) _Py_For(a0, a1, a2, a3, a4, a5, a6)
stmt_ty _Py_For(expr_ty target, expr_ty iter, asdl_seq * body, asdl_seq *
orelse, int lineno, int col_offset, PyArena *arena);
#define While(a0, a1, a2, a3, a4, a5) _Py_While(a0, a1, a2, a3, a4, a5)
stmt_ty _Py_While(expr_ty test, asdl_seq * body, asdl_seq * orelse, int lineno,
int col_offset, PyArena *arena);
#define If(a0, a1, a2, a3, a4, a5) _Py_If(a0, a1, a2, a3, a4, a5)
stmt_ty _Py_If(expr_ty test, asdl_seq * body, asdl_seq * orelse, int lineno,
int col_offset, PyArena *arena);
#define With(a0, a1, a2, a3, a4, a5) _Py_With(a0, a1, a2, a3, a4, a5)
stmt_ty _Py_With(expr_ty context_expr, expr_ty optional_vars, asdl_seq * body,
int lineno, int col_offset, PyArena *arena);
#define Raise(a0, a1, a2, a3, a4, a5) _Py_Raise(a0, a1, a2, a3, a4, a5)
stmt_ty _Py_Raise(expr_ty type, expr_ty inst, expr_ty tback, int lineno, int
col_offset, PyArena *arena);
#define TryExcept(a0, a1, a2, a3, a4, a5) _Py_TryExcept(a0, a1, a2, a3, a4, a5)
stmt_ty _Py_TryExcept(asdl_seq * body, asdl_seq * handlers, asdl_seq * orelse,
int lineno, int col_offset, PyArena *arena);
#define TryFinally(a0, a1, a2, a3, a4) _Py_TryFinally(a0, a1, a2, a3, a4)
stmt_ty _Py_TryFinally(asdl_seq * body, asdl_seq * finalbody, int lineno, int
col_offset, PyArena *arena);
#define Assert(a0, a1, a2, a3, a4) _Py_Assert(a0, a1, a2, a3, a4)
stmt_ty _Py_Assert(expr_ty test, expr_ty msg, int lineno, int col_offset,
PyArena *arena);
#define Import(a0, a1, a2, a3) _Py_Import(a0, a1, a2, a3)
stmt_ty _Py_Import(asdl_seq * names, int lineno, int col_offset, PyArena
*arena);
#define ImportFrom(a0, a1, a2, a3, a4, a5) _Py_ImportFrom(a0, a1, a2, a3, a4, a5)
stmt_ty _Py_ImportFrom(identifier module, asdl_seq * names, int level, int
lineno, int col_offset, PyArena *arena);
#define Exec(a0, a1, a2, a3, a4, a5) _Py_Exec(a0, a1, a2, a3, a4, a5)
stmt_ty _Py_Exec(expr_ty body, expr_ty globals, expr_ty locals, int lineno, int
col_offset, PyArena *arena);
#define Global(a0, a1, a2, a3) _Py_Global(a0, a1, a2, a3)
stmt_ty _Py_Global(asdl_seq * names, int lineno, int col_offset, PyArena
*arena);
#define Expr(a0, a1, a2, a3) _Py_Expr(a0, a1, a2, a3)
stmt_ty _Py_Expr(expr_ty value, int lineno, int col_offset, PyArena *arena);
#define Pass(a0, a1, a2) _Py_Pass(a0, a1, a2)
stmt_ty _Py_Pass(int lineno, int col_offset, PyArena *arena);
#define Break(a0, a1, a2) _Py_Break(a0, a1, a2)
stmt_ty _Py_Break(int lineno, int col_offset, PyArena *arena);
#define Continue(a0, a1, a2) _Py_Continue(a0, a1, a2)
stmt_ty _Py_Continue(int lineno, int col_offset, PyArena *arena);
#define BoolOp(a0, a1, a2, a3, a4) _Py_BoolOp(a0, a1, a2, a3, a4)
expr_ty _Py_BoolOp(boolop_ty op, asdl_seq * values, int lineno, int col_offset,
PyArena *arena);
#define BinOp(a0, a1, a2, a3, a4, a5) _Py_BinOp(a0, a1, a2, a3, a4, a5)
expr_ty _Py_BinOp(expr_ty left, operator_ty op, expr_ty right, int lineno, int
col_offset, PyArena *arena);
#define UnaryOp(a0, a1, a2, a3, a4) _Py_UnaryOp(a0, a1, a2, a3, a4)
expr_ty _Py_UnaryOp(unaryop_ty op, expr_ty operand, int lineno, int col_offset,
PyArena *arena);
#define Lambda(a0, a1, a2, a3, a4) _Py_Lambda(a0, a1, a2, a3, a4)
expr_ty _Py_Lambda(arguments_ty args, expr_ty body, int lineno, int col_offset,
PyArena *arena);
#define IfExp(a0, a1, a2, a3, a4, a5) _Py_IfExp(a0, a1, a2, a3, a4, a5)
expr_ty _Py_IfExp(expr_ty test, expr_ty body, expr_ty orelse, int lineno, int
col_offset, PyArena *arena);
#define Dict(a0, a1, a2, a3, a4) _Py_Dict(a0, a1, a2, a3, a4)
expr_ty _Py_Dict(asdl_seq * keys, asdl_seq * values, int lineno, int
col_offset, PyArena *arena);
#define Set(a0, a1, a2, a3) _Py_Set(a0, a1, a2, a3)
expr_ty _Py_Set(asdl_seq * elts, int lineno, int col_offset, PyArena *arena);
#define ListComp(a0, a1, a2, a3, a4) _Py_ListComp(a0, a1, a2, a3, a4)
expr_ty _Py_ListComp(expr_ty elt, asdl_seq * generators, int lineno, int
col_offset, PyArena *arena);
#define SetComp(a0, a1, a2, a3, a4) _Py_SetComp(a0, a1, a2, a3, a4)
expr_ty _Py_SetComp(expr_ty elt, asdl_seq * generators, int lineno, int
col_offset, PyArena *arena);
#define DictComp(a0, a1, a2, a3, a4, a5) _Py_DictComp(a0, a1, a2, a3, a4, a5)
expr_ty _Py_DictComp(expr_ty key, expr_ty value, asdl_seq * generators, int
lineno, int col_offset, PyArena *arena);
#define GeneratorExp(a0, a1, a2, a3, a4) _Py_GeneratorExp(a0, a1, a2, a3, a4)
expr_ty _Py_GeneratorExp(expr_ty elt, asdl_seq * generators, int lineno, int
col_offset, PyArena *arena);
#define Yield(a0, a1, a2, a3) _Py_Yield(a0, a1, a2, a3)
expr_ty _Py_Yield(expr_ty value, int lineno, int col_offset, PyArena *arena);
#define Compare(a0, a1, a2, a3, a4, a5) _Py_Compare(a0, a1, a2, a3, a4, a5)
expr_ty _Py_Compare(expr_ty left, asdl_int_seq * ops, asdl_seq * comparators,
int lineno, int col_offset, PyArena *arena);
#define Call(a0, a1, a2, a3, a4, a5, a6, a7) _Py_Call(a0, a1, a2, a3, a4, a5, a6, a7)
expr_ty _Py_Call(expr_ty func, asdl_seq * args, asdl_seq * keywords, expr_ty
starargs, expr_ty kwargs, int lineno, int col_offset, PyArena
*arena);
#define Repr(a0, a1, a2, a3) _Py_Repr(a0, a1, a2, a3)
expr_ty _Py_Repr(expr_ty value, int lineno, int col_offset, PyArena *arena);
#define Num(a0, a1, a2, a3) _Py_Num(a0, a1, a2, a3)
expr_ty _Py_Num(object n, int lineno, int col_offset, PyArena *arena);
#define Str(a0, a1, a2, a3) _Py_Str(a0, a1, a2, a3)
expr_ty _Py_Str(string s, int lineno, int col_offset, PyArena *arena);
#define Attribute(a0, a1, a2, a3, a4, a5) _Py_Attribute(a0, a1, a2, a3, a4, a5)
expr_ty _Py_Attribute(expr_ty value, identifier attr, expr_context_ty ctx, int
lineno, int col_offset, PyArena *arena);
#define Subscript(a0, a1, a2, a3, a4, a5) _Py_Subscript(a0, a1, a2, a3, a4, a5)
expr_ty _Py_Subscript(expr_ty value, slice_ty slice, expr_context_ty ctx, int
lineno, int col_offset, PyArena *arena);
#define Name(a0, a1, a2, a3, a4) _Py_Name(a0, a1, a2, a3, a4)
expr_ty _Py_Name(identifier id, expr_context_ty ctx, int lineno, int
col_offset, PyArena *arena);
#define List(a0, a1, a2, a3, a4) _Py_List(a0, a1, a2, a3, a4)
expr_ty _Py_List(asdl_seq * elts, expr_context_ty ctx, int lineno, int
col_offset, PyArena *arena);
#define Tuple(a0, a1, a2, a3, a4) _Py_Tuple(a0, a1, a2, a3, a4)
expr_ty _Py_Tuple(asdl_seq * elts, expr_context_ty ctx, int lineno, int
col_offset, PyArena *arena);
#define Ellipsis(a0) _Py_Ellipsis(a0)
slice_ty _Py_Ellipsis(PyArena *arena);
#define Slice(a0, a1, a2, a3) _Py_Slice(a0, a1, a2, a3)
slice_ty _Py_Slice(expr_ty lower, expr_ty upper, expr_ty step, PyArena *arena);
#define ExtSlice(a0, a1) _Py_ExtSlice(a0, a1)
slice_ty _Py_ExtSlice(asdl_seq * dims, PyArena *arena);
#define Index(a0, a1) _Py_Index(a0, a1)
slice_ty _Py_Index(expr_ty value, PyArena *arena);
#define comprehension(a0, a1, a2, a3) _Py_comprehension(a0, a1, a2, a3)
comprehension_ty _Py_comprehension(expr_ty target, expr_ty iter, asdl_seq *
ifs, PyArena *arena);
#define ExceptHandler(a0, a1, a2, a3, a4, a5) _Py_ExceptHandler(a0, a1, a2, a3, a4, a5)
excepthandler_ty _Py_ExceptHandler(expr_ty type, expr_ty name, asdl_seq * body,
int lineno, int col_offset, PyArena *arena);
#define arguments(a0, a1, a2, a3, a4) _Py_arguments(a0, a1, a2, a3, a4)
arguments_ty _Py_arguments(asdl_seq * args, identifier vararg, identifier
kwarg, asdl_seq * defaults, PyArena *arena);
#define keyword(a0, a1, a2) _Py_keyword(a0, a1, a2)
keyword_ty _Py_keyword(identifier arg, expr_ty value, PyArena *arena);
#define alias(a0, a1, a2) _Py_alias(a0, a1, a2)
alias_ty _Py_alias(identifier name, identifier asname, PyArena *arena);
PyObject* PyAST_mod2obj(mod_ty t);
mod_ty PyAST_obj2mod(PyObject* ast, PyArena* arena, int mode);
int PyAST_Check(PyObject* obj);

View File

@ -0,0 +1,178 @@
#ifndef Py_PYTHON_H
#define Py_PYTHON_H
/* Since this is a "meta-include" file, no #ifdef __cplusplus / extern "C" { */
/* Include nearly all Python header files */
#include "patchlevel.h"
#include "pyconfig.h"
#include "pymacconfig.h"
/* Cyclic gc is always enabled, starting with release 2.3a1. Supply the
* old symbol for the benefit of extension modules written before then
* that may be conditionalizing on it. The core doesn't use it anymore.
*/
#ifndef WITH_CYCLE_GC
#define WITH_CYCLE_GC 1
#endif
#include <limits.h>
#ifndef UCHAR_MAX
#error "Something's broken. UCHAR_MAX should be defined in limits.h."
#endif
#if UCHAR_MAX != 255
#error "Python's source code assumes C's unsigned char is an 8-bit type."
#endif
#if defined(__sgi) && defined(WITH_THREAD) && !defined(_SGI_MP_SOURCE)
#define _SGI_MP_SOURCE
#endif
#include <stdio.h>
#ifndef NULL
# error "Python.h requires that stdio.h define NULL."
#endif
#include <string.h>
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#include <stdlib.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
/* For size_t? */
#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif
/* CAUTION: Build setups should ensure that NDEBUG is defined on the
* compiler command line when building Python in release mode; else
* assert() calls won't be removed.
*/
#include <assert.h>
#include "pyport.h"
/* pyconfig.h or pyport.h may or may not define DL_IMPORT */
#ifndef DL_IMPORT /* declarations for DLL import/export */
#define DL_IMPORT(RTYPE) RTYPE
#endif
#ifndef DL_EXPORT /* declarations for DLL import/export */
#define DL_EXPORT(RTYPE) RTYPE
#endif
/* Debug-mode build with pymalloc implies PYMALLOC_DEBUG.
* PYMALLOC_DEBUG is in error if pymalloc is not in use.
*/
#if defined(Py_DEBUG) && defined(WITH_PYMALLOC) && !defined(PYMALLOC_DEBUG)
#define PYMALLOC_DEBUG
#endif
#if defined(PYMALLOC_DEBUG) && !defined(WITH_PYMALLOC)
#error "PYMALLOC_DEBUG requires WITH_PYMALLOC"
#endif
#include "pymath.h"
#include "pymem.h"
#include "object.h"
#include "objimpl.h"
#include "pydebug.h"
#include "unicodeobject.h"
#include "intobject.h"
#include "boolobject.h"
#include "longobject.h"
#include "floatobject.h"
#ifndef WITHOUT_COMPLEX
#include "complexobject.h"
#endif
#include "rangeobject.h"
#include "stringobject.h"
#include "memoryobject.h"
#include "bufferobject.h"
#include "bytesobject.h"
#include "bytearrayobject.h"
#include "tupleobject.h"
#include "listobject.h"
#include "dictobject.h"
#include "enumobject.h"
#include "setobject.h"
#include "methodobject.h"
#include "moduleobject.h"
#include "funcobject.h"
#include "classobject.h"
#include "fileobject.h"
#include "cobject.h"
#include "pycapsule.h"
#include "traceback.h"
#include "sliceobject.h"
#include "cellobject.h"
#include "iterobject.h"
#include "genobject.h"
#include "descrobject.h"
#include "warnings.h"
#include "weakrefobject.h"
#include "codecs.h"
#include "pyerrors.h"
#include "pystate.h"
#include "pyarena.h"
#include "modsupport.h"
#include "pythonrun.h"
#include "ceval.h"
#include "sysmodule.h"
#include "intrcheck.h"
#include "import.h"
#include "abstract.h"
#include "compile.h"
#include "eval.h"
#include "pyctype.h"
#include "pystrtod.h"
#include "pystrcmp.h"
#include "dtoa.h"
/* _Py_Mangle is defined in compile.c */
PyAPI_FUNC(PyObject*) _Py_Mangle(PyObject *p, PyObject *name);
/* PyArg_GetInt is deprecated and should not be used, use PyArg_Parse(). */
#define PyArg_GetInt(v, a) PyArg_Parse((v), "i", (a))
/* PyArg_NoArgs should not be necessary.
Set ml_flags in the PyMethodDef to METH_NOARGS. */
#define PyArg_NoArgs(v) PyArg_Parse(v, "")
/* Argument must be a char or an int in [-128, 127] or [0, 255]. */
#define Py_CHARMASK(c) ((unsigned char)((c) & 0xff))
#include "pyfpe.h"
/* These definitions must match corresponding definitions in graminit.h.
There's code in compile.c that checks that they are the same. */
#define Py_single_input 256
#define Py_file_input 257
#define Py_eval_input 258
#ifdef HAVE_PTH
/* GNU pth user-space thread support */
#include <pth.h>
#endif
/* Define macros for inline documentation. */
#define PyDoc_VAR(name) static char name[]
#define PyDoc_STRVAR(name,str) PyDoc_VAR(name) = PyDoc_STR(str)
#ifdef WITH_DOC_STRINGS
#define PyDoc_STR(str) str
#else
#define PyDoc_STR(str) ""
#endif
#endif /* !Py_PYTHON_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,45 @@
#ifndef Py_ASDL_H
#define Py_ASDL_H
typedef PyObject * identifier;
typedef PyObject * string;
typedef PyObject * object;
#ifndef __cplusplus
typedef enum {false, true} bool;
#endif
/* It would be nice if the code generated by asdl_c.py was completely
independent of Python, but it is a goal the requires too much work
at this stage. So, for example, I'll represent identifiers as
interned Python strings.
*/
/* XXX A sequence should be typed so that its use can be typechecked. */
typedef struct {
int size;
void *elements[1];
} asdl_seq;
typedef struct {
int size;
int elements[1];
} asdl_int_seq;
asdl_seq *asdl_seq_new(int size, PyArena *arena);
asdl_int_seq *asdl_int_seq_new(int size, PyArena *arena);
#define asdl_seq_GET(S, I) (S)->elements[(I)]
#define asdl_seq_LEN(S) ((S) == NULL ? 0 : (S)->size)
#ifdef Py_DEBUG
#define asdl_seq_SET(S, I, V) { \
int _asdl_i = (I); \
assert((S) && _asdl_i < (S)->size); \
(S)->elements[_asdl_i] = (V); \
}
#else
#define asdl_seq_SET(S, I, V) (S)->elements[I] = (V)
#endif
#endif /* !Py_ASDL_H */

View File

@ -0,0 +1,13 @@
#ifndef Py_AST_H
#define Py_AST_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(mod_ty) PyAST_FromNode(const node *, PyCompilerFlags *flags,
const char *, PyArena *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_AST_H */

View File

@ -0,0 +1,32 @@
#ifndef Py_BITSET_H
#define Py_BITSET_H
#ifdef __cplusplus
extern "C" {
#endif
/* Bitset interface */
#define BYTE char
typedef BYTE *bitset;
bitset newbitset(int nbits);
void delbitset(bitset bs);
#define testbit(ss, ibit) (((ss)[BIT2BYTE(ibit)] & BIT2MASK(ibit)) != 0)
int addbit(bitset bs, int ibit); /* Returns 0 if already set */
int samebitset(bitset bs1, bitset bs2, int nbits);
void mergebitset(bitset bs1, bitset bs2, int nbits);
#define BITSPERBYTE (8*sizeof(BYTE))
#define NBYTES(nbits) (((nbits) + BITSPERBYTE - 1) / BITSPERBYTE)
#define BIT2BYTE(ibit) ((ibit) / BITSPERBYTE)
#define BIT2SHIFT(ibit) ((ibit) % BITSPERBYTE)
#define BIT2MASK(ibit) (1 << BIT2SHIFT(ibit))
#define BYTE2BIT(ibyte) ((ibyte) * BITSPERBYTE)
#ifdef __cplusplus
}
#endif
#endif /* !Py_BITSET_H */

View File

@ -0,0 +1,36 @@
/* Boolean object interface */
#ifndef Py_BOOLOBJECT_H
#define Py_BOOLOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef PyIntObject PyBoolObject;
PyAPI_DATA(PyTypeObject) PyBool_Type;
#define PyBool_Check(x) (Py_TYPE(x) == &PyBool_Type)
/* Py_False and Py_True are the only two bools in existence.
Don't forget to apply Py_INCREF() when returning either!!! */
/* Don't use these directly */
PyAPI_DATA(PyIntObject) _Py_ZeroStruct, _Py_TrueStruct;
/* Use these macros */
#define Py_False ((PyObject *) &_Py_ZeroStruct)
#define Py_True ((PyObject *) &_Py_TrueStruct)
/* Macros for returning Py_True or Py_False, respectively */
#define Py_RETURN_TRUE return Py_INCREF(Py_True), Py_True
#define Py_RETURN_FALSE return Py_INCREF(Py_False), Py_False
/* Function to return a bool from a C long */
PyAPI_FUNC(PyObject *) PyBool_FromLong(long);
#ifdef __cplusplus
}
#endif
#endif /* !Py_BOOLOBJECT_H */

View File

@ -0,0 +1,33 @@
/* Buffer object interface */
/* Note: the object's structure is private */
#ifndef Py_BUFFEROBJECT_H
#define Py_BUFFEROBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_DATA(PyTypeObject) PyBuffer_Type;
#define PyBuffer_Check(op) (Py_TYPE(op) == &PyBuffer_Type)
#define Py_END_OF_BUFFER (-1)
PyAPI_FUNC(PyObject *) PyBuffer_FromObject(PyObject *base,
Py_ssize_t offset, Py_ssize_t size);
PyAPI_FUNC(PyObject *) PyBuffer_FromReadWriteObject(PyObject *base,
Py_ssize_t offset,
Py_ssize_t size);
PyAPI_FUNC(PyObject *) PyBuffer_FromMemory(void *ptr, Py_ssize_t size);
PyAPI_FUNC(PyObject *) PyBuffer_FromReadWriteMemory(void *ptr, Py_ssize_t size);
PyAPI_FUNC(PyObject *) PyBuffer_New(Py_ssize_t size);
#ifdef __cplusplus
}
#endif
#endif /* !Py_BUFFEROBJECT_H */

View File

@ -0,0 +1,57 @@
/* ByteArray object interface */
#ifndef Py_BYTEARRAYOBJECT_H
#define Py_BYTEARRAYOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdarg.h>
/* Type PyByteArrayObject represents a mutable array of bytes.
* The Python API is that of a sequence;
* the bytes are mapped to ints in [0, 256).
* Bytes are not characters; they may be used to encode characters.
* The only way to go between bytes and str/unicode is via encoding
* and decoding.
* For the convenience of C programmers, the bytes type is considered
* to contain a char pointer, not an unsigned char pointer.
*/
/* Object layout */
typedef struct {
PyObject_VAR_HEAD
/* XXX(nnorwitz): should ob_exports be Py_ssize_t? */
int ob_exports; /* how many buffer exports */
Py_ssize_t ob_alloc; /* How many bytes allocated */
char *ob_bytes;
} PyByteArrayObject;
/* Type object */
PyAPI_DATA(PyTypeObject) PyByteArray_Type;
PyAPI_DATA(PyTypeObject) PyByteArrayIter_Type;
/* Type check macros */
#define PyByteArray_Check(self) PyObject_TypeCheck(self, &PyByteArray_Type)
#define PyByteArray_CheckExact(self) (Py_TYPE(self) == &PyByteArray_Type)
/* Direct API functions */
PyAPI_FUNC(PyObject *) PyByteArray_FromObject(PyObject *);
PyAPI_FUNC(PyObject *) PyByteArray_Concat(PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) PyByteArray_FromStringAndSize(const char *, Py_ssize_t);
PyAPI_FUNC(Py_ssize_t) PyByteArray_Size(PyObject *);
PyAPI_FUNC(char *) PyByteArray_AsString(PyObject *);
PyAPI_FUNC(int) PyByteArray_Resize(PyObject *, Py_ssize_t);
/* Macros, trading safety for speed */
#define PyByteArray_AS_STRING(self) \
(assert(PyByteArray_Check(self)), \
Py_SIZE(self) ? ((PyByteArrayObject *)(self))->ob_bytes : _PyByteArray_empty_string)
#define PyByteArray_GET_SIZE(self) (assert(PyByteArray_Check(self)),Py_SIZE(self))
PyAPI_DATA(char) _PyByteArray_empty_string[];
#ifdef __cplusplus
}
#endif
#endif /* !Py_BYTEARRAYOBJECT_H */

View File

@ -0,0 +1,75 @@
#ifndef Py_BYTES_CTYPE_H
#define Py_BYTES_CTYPE_H
/*
* The internal implementation behind PyString (bytes) and PyBytes (buffer)
* methods of the given names, they operate on ASCII byte strings.
*/
extern PyObject* _Py_bytes_isspace(const char *cptr, Py_ssize_t len);
extern PyObject* _Py_bytes_isalpha(const char *cptr, Py_ssize_t len);
extern PyObject* _Py_bytes_isalnum(const char *cptr, Py_ssize_t len);
extern PyObject* _Py_bytes_isdigit(const char *cptr, Py_ssize_t len);
extern PyObject* _Py_bytes_islower(const char *cptr, Py_ssize_t len);
extern PyObject* _Py_bytes_isupper(const char *cptr, Py_ssize_t len);
extern PyObject* _Py_bytes_istitle(const char *cptr, Py_ssize_t len);
/* These store their len sized answer in the given preallocated *result arg. */
extern void _Py_bytes_lower(char *result, const char *cptr, Py_ssize_t len);
extern void _Py_bytes_upper(char *result, const char *cptr, Py_ssize_t len);
extern void _Py_bytes_title(char *result, char *s, Py_ssize_t len);
extern void _Py_bytes_capitalize(char *result, char *s, Py_ssize_t len);
extern void _Py_bytes_swapcase(char *result, char *s, Py_ssize_t len);
/* Shared __doc__ strings. */
extern const char _Py_isspace__doc__[];
extern const char _Py_isalpha__doc__[];
extern const char _Py_isalnum__doc__[];
extern const char _Py_isdigit__doc__[];
extern const char _Py_islower__doc__[];
extern const char _Py_isupper__doc__[];
extern const char _Py_istitle__doc__[];
extern const char _Py_lower__doc__[];
extern const char _Py_upper__doc__[];
extern const char _Py_title__doc__[];
extern const char _Py_capitalize__doc__[];
extern const char _Py_swapcase__doc__[];
/* These are left in for backward compatibility and will be removed
in 2.8/3.2 */
#define ISLOWER(c) Py_ISLOWER(c)
#define ISUPPER(c) Py_ISUPPER(c)
#define ISALPHA(c) Py_ISALPHA(c)
#define ISDIGIT(c) Py_ISDIGIT(c)
#define ISXDIGIT(c) Py_ISXDIGIT(c)
#define ISALNUM(c) Py_ISALNUM(c)
#define ISSPACE(c) Py_ISSPACE(c)
#undef islower
#define islower(c) undefined_islower(c)
#undef isupper
#define isupper(c) undefined_isupper(c)
#undef isalpha
#define isalpha(c) undefined_isalpha(c)
#undef isdigit
#define isdigit(c) undefined_isdigit(c)
#undef isxdigit
#define isxdigit(c) undefined_isxdigit(c)
#undef isalnum
#define isalnum(c) undefined_isalnum(c)
#undef isspace
#define isspace(c) undefined_isspace(c)
/* These are left in for backward compatibility and will be removed
in 2.8/3.2 */
#define TOLOWER(c) Py_TOLOWER(c)
#define TOUPPER(c) Py_TOUPPER(c)
#undef tolower
#define tolower(c) undefined_tolower(c)
#undef toupper
#define toupper(c) undefined_toupper(c)
/* this is needed because some docs are shared from the .o, not static */
#define PyDoc_STRVAR_shared(name,str) const char name[] = PyDoc_STR(str)
#endif /* !Py_BYTES_CTYPE_H */

View File

@ -0,0 +1,27 @@
#define PyBytesObject PyStringObject
#define PyBytes_Type PyString_Type
#define PyBytes_Check PyString_Check
#define PyBytes_CheckExact PyString_CheckExact
#define PyBytes_CHECK_INTERNED PyString_CHECK_INTERNED
#define PyBytes_AS_STRING PyString_AS_STRING
#define PyBytes_GET_SIZE PyString_GET_SIZE
#define Py_TPFLAGS_BYTES_SUBCLASS Py_TPFLAGS_STRING_SUBCLASS
#define PyBytes_FromStringAndSize PyString_FromStringAndSize
#define PyBytes_FromString PyString_FromString
#define PyBytes_FromFormatV PyString_FromFormatV
#define PyBytes_FromFormat PyString_FromFormat
#define PyBytes_Size PyString_Size
#define PyBytes_AsString PyString_AsString
#define PyBytes_Repr PyString_Repr
#define PyBytes_Concat PyString_Concat
#define PyBytes_ConcatAndDel PyString_ConcatAndDel
#define _PyBytes_Resize _PyString_Resize
#define _PyBytes_Eq _PyString_Eq
#define PyBytes_Format PyString_Format
#define _PyBytes_FormatLong _PyString_FormatLong
#define PyBytes_DecodeEscape PyString_DecodeEscape
#define _PyBytes_Join _PyString_Join
#define PyBytes_AsStringAndSize PyString_AsStringAndSize
#define _PyBytes_InsertThousandsGrouping _PyString_InsertThousandsGrouping

View File

@ -0,0 +1,73 @@
#ifndef Py_CSTRINGIO_H
#define Py_CSTRINGIO_H
#ifdef __cplusplus
extern "C" {
#endif
/*
This header provides access to cStringIO objects from C.
Functions are provided for calling cStringIO objects and
macros are provided for testing whether you have cStringIO
objects.
Before calling any of the functions or macros, you must initialize
the routines with:
PycString_IMPORT
This would typically be done in your init function.
*/
#define PycStringIO_CAPSULE_NAME "cStringIO.cStringIO_CAPI"
#define PycString_IMPORT \
PycStringIO = ((struct PycStringIO_CAPI*)PyCapsule_Import(\
PycStringIO_CAPSULE_NAME, 0))
/* Basic functions to manipulate cStringIO objects from C */
static struct PycStringIO_CAPI {
/* Read a string from an input object. If the last argument
is -1, the remainder will be read.
*/
int(*cread)(PyObject *, char **, Py_ssize_t);
/* Read a line from an input object. Returns the length of the read
line as an int and a pointer inside the object buffer as char** (so
the caller doesn't have to provide its own buffer as destination).
*/
int(*creadline)(PyObject *, char **);
/* Write a string to an output object*/
int(*cwrite)(PyObject *, const char *, Py_ssize_t);
/* Get the output object as a Python string (returns new reference). */
PyObject *(*cgetvalue)(PyObject *);
/* Create a new output object */
PyObject *(*NewOutput)(int);
/* Create an input object from a Python string
(copies the Python string reference).
*/
PyObject *(*NewInput)(PyObject *);
/* The Python types for cStringIO input and output objects.
Note that you can do input on an output object.
*/
PyTypeObject *InputType, *OutputType;
} *PycStringIO;
/* These can be used to test if you have one */
#define PycStringIO_InputCheck(O) \
(Py_TYPE(O)==PycStringIO->InputType)
#define PycStringIO_OutputCheck(O) \
(Py_TYPE(O)==PycStringIO->OutputType)
#ifdef __cplusplus
}
#endif
#endif /* !Py_CSTRINGIO_H */

View File

@ -0,0 +1,28 @@
/* Cell object interface */
#ifndef Py_CELLOBJECT_H
#define Py_CELLOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
PyObject_HEAD
PyObject *ob_ref; /* Content of the cell or NULL when empty */
} PyCellObject;
PyAPI_DATA(PyTypeObject) PyCell_Type;
#define PyCell_Check(op) (Py_TYPE(op) == &PyCell_Type)
PyAPI_FUNC(PyObject *) PyCell_New(PyObject *);
PyAPI_FUNC(PyObject *) PyCell_Get(PyObject *);
PyAPI_FUNC(int) PyCell_Set(PyObject *, PyObject *);
#define PyCell_GET(op) (((PyCellObject *)(op))->ob_ref)
#define PyCell_SET(op, v) (((PyCellObject *)(op))->ob_ref = v)
#ifdef __cplusplus
}
#endif
#endif /* !Py_TUPLEOBJECT_H */

View File

@ -0,0 +1,153 @@
#ifndef Py_CEVAL_H
#define Py_CEVAL_H
#ifdef __cplusplus
extern "C" {
#endif
/* Interface to random parts in ceval.c */
PyAPI_FUNC(PyObject *) PyEval_CallObjectWithKeywords(
PyObject *, PyObject *, PyObject *);
/* Inline this */
#define PyEval_CallObject(func,arg) \
PyEval_CallObjectWithKeywords(func, arg, (PyObject *)NULL)
PyAPI_FUNC(PyObject *) PyEval_CallFunction(PyObject *obj,
const char *format, ...);
PyAPI_FUNC(PyObject *) PyEval_CallMethod(PyObject *obj,
const char *methodname,
const char *format, ...);
PyAPI_FUNC(void) PyEval_SetProfile(Py_tracefunc, PyObject *);
PyAPI_FUNC(void) PyEval_SetTrace(Py_tracefunc, PyObject *);
struct _frame; /* Avoid including frameobject.h */
PyAPI_FUNC(PyObject *) PyEval_GetBuiltins(void);
PyAPI_FUNC(PyObject *) PyEval_GetGlobals(void);
PyAPI_FUNC(PyObject *) PyEval_GetLocals(void);
PyAPI_FUNC(struct _frame *) PyEval_GetFrame(void);
PyAPI_FUNC(int) PyEval_GetRestricted(void);
/* Look at the current frame's (if any) code's co_flags, and turn on
the corresponding compiler flags in cf->cf_flags. Return 1 if any
flag was set, else return 0. */
PyAPI_FUNC(int) PyEval_MergeCompilerFlags(PyCompilerFlags *cf);
PyAPI_FUNC(int) Py_FlushLine(void);
PyAPI_FUNC(int) Py_AddPendingCall(int (*func)(void *), void *arg);
PyAPI_FUNC(int) Py_MakePendingCalls(void);
/* Protection against deeply nested recursive calls */
PyAPI_FUNC(void) Py_SetRecursionLimit(int);
PyAPI_FUNC(int) Py_GetRecursionLimit(void);
#define Py_EnterRecursiveCall(where) \
(_Py_MakeRecCheck(PyThreadState_GET()->recursion_depth) && \
_Py_CheckRecursiveCall(where))
#define Py_LeaveRecursiveCall() \
(--PyThreadState_GET()->recursion_depth)
PyAPI_FUNC(int) _Py_CheckRecursiveCall(const char *where);
PyAPI_DATA(int) _Py_CheckRecursionLimit;
#ifdef USE_STACKCHECK
# define _Py_MakeRecCheck(x) (++(x) > --_Py_CheckRecursionLimit)
#else
# define _Py_MakeRecCheck(x) (++(x) > _Py_CheckRecursionLimit)
#endif
PyAPI_FUNC(const char *) PyEval_GetFuncName(PyObject *);
PyAPI_FUNC(const char *) PyEval_GetFuncDesc(PyObject *);
PyAPI_FUNC(PyObject *) PyEval_GetCallStats(PyObject *);
PyAPI_FUNC(PyObject *) PyEval_EvalFrame(struct _frame *);
PyAPI_FUNC(PyObject *) PyEval_EvalFrameEx(struct _frame *f, int exc);
/* this used to be handled on a per-thread basis - now just two globals */
PyAPI_DATA(volatile int) _Py_Ticker;
PyAPI_DATA(int) _Py_CheckInterval;
/* Interface for threads.
A module that plans to do a blocking system call (or something else
that lasts a long time and doesn't touch Python data) can allow other
threads to run as follows:
...preparations here...
Py_BEGIN_ALLOW_THREADS
...blocking system call here...
Py_END_ALLOW_THREADS
...interpret result here...
The Py_BEGIN_ALLOW_THREADS/Py_END_ALLOW_THREADS pair expands to a
{}-surrounded block.
To leave the block in the middle (e.g., with return), you must insert
a line containing Py_BLOCK_THREADS before the return, e.g.
if (...premature_exit...) {
Py_BLOCK_THREADS
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
An alternative is:
Py_BLOCK_THREADS
if (...premature_exit...) {
PyErr_SetFromErrno(PyExc_IOError);
return NULL;
}
Py_UNBLOCK_THREADS
For convenience, that the value of 'errno' is restored across
Py_END_ALLOW_THREADS and Py_BLOCK_THREADS.
WARNING: NEVER NEST CALLS TO Py_BEGIN_ALLOW_THREADS AND
Py_END_ALLOW_THREADS!!!
The function PyEval_InitThreads() should be called only from
initthread() in "threadmodule.c".
Note that not yet all candidates have been converted to use this
mechanism!
*/
PyAPI_FUNC(PyThreadState *) PyEval_SaveThread(void);
PyAPI_FUNC(void) PyEval_RestoreThread(PyThreadState *);
#ifdef WITH_THREAD
PyAPI_FUNC(int) PyEval_ThreadsInitialized(void);
PyAPI_FUNC(void) PyEval_InitThreads(void);
PyAPI_FUNC(void) PyEval_AcquireLock(void);
PyAPI_FUNC(void) PyEval_ReleaseLock(void);
PyAPI_FUNC(void) PyEval_AcquireThread(PyThreadState *tstate);
PyAPI_FUNC(void) PyEval_ReleaseThread(PyThreadState *tstate);
PyAPI_FUNC(void) PyEval_ReInitThreads(void);
#define Py_BEGIN_ALLOW_THREADS { \
PyThreadState *_save; \
_save = PyEval_SaveThread();
#define Py_BLOCK_THREADS PyEval_RestoreThread(_save);
#define Py_UNBLOCK_THREADS _save = PyEval_SaveThread();
#define Py_END_ALLOW_THREADS PyEval_RestoreThread(_save); \
}
#else /* !WITH_THREAD */
#define Py_BEGIN_ALLOW_THREADS {
#define Py_BLOCK_THREADS
#define Py_UNBLOCK_THREADS
#define Py_END_ALLOW_THREADS }
#endif /* !WITH_THREAD */
PyAPI_FUNC(int) _PyEval_SliceIndex(PyObject *, Py_ssize_t *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_CEVAL_H */

View File

@ -0,0 +1,83 @@
/* Class object interface */
/* Revealing some structures (not for general use) */
#ifndef Py_CLASSOBJECT_H
#define Py_CLASSOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
PyObject_HEAD
PyObject *cl_bases; /* A tuple of class objects */
PyObject *cl_dict; /* A dictionary */
PyObject *cl_name; /* A string */
/* The following three are functions or NULL */
PyObject *cl_getattr;
PyObject *cl_setattr;
PyObject *cl_delattr;
PyObject *cl_weakreflist; /* List of weak references */
} PyClassObject;
typedef struct {
PyObject_HEAD
PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */
} PyInstanceObject;
typedef struct {
PyObject_HEAD
PyObject *im_func; /* The callable object implementing the method */
PyObject *im_self; /* The instance it is bound to, or NULL */
PyObject *im_class; /* The class that asked for the method */
PyObject *im_weakreflist; /* List of weak references */
} PyMethodObject;
PyAPI_DATA(PyTypeObject) PyClass_Type, PyInstance_Type, PyMethod_Type;
#define PyClass_Check(op) ((op)->ob_type == &PyClass_Type)
#define PyInstance_Check(op) ((op)->ob_type == &PyInstance_Type)
#define PyMethod_Check(op) ((op)->ob_type == &PyMethod_Type)
PyAPI_FUNC(PyObject *) PyClass_New(PyObject *, PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) PyInstance_New(PyObject *, PyObject *,
PyObject *);
PyAPI_FUNC(PyObject *) PyInstance_NewRaw(PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) PyMethod_New(PyObject *, PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) PyMethod_Function(PyObject *);
PyAPI_FUNC(PyObject *) PyMethod_Self(PyObject *);
PyAPI_FUNC(PyObject *) PyMethod_Class(PyObject *);
/* Look up attribute with name (a string) on instance object pinst, using
* only the instance and base class dicts. If a descriptor is found in
* a class dict, the descriptor is returned without calling it.
* Returns NULL if nothing found, else a borrowed reference to the
* value associated with name in the dict in which name was found.
* The point of this routine is that it never calls arbitrary Python
* code, so is always "safe": all it does is dict lookups. The function
* can't fail, never sets an exception, and NULL is not an error (it just
* means "not found").
*/
PyAPI_FUNC(PyObject *) _PyInstance_Lookup(PyObject *pinst, PyObject *name);
/* Macros for direct access to these values. Type checks are *not*
done, so use with care. */
#define PyMethod_GET_FUNCTION(meth) \
(((PyMethodObject *)meth) -> im_func)
#define PyMethod_GET_SELF(meth) \
(((PyMethodObject *)meth) -> im_self)
#define PyMethod_GET_CLASS(meth) \
(((PyMethodObject *)meth) -> im_class)
PyAPI_FUNC(int) PyClass_IsSubclass(PyObject *, PyObject *);
PyAPI_FUNC(int) PyMethod_ClearFreeList(void);
#ifdef __cplusplus
}
#endif
#endif /* !Py_CLASSOBJECT_H */

View File

@ -0,0 +1,89 @@
/*
CObjects are marked Pending Deprecation as of Python 2.7.
The full schedule for 2.x is as follows:
- CObjects are marked Pending Deprecation in Python 2.7.
- CObjects will be marked Deprecated in Python 2.8
(if there is one).
- CObjects will be removed in Python 2.9 (if there is one).
Additionally, for the Python 3.x series:
- CObjects were marked Deprecated in Python 3.1.
- CObjects will be removed in Python 3.2.
You should switch all use of CObjects to capsules. Capsules
have a safer and more consistent API. For more information,
see Include/pycapsule.h, or read the "Capsules" topic in
the "Python/C API Reference Manual".
Python 2.7 no longer uses CObjects itself; all objects which
were formerly CObjects are now capsules. Note that this change
does not by itself break binary compatibility with extensions
built for previous versions of Python--PyCObject_AsVoidPtr()
has been changed to also understand capsules.
*/
/* original file header comment follows: */
/* C objects to be exported from one extension module to another.
C objects are used for communication between extension modules.
They provide a way for an extension module to export a C interface
to other extension modules, so that extension modules can use the
Python import mechanism to link to one another.
*/
#ifndef Py_COBJECT_H
#define Py_COBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_DATA(PyTypeObject) PyCObject_Type;
#define PyCObject_Check(op) (Py_TYPE(op) == &PyCObject_Type)
/* Create a PyCObject from a pointer to a C object and an optional
destructor function. If the second argument is non-null, then it
will be called with the first argument if and when the PyCObject is
destroyed.
*/
PyAPI_FUNC(PyObject *) PyCObject_FromVoidPtr(
void *cobj, void (*destruct)(void*));
/* Create a PyCObject from a pointer to a C object, a description object,
and an optional destructor function. If the third argument is non-null,
then it will be called with the first and second arguments if and when
the PyCObject is destroyed.
*/
PyAPI_FUNC(PyObject *) PyCObject_FromVoidPtrAndDesc(
void *cobj, void *desc, void (*destruct)(void*,void*));
/* Retrieve a pointer to a C object from a PyCObject. */
PyAPI_FUNC(void *) PyCObject_AsVoidPtr(PyObject *);
/* Retrieve a pointer to a description object from a PyCObject. */
PyAPI_FUNC(void *) PyCObject_GetDesc(PyObject *);
/* Import a pointer to a C object from a module using a PyCObject. */
PyAPI_FUNC(void *) PyCObject_Import(char *module_name, char *cobject_name);
/* Modify a C object. Fails (==0) if object has a destructor. */
PyAPI_FUNC(int) PyCObject_SetVoidPtr(PyObject *self, void *cobj);
typedef struct {
PyObject_HEAD
void *cobject;
void *desc;
void (*destructor)(void *);
} PyCObject;
#ifdef __cplusplus
}
#endif
#endif /* !Py_COBJECT_H */

View File

@ -0,0 +1,107 @@
/* Definitions for bytecode */
#ifndef Py_CODE_H
#define Py_CODE_H
#ifdef __cplusplus
extern "C" {
#endif
/* Bytecode object */
typedef struct {
PyObject_HEAD
int co_argcount; /* #arguments, except *args */
int co_nlocals; /* #local variables */
int co_stacksize; /* #entries needed for evaluation stack */
int co_flags; /* CO_..., see below */
PyObject *co_code; /* instruction opcodes */
PyObject *co_consts; /* list (constants used) */
PyObject *co_names; /* list of strings (names used) */
PyObject *co_varnames; /* tuple of strings (local variable names) */
PyObject *co_freevars; /* tuple of strings (free variable names) */
PyObject *co_cellvars; /* tuple of strings (cell variable names) */
/* The rest doesn't count for hash/cmp */
PyObject *co_filename; /* string (where it was loaded from) */
PyObject *co_name; /* string (name, for reference) */
int co_firstlineno; /* first source line number */
PyObject *co_lnotab; /* string (encoding addr<->lineno mapping) See
Objects/lnotab_notes.txt for details. */
void *co_zombieframe; /* for optimization only (see frameobject.c) */
PyObject *co_weakreflist; /* to support weakrefs to code objects */
} PyCodeObject;
/* Masks for co_flags above */
#define CO_OPTIMIZED 0x0001
#define CO_NEWLOCALS 0x0002
#define CO_VARARGS 0x0004
#define CO_VARKEYWORDS 0x0008
#define CO_NESTED 0x0010
#define CO_GENERATOR 0x0020
/* The CO_NOFREE flag is set if there are no free or cell variables.
This information is redundant, but it allows a single flag test
to determine whether there is any extra work to be done when the
call frame it setup.
*/
#define CO_NOFREE 0x0040
#if 0
/* This is no longer used. Stopped defining in 2.5, do not re-use. */
#define CO_GENERATOR_ALLOWED 0x1000
#endif
#define CO_FUTURE_DIVISION 0x2000
#define CO_FUTURE_ABSOLUTE_IMPORT 0x4000 /* do absolute imports by default */
#define CO_FUTURE_WITH_STATEMENT 0x8000
#define CO_FUTURE_PRINT_FUNCTION 0x10000
#define CO_FUTURE_UNICODE_LITERALS 0x20000
/* This should be defined if a future statement modifies the syntax.
For example, when a keyword is added.
*/
#if 1
#define PY_PARSER_REQUIRES_FUTURE_KEYWORD
#endif
#define CO_MAXBLOCKS 20 /* Max static block nesting within a function */
PyAPI_DATA(PyTypeObject) PyCode_Type;
#define PyCode_Check(op) (Py_TYPE(op) == &PyCode_Type)
#define PyCode_GetNumFree(op) (PyTuple_GET_SIZE((op)->co_freevars))
/* Public interface */
PyAPI_FUNC(PyCodeObject *) PyCode_New(
int, int, int, int, PyObject *, PyObject *, PyObject *, PyObject *,
PyObject *, PyObject *, PyObject *, PyObject *, int, PyObject *);
/* same as struct above */
/* Creates a new empty code object with the specified source location. */
PyAPI_FUNC(PyCodeObject *)
PyCode_NewEmpty(const char *filename, const char *funcname, int firstlineno);
/* Return the line number associated with the specified bytecode index
in this code object. If you just need the line number of a frame,
use PyFrame_GetLineNumber() instead. */
PyAPI_FUNC(int) PyCode_Addr2Line(PyCodeObject *, int);
/* for internal use only */
#define _PyCode_GETCODEPTR(co, pp) \
((*Py_TYPE((co)->co_code)->tp_as_buffer->bf_getreadbuffer) \
((co)->co_code, 0, (void **)(pp)))
typedef struct _addr_pair {
int ap_lower;
int ap_upper;
} PyAddrPair;
/* Update *bounds to describe the first and one-past-the-last instructions in the
same line as lasti. Return the number of that line.
*/
PyAPI_FUNC(int) _PyCode_CheckLineNumber(PyCodeObject* co,
int lasti, PyAddrPair *bounds);
PyAPI_FUNC(PyObject*) PyCode_Optimize(PyObject *code, PyObject* consts,
PyObject *names, PyObject *lineno_obj);
#ifdef __cplusplus
}
#endif
#endif /* !Py_CODE_H */

View File

@ -0,0 +1,212 @@
#ifndef Py_CODECREGISTRY_H
#define Py_CODECREGISTRY_H
#ifdef __cplusplus
extern "C" {
#endif
/* ------------------------------------------------------------------------
Python Codec Registry and support functions
Written by Marc-Andre Lemburg (mal@lemburg.com).
Copyright (c) Corporation for National Research Initiatives.
------------------------------------------------------------------------ */
/* Register a new codec search function.
As side effect, this tries to load the encodings package, if not
yet done, to make sure that it is always first in the list of
search functions.
The search_function's refcount is incremented by this function. */
PyAPI_FUNC(int) PyCodec_Register(
PyObject *search_function
);
/* Codec register lookup API.
Looks up the given encoding and returns a CodecInfo object with
function attributes which implement the different aspects of
processing the encoding.
The encoding string is looked up converted to all lower-case
characters. This makes encodings looked up through this mechanism
effectively case-insensitive.
If no codec is found, a KeyError is set and NULL returned.
As side effect, this tries to load the encodings package, if not
yet done. This is part of the lazy load strategy for the encodings
package.
*/
PyAPI_FUNC(PyObject *) _PyCodec_Lookup(
const char *encoding
);
/* Generic codec based encoding API.
object is passed through the encoder function found for the given
encoding using the error handling method defined by errors. errors
may be NULL to use the default method defined for the codec.
Raises a LookupError in case no encoder can be found.
*/
PyAPI_FUNC(PyObject *) PyCodec_Encode(
PyObject *object,
const char *encoding,
const char *errors
);
/* Generic codec based decoding API.
object is passed through the decoder function found for the given
encoding using the error handling method defined by errors. errors
may be NULL to use the default method defined for the codec.
Raises a LookupError in case no encoder can be found.
*/
PyAPI_FUNC(PyObject *) PyCodec_Decode(
PyObject *object,
const char *encoding,
const char *errors
);
/* Text codec specific encoding and decoding API.
Checks the encoding against a list of codecs which do not
implement a unicode<->bytes encoding before attempting the
operation.
Please note that these APIs are internal and should not
be used in Python C extensions.
XXX (ncoghlan): should we make these, or something like them, public
in Python 3.5+?
*/
PyAPI_FUNC(PyObject *) _PyCodec_LookupTextEncoding(
const char *encoding,
const char *alternate_command
);
PyAPI_FUNC(PyObject *) _PyCodec_EncodeText(
PyObject *object,
const char *encoding,
const char *errors
);
PyAPI_FUNC(PyObject *) _PyCodec_DecodeText(
PyObject *object,
const char *encoding,
const char *errors
);
/* These two aren't actually text encoding specific, but _io.TextIOWrapper
* is the only current API consumer.
*/
PyAPI_FUNC(PyObject *) _PyCodecInfo_GetIncrementalDecoder(
PyObject *codec_info,
const char *errors
);
PyAPI_FUNC(PyObject *) _PyCodecInfo_GetIncrementalEncoder(
PyObject *codec_info,
const char *errors
);
/* --- Codec Lookup APIs --------------------------------------------------
All APIs return a codec object with incremented refcount and are
based on _PyCodec_Lookup(). The same comments w/r to the encoding
name also apply to these APIs.
*/
/* Get an encoder function for the given encoding. */
PyAPI_FUNC(PyObject *) PyCodec_Encoder(
const char *encoding
);
/* Get a decoder function for the given encoding. */
PyAPI_FUNC(PyObject *) PyCodec_Decoder(
const char *encoding
);
/* Get a IncrementalEncoder object for the given encoding. */
PyAPI_FUNC(PyObject *) PyCodec_IncrementalEncoder(
const char *encoding,
const char *errors
);
/* Get a IncrementalDecoder object function for the given encoding. */
PyAPI_FUNC(PyObject *) PyCodec_IncrementalDecoder(
const char *encoding,
const char *errors
);
/* Get a StreamReader factory function for the given encoding. */
PyAPI_FUNC(PyObject *) PyCodec_StreamReader(
const char *encoding,
PyObject *stream,
const char *errors
);
/* Get a StreamWriter factory function for the given encoding. */
PyAPI_FUNC(PyObject *) PyCodec_StreamWriter(
const char *encoding,
PyObject *stream,
const char *errors
);
/* Unicode encoding error handling callback registry API */
/* Register the error handling callback function error under the given
name. This function will be called by the codec when it encounters
unencodable characters/undecodable bytes and doesn't know the
callback name, when name is specified as the error parameter
in the call to the encode/decode function.
Return 0 on success, -1 on error */
PyAPI_FUNC(int) PyCodec_RegisterError(const char *name, PyObject *error);
/* Lookup the error handling callback function registered under the given
name. As a special case NULL can be passed, in which case
the error handling callback for "strict" will be returned. */
PyAPI_FUNC(PyObject *) PyCodec_LookupError(const char *name);
/* raise exc as an exception */
PyAPI_FUNC(PyObject *) PyCodec_StrictErrors(PyObject *exc);
/* ignore the unicode error, skipping the faulty input */
PyAPI_FUNC(PyObject *) PyCodec_IgnoreErrors(PyObject *exc);
/* replace the unicode encode error with ? or U+FFFD */
PyAPI_FUNC(PyObject *) PyCodec_ReplaceErrors(PyObject *exc);
/* replace the unicode encode error with XML character references */
PyAPI_FUNC(PyObject *) PyCodec_XMLCharRefReplaceErrors(PyObject *exc);
/* replace the unicode encode error with backslash escapes (\x, \u and \U) */
PyAPI_FUNC(PyObject *) PyCodec_BackslashReplaceErrors(PyObject *exc);
#ifdef __cplusplus
}
#endif
#endif /* !Py_CODECREGISTRY_H */

View File

@ -0,0 +1,40 @@
#ifndef Py_COMPILE_H
#define Py_COMPILE_H
#include "code.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Public interface */
struct _node; /* Declare the existence of this type */
PyAPI_FUNC(PyCodeObject *) PyNode_Compile(struct _node *, const char *);
/* Future feature support */
typedef struct {
int ff_features; /* flags set by future statements */
int ff_lineno; /* line number of last future statement */
} PyFutureFeatures;
#define FUTURE_NESTED_SCOPES "nested_scopes"
#define FUTURE_GENERATORS "generators"
#define FUTURE_DIVISION "division"
#define FUTURE_ABSOLUTE_IMPORT "absolute_import"
#define FUTURE_WITH_STATEMENT "with_statement"
#define FUTURE_PRINT_FUNCTION "print_function"
#define FUTURE_UNICODE_LITERALS "unicode_literals"
struct _mod; /* Declare the existence of this type */
PyAPI_FUNC(PyCodeObject *) PyAST_Compile(struct _mod *, const char *,
PyCompilerFlags *, PyArena *);
PyAPI_FUNC(PyFutureFeatures *) PyFuture_FromAST(struct _mod *, const char *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_COMPILE_H */

View File

@ -0,0 +1,66 @@
/* Complex number structure */
#ifndef Py_COMPLEXOBJECT_H
#define Py_COMPLEXOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
double real;
double imag;
} Py_complex;
/* Operations on complex numbers from complexmodule.c */
#define c_sum _Py_c_sum
#define c_diff _Py_c_diff
#define c_neg _Py_c_neg
#define c_prod _Py_c_prod
#define c_quot _Py_c_quot
#define c_pow _Py_c_pow
#define c_abs _Py_c_abs
PyAPI_FUNC(Py_complex) c_sum(Py_complex, Py_complex);
PyAPI_FUNC(Py_complex) c_diff(Py_complex, Py_complex);
PyAPI_FUNC(Py_complex) c_neg(Py_complex);
PyAPI_FUNC(Py_complex) c_prod(Py_complex, Py_complex);
PyAPI_FUNC(Py_complex) c_quot(Py_complex, Py_complex);
PyAPI_FUNC(Py_complex) c_pow(Py_complex, Py_complex);
PyAPI_FUNC(double) c_abs(Py_complex);
/* Complex object interface */
/*
PyComplexObject represents a complex number with double-precision
real and imaginary parts.
*/
typedef struct {
PyObject_HEAD
Py_complex cval;
} PyComplexObject;
PyAPI_DATA(PyTypeObject) PyComplex_Type;
#define PyComplex_Check(op) PyObject_TypeCheck(op, &PyComplex_Type)
#define PyComplex_CheckExact(op) (Py_TYPE(op) == &PyComplex_Type)
PyAPI_FUNC(PyObject *) PyComplex_FromCComplex(Py_complex);
PyAPI_FUNC(PyObject *) PyComplex_FromDoubles(double real, double imag);
PyAPI_FUNC(double) PyComplex_RealAsDouble(PyObject *op);
PyAPI_FUNC(double) PyComplex_ImagAsDouble(PyObject *op);
PyAPI_FUNC(Py_complex) PyComplex_AsCComplex(PyObject *op);
/* Format the object based on the format_spec, as defined in PEP 3101
(Advanced String Formatting). */
PyAPI_FUNC(PyObject *) _PyComplex_FormatAdvanced(PyObject *obj,
char *format_spec,
Py_ssize_t format_spec_len);
#ifdef __cplusplus
}
#endif
#endif /* !Py_COMPLEXOBJECT_H */

View File

@ -0,0 +1,239 @@
/* datetime.h
*/
#ifndef DATETIME_H
#define DATETIME_H
#ifdef __cplusplus
extern "C" {
#endif
/* Fields are packed into successive bytes, each viewed as unsigned and
* big-endian, unless otherwise noted:
*
* byte offset
* 0 year 2 bytes, 1-9999
* 2 month 1 byte, 1-12
* 3 day 1 byte, 1-31
* 4 hour 1 byte, 0-23
* 5 minute 1 byte, 0-59
* 6 second 1 byte, 0-59
* 7 usecond 3 bytes, 0-999999
* 10
*/
/* # of bytes for year, month, and day. */
#define _PyDateTime_DATE_DATASIZE 4
/* # of bytes for hour, minute, second, and usecond. */
#define _PyDateTime_TIME_DATASIZE 6
/* # of bytes for year, month, day, hour, minute, second, and usecond. */
#define _PyDateTime_DATETIME_DATASIZE 10
typedef struct
{
PyObject_HEAD
long hashcode; /* -1 when unknown */
int days; /* -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS */
int seconds; /* 0 <= seconds < 24*3600 is invariant */
int microseconds; /* 0 <= microseconds < 1000000 is invariant */
} PyDateTime_Delta;
typedef struct
{
PyObject_HEAD /* a pure abstract base class */
} PyDateTime_TZInfo;
/* The datetime and time types have hashcodes, and an optional tzinfo member,
* present if and only if hastzinfo is true.
*/
#define _PyTZINFO_HEAD \
PyObject_HEAD \
long hashcode; \
char hastzinfo; /* boolean flag */
/* No _PyDateTime_BaseTZInfo is allocated; it's just to have something
* convenient to cast to, when getting at the hastzinfo member of objects
* starting with _PyTZINFO_HEAD.
*/
typedef struct
{
_PyTZINFO_HEAD
} _PyDateTime_BaseTZInfo;
/* All time objects are of PyDateTime_TimeType, but that can be allocated
* in two ways, with or without a tzinfo member. Without is the same as
* tzinfo == None, but consumes less memory. _PyDateTime_BaseTime is an
* internal struct used to allocate the right amount of space for the
* "without" case.
*/
#define _PyDateTime_TIMEHEAD \
_PyTZINFO_HEAD \
unsigned char data[_PyDateTime_TIME_DATASIZE];
typedef struct
{
_PyDateTime_TIMEHEAD
} _PyDateTime_BaseTime; /* hastzinfo false */
typedef struct
{
_PyDateTime_TIMEHEAD
PyObject *tzinfo;
} PyDateTime_Time; /* hastzinfo true */
/* All datetime objects are of PyDateTime_DateTimeType, but that can be
* allocated in two ways too, just like for time objects above. In addition,
* the plain date type is a base class for datetime, so it must also have
* a hastzinfo member (although it's unused there).
*/
typedef struct
{
_PyTZINFO_HEAD
unsigned char data[_PyDateTime_DATE_DATASIZE];
} PyDateTime_Date;
#define _PyDateTime_DATETIMEHEAD \
_PyTZINFO_HEAD \
unsigned char data[_PyDateTime_DATETIME_DATASIZE];
typedef struct
{
_PyDateTime_DATETIMEHEAD
} _PyDateTime_BaseDateTime; /* hastzinfo false */
typedef struct
{
_PyDateTime_DATETIMEHEAD
PyObject *tzinfo;
} PyDateTime_DateTime; /* hastzinfo true */
/* Apply for date and datetime instances. */
#define PyDateTime_GET_YEAR(o) ((((PyDateTime_Date*)o)->data[0] << 8) | \
((PyDateTime_Date*)o)->data[1])
#define PyDateTime_GET_MONTH(o) (((PyDateTime_Date*)o)->data[2])
#define PyDateTime_GET_DAY(o) (((PyDateTime_Date*)o)->data[3])
#define PyDateTime_DATE_GET_HOUR(o) (((PyDateTime_DateTime*)o)->data[4])
#define PyDateTime_DATE_GET_MINUTE(o) (((PyDateTime_DateTime*)o)->data[5])
#define PyDateTime_DATE_GET_SECOND(o) (((PyDateTime_DateTime*)o)->data[6])
#define PyDateTime_DATE_GET_MICROSECOND(o) \
((((PyDateTime_DateTime*)o)->data[7] << 16) | \
(((PyDateTime_DateTime*)o)->data[8] << 8) | \
((PyDateTime_DateTime*)o)->data[9])
/* Apply for time instances. */
#define PyDateTime_TIME_GET_HOUR(o) (((PyDateTime_Time*)o)->data[0])
#define PyDateTime_TIME_GET_MINUTE(o) (((PyDateTime_Time*)o)->data[1])
#define PyDateTime_TIME_GET_SECOND(o) (((PyDateTime_Time*)o)->data[2])
#define PyDateTime_TIME_GET_MICROSECOND(o) \
((((PyDateTime_Time*)o)->data[3] << 16) | \
(((PyDateTime_Time*)o)->data[4] << 8) | \
((PyDateTime_Time*)o)->data[5])
/* Define structure for C API. */
typedef struct {
/* type objects */
PyTypeObject *DateType;
PyTypeObject *DateTimeType;
PyTypeObject *TimeType;
PyTypeObject *DeltaType;
PyTypeObject *TZInfoType;
/* constructors */
PyObject *(*Date_FromDate)(int, int, int, PyTypeObject*);
PyObject *(*DateTime_FromDateAndTime)(int, int, int, int, int, int, int,
PyObject*, PyTypeObject*);
PyObject *(*Time_FromTime)(int, int, int, int, PyObject*, PyTypeObject*);
PyObject *(*Delta_FromDelta)(int, int, int, int, PyTypeObject*);
/* constructors for the DB API */
PyObject *(*DateTime_FromTimestamp)(PyObject*, PyObject*, PyObject*);
PyObject *(*Date_FromTimestamp)(PyObject*, PyObject*);
} PyDateTime_CAPI;
#define PyDateTime_CAPSULE_NAME "datetime.datetime_CAPI"
/* "magic" constant used to partially protect against developer mistakes. */
#define DATETIME_API_MAGIC 0x414548d5
#ifdef Py_BUILD_CORE
/* Macros for type checking when building the Python core. */
#define PyDate_Check(op) PyObject_TypeCheck(op, &PyDateTime_DateType)
#define PyDate_CheckExact(op) (Py_TYPE(op) == &PyDateTime_DateType)
#define PyDateTime_Check(op) PyObject_TypeCheck(op, &PyDateTime_DateTimeType)
#define PyDateTime_CheckExact(op) (Py_TYPE(op) == &PyDateTime_DateTimeType)
#define PyTime_Check(op) PyObject_TypeCheck(op, &PyDateTime_TimeType)
#define PyTime_CheckExact(op) (Py_TYPE(op) == &PyDateTime_TimeType)
#define PyDelta_Check(op) PyObject_TypeCheck(op, &PyDateTime_DeltaType)
#define PyDelta_CheckExact(op) (Py_TYPE(op) == &PyDateTime_DeltaType)
#define PyTZInfo_Check(op) PyObject_TypeCheck(op, &PyDateTime_TZInfoType)
#define PyTZInfo_CheckExact(op) (Py_TYPE(op) == &PyDateTime_TZInfoType)
#else
/* Define global variable for the C API and a macro for setting it. */
static PyDateTime_CAPI *PyDateTimeAPI = NULL;
#define PyDateTime_IMPORT \
PyDateTimeAPI = (PyDateTime_CAPI *)PyCapsule_Import(PyDateTime_CAPSULE_NAME, 0)
/* Macros for type checking when not building the Python core. */
#define PyDate_Check(op) PyObject_TypeCheck(op, PyDateTimeAPI->DateType)
#define PyDate_CheckExact(op) (Py_TYPE(op) == PyDateTimeAPI->DateType)
#define PyDateTime_Check(op) PyObject_TypeCheck(op, PyDateTimeAPI->DateTimeType)
#define PyDateTime_CheckExact(op) (Py_TYPE(op) == PyDateTimeAPI->DateTimeType)
#define PyTime_Check(op) PyObject_TypeCheck(op, PyDateTimeAPI->TimeType)
#define PyTime_CheckExact(op) (Py_TYPE(op) == PyDateTimeAPI->TimeType)
#define PyDelta_Check(op) PyObject_TypeCheck(op, PyDateTimeAPI->DeltaType)
#define PyDelta_CheckExact(op) (Py_TYPE(op) == PyDateTimeAPI->DeltaType)
#define PyTZInfo_Check(op) PyObject_TypeCheck(op, PyDateTimeAPI->TZInfoType)
#define PyTZInfo_CheckExact(op) (Py_TYPE(op) == PyDateTimeAPI->TZInfoType)
/* Macros for accessing constructors in a simplified fashion. */
#define PyDate_FromDate(year, month, day) \
PyDateTimeAPI->Date_FromDate(year, month, day, PyDateTimeAPI->DateType)
#define PyDateTime_FromDateAndTime(year, month, day, hour, min, sec, usec) \
PyDateTimeAPI->DateTime_FromDateAndTime(year, month, day, hour, \
min, sec, usec, Py_None, PyDateTimeAPI->DateTimeType)
#define PyTime_FromTime(hour, minute, second, usecond) \
PyDateTimeAPI->Time_FromTime(hour, minute, second, usecond, \
Py_None, PyDateTimeAPI->TimeType)
#define PyDelta_FromDSU(days, seconds, useconds) \
PyDateTimeAPI->Delta_FromDelta(days, seconds, useconds, 1, \
PyDateTimeAPI->DeltaType)
/* Macros supporting the DB API. */
#define PyDateTime_FromTimestamp(args) \
PyDateTimeAPI->DateTime_FromTimestamp( \
(PyObject*) (PyDateTimeAPI->DateTimeType), args, NULL)
#define PyDate_FromTimestamp(args) \
PyDateTimeAPI->Date_FromTimestamp( \
(PyObject*) (PyDateTimeAPI->DateType), args)
#endif /* Py_BUILD_CORE */
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,94 @@
/* Descriptors */
#ifndef Py_DESCROBJECT_H
#define Py_DESCROBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);
typedef struct PyGetSetDef {
char *name;
getter get;
setter set;
char *doc;
void *closure;
} PyGetSetDef;
typedef PyObject *(*wrapperfunc)(PyObject *self, PyObject *args,
void *wrapped);
typedef PyObject *(*wrapperfunc_kwds)(PyObject *self, PyObject *args,
void *wrapped, PyObject *kwds);
struct wrapperbase {
char *name;
int offset;
void *function;
wrapperfunc wrapper;
char *doc;
int flags;
PyObject *name_strobj;
};
/* Flags for above struct */
#define PyWrapperFlag_KEYWORDS 1 /* wrapper function takes keyword args */
/* Various kinds of descriptor objects */
#define PyDescr_COMMON \
PyObject_HEAD \
PyTypeObject *d_type; \
PyObject *d_name
typedef struct {
PyDescr_COMMON;
} PyDescrObject;
typedef struct {
PyDescr_COMMON;
PyMethodDef *d_method;
} PyMethodDescrObject;
typedef struct {
PyDescr_COMMON;
struct PyMemberDef *d_member;
} PyMemberDescrObject;
typedef struct {
PyDescr_COMMON;
PyGetSetDef *d_getset;
} PyGetSetDescrObject;
typedef struct {
PyDescr_COMMON;
struct wrapperbase *d_base;
void *d_wrapped; /* This can be any function pointer */
} PyWrapperDescrObject;
PyAPI_DATA(PyTypeObject) PyWrapperDescr_Type;
PyAPI_DATA(PyTypeObject) PyDictProxy_Type;
PyAPI_DATA(PyTypeObject) PyGetSetDescr_Type;
PyAPI_DATA(PyTypeObject) PyMemberDescr_Type;
PyAPI_FUNC(PyObject *) PyDescr_NewMethod(PyTypeObject *, PyMethodDef *);
PyAPI_FUNC(PyObject *) PyDescr_NewClassMethod(PyTypeObject *, PyMethodDef *);
PyAPI_FUNC(PyObject *) PyDescr_NewMember(PyTypeObject *,
struct PyMemberDef *);
PyAPI_FUNC(PyObject *) PyDescr_NewGetSet(PyTypeObject *,
struct PyGetSetDef *);
PyAPI_FUNC(PyObject *) PyDescr_NewWrapper(PyTypeObject *,
struct wrapperbase *, void *);
#define PyDescr_IsData(d) (Py_TYPE(d)->tp_descr_set != NULL)
PyAPI_FUNC(PyObject *) PyDictProxy_New(PyObject *);
PyAPI_FUNC(PyObject *) PyWrapper_New(PyObject *, PyObject *);
PyAPI_DATA(PyTypeObject) PyProperty_Type;
#ifdef __cplusplus
}
#endif
#endif /* !Py_DESCROBJECT_H */

View File

@ -0,0 +1,156 @@
#ifndef Py_DICTOBJECT_H
#define Py_DICTOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Dictionary object type -- mapping from hashable object to object */
/* The distribution includes a separate file, Objects/dictnotes.txt,
describing explorations into dictionary design and optimization.
It covers typical dictionary use patterns, the parameters for
tuning dictionaries, and several ideas for possible optimizations.
*/
/*
There are three kinds of slots in the table:
1. Unused. me_key == me_value == NULL
Does not hold an active (key, value) pair now and never did. Unused can
transition to Active upon key insertion. This is the only case in which
me_key is NULL, and is each slot's initial state.
2. Active. me_key != NULL and me_key != dummy and me_value != NULL
Holds an active (key, value) pair. Active can transition to Dummy upon
key deletion. This is the only case in which me_value != NULL.
3. Dummy. me_key == dummy and me_value == NULL
Previously held an active (key, value) pair, but that was deleted and an
active pair has not yet overwritten the slot. Dummy can transition to
Active upon key insertion. Dummy slots cannot be made Unused again
(cannot have me_key set to NULL), else the probe sequence in case of
collision would have no way to know they were once active.
Note: .popitem() abuses the me_hash field of an Unused or Dummy slot to
hold a search finger. The me_hash field of Unused or Dummy slots has no
meaning otherwise.
*/
/* PyDict_MINSIZE is the minimum size of a dictionary. This many slots are
* allocated directly in the dict object (in the ma_smalltable member).
* It must be a power of 2, and at least 4. 8 allows dicts with no more
* than 5 active entries to live in ma_smalltable (and so avoid an
* additional malloc); instrumentation suggested this suffices for the
* majority of dicts (consisting mostly of usually-small instance dicts and
* usually-small dicts created to pass keyword arguments).
*/
#define PyDict_MINSIZE 8
typedef struct {
/* Cached hash code of me_key. Note that hash codes are C longs.
* We have to use Py_ssize_t instead because dict_popitem() abuses
* me_hash to hold a search finger.
*/
Py_ssize_t me_hash;
PyObject *me_key;
PyObject *me_value;
} PyDictEntry;
/*
To ensure the lookup algorithm terminates, there must be at least one Unused
slot (NULL key) in the table.
The value ma_fill is the number of non-NULL keys (sum of Active and Dummy);
ma_used is the number of non-NULL, non-dummy keys (== the number of non-NULL
values == the number of Active items).
To avoid slowing down lookups on a near-full table, we resize the table when
it's two-thirds full.
*/
typedef struct _dictobject PyDictObject;
struct _dictobject {
PyObject_HEAD
Py_ssize_t ma_fill; /* # Active + # Dummy */
Py_ssize_t ma_used; /* # Active */
/* The table contains ma_mask + 1 slots, and that's a power of 2.
* We store the mask instead of the size because the mask is more
* frequently needed.
*/
Py_ssize_t ma_mask;
/* ma_table points to ma_smalltable for small tables, else to
* additional malloc'ed memory. ma_table is never NULL! This rule
* saves repeated runtime null-tests in the workhorse getitem and
* setitem calls.
*/
PyDictEntry *ma_table;
PyDictEntry *(*ma_lookup)(PyDictObject *mp, PyObject *key, long hash);
PyDictEntry ma_smalltable[PyDict_MINSIZE];
};
PyAPI_DATA(PyTypeObject) PyDict_Type;
PyAPI_DATA(PyTypeObject) PyDictIterKey_Type;
PyAPI_DATA(PyTypeObject) PyDictIterValue_Type;
PyAPI_DATA(PyTypeObject) PyDictIterItem_Type;
PyAPI_DATA(PyTypeObject) PyDictKeys_Type;
PyAPI_DATA(PyTypeObject) PyDictItems_Type;
PyAPI_DATA(PyTypeObject) PyDictValues_Type;
#define PyDict_Check(op) \
PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_DICT_SUBCLASS)
#define PyDict_CheckExact(op) (Py_TYPE(op) == &PyDict_Type)
#define PyDictKeys_Check(op) (Py_TYPE(op) == &PyDictKeys_Type)
#define PyDictItems_Check(op) (Py_TYPE(op) == &PyDictItems_Type)
#define PyDictValues_Check(op) (Py_TYPE(op) == &PyDictValues_Type)
/* This excludes Values, since they are not sets. */
# define PyDictViewSet_Check(op) \
(PyDictKeys_Check(op) || PyDictItems_Check(op))
PyAPI_FUNC(PyObject *) PyDict_New(void);
PyAPI_FUNC(PyObject *) PyDict_GetItem(PyObject *mp, PyObject *key);
PyAPI_FUNC(int) PyDict_SetItem(PyObject *mp, PyObject *key, PyObject *item);
PyAPI_FUNC(int) PyDict_DelItem(PyObject *mp, PyObject *key);
PyAPI_FUNC(void) PyDict_Clear(PyObject *mp);
PyAPI_FUNC(int) PyDict_Next(
PyObject *mp, Py_ssize_t *pos, PyObject **key, PyObject **value);
PyAPI_FUNC(int) _PyDict_Next(
PyObject *mp, Py_ssize_t *pos, PyObject **key, PyObject **value, long *hash);
PyAPI_FUNC(PyObject *) PyDict_Keys(PyObject *mp);
PyAPI_FUNC(PyObject *) PyDict_Values(PyObject *mp);
PyAPI_FUNC(PyObject *) PyDict_Items(PyObject *mp);
PyAPI_FUNC(Py_ssize_t) PyDict_Size(PyObject *mp);
PyAPI_FUNC(PyObject *) PyDict_Copy(PyObject *mp);
PyAPI_FUNC(int) PyDict_Contains(PyObject *mp, PyObject *key);
PyAPI_FUNC(int) _PyDict_Contains(PyObject *mp, PyObject *key, long hash);
PyAPI_FUNC(PyObject *) _PyDict_NewPresized(Py_ssize_t minused);
PyAPI_FUNC(void) _PyDict_MaybeUntrack(PyObject *mp);
/* PyDict_Update(mp, other) is equivalent to PyDict_Merge(mp, other, 1). */
PyAPI_FUNC(int) PyDict_Update(PyObject *mp, PyObject *other);
/* PyDict_Merge updates/merges from a mapping object (an object that
supports PyMapping_Keys() and PyObject_GetItem()). If override is true,
the last occurrence of a key wins, else the first. The Python
dict.update(other) is equivalent to PyDict_Merge(dict, other, 1).
*/
PyAPI_FUNC(int) PyDict_Merge(PyObject *mp,
PyObject *other,
int override);
/* PyDict_MergeFromSeq2 updates/merges from an iterable object producing
iterable objects of length 2. If override is true, the last occurrence
of a key wins, else the first. The Python dict constructor dict(seq2)
is equivalent to dict={}; PyDict_MergeFromSeq(dict, seq2, 1).
*/
PyAPI_FUNC(int) PyDict_MergeFromSeq2(PyObject *d,
PyObject *seq2,
int override);
PyAPI_FUNC(PyObject *) PyDict_GetItemString(PyObject *dp, const char *key);
PyAPI_FUNC(int) PyDict_SetItemString(PyObject *dp, const char *key, PyObject *item);
PyAPI_FUNC(int) PyDict_DelItemString(PyObject *dp, const char *key);
#ifdef __cplusplus
}
#endif
#endif /* !Py_DICTOBJECT_H */

View File

@ -0,0 +1,15 @@
#ifndef PY_NO_SHORT_FLOAT_REPR
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(double) _Py_dg_strtod(const char *str, char **ptr);
PyAPI_FUNC(char *) _Py_dg_dtoa(double d, int mode, int ndigits,
int *decpt, int *sign, char **rve);
PyAPI_FUNC(void) _Py_dg_freedtoa(char *s);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,17 @@
#ifndef Py_ENUMOBJECT_H
#define Py_ENUMOBJECT_H
/* Enumerate Object */
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_DATA(PyTypeObject) PyEnum_Type;
PyAPI_DATA(PyTypeObject) PyReversed_Type;
#ifdef __cplusplus
}
#endif
#endif /* !Py_ENUMOBJECT_H */

View File

@ -0,0 +1,36 @@
#ifndef Py_ERRCODE_H
#define Py_ERRCODE_H
#ifdef __cplusplus
extern "C" {
#endif
/* Error codes passed around between file input, tokenizer, parser and
interpreter. This is necessary so we can turn them into Python
exceptions at a higher level. Note that some errors have a
slightly different meaning when passed from the tokenizer to the
parser than when passed from the parser to the interpreter; e.g.
the parser only returns E_EOF when it hits EOF immediately, and it
never returns E_OK. */
#define E_OK 10 /* No error */
#define E_EOF 11 /* End Of File */
#define E_INTR 12 /* Interrupted */
#define E_TOKEN 13 /* Bad token */
#define E_SYNTAX 14 /* Syntax error */
#define E_NOMEM 15 /* Ran out of memory */
#define E_DONE 16 /* Parsing complete */
#define E_ERROR 17 /* Execution error */
#define E_TABSPACE 18 /* Inconsistent mixing of tabs and spaces */
#define E_OVERFLOW 19 /* Node had too many children */
#define E_TOODEEP 20 /* Too many indentation levels */
#define E_DEDENT 21 /* No matching outer block for dedent */
#define E_DECODE 22 /* Error in decoding into Unicode */
#define E_EOFS 23 /* EOF in triple-quoted string */
#define E_EOLS 24 /* EOL in single-quoted string */
#define E_LINECONT 25 /* Unexpected characters after a line continuation */
#ifdef __cplusplus
}
#endif
#endif /* !Py_ERRCODE_H */

View File

@ -0,0 +1,25 @@
/* Interface to execute compiled code */
#ifndef Py_EVAL_H
#define Py_EVAL_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(PyObject *) PyEval_EvalCode(PyCodeObject *, PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) PyEval_EvalCodeEx(PyCodeObject *co,
PyObject *globals,
PyObject *locals,
PyObject **args, int argc,
PyObject **kwds, int kwdc,
PyObject **defs, int defc,
PyObject *closure);
PyAPI_FUNC(PyObject *) _PyEval_CallTracing(PyObject *func, PyObject *args);
#ifdef __cplusplus
}
#endif
#endif /* !Py_EVAL_H */

View File

@ -0,0 +1,97 @@
/* File object interface */
#ifndef Py_FILEOBJECT_H
#define Py_FILEOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
PyObject_HEAD
FILE *f_fp;
PyObject *f_name;
PyObject *f_mode;
int (*f_close)(FILE *);
int f_softspace; /* Flag used by 'print' command */
int f_binary; /* Flag which indicates whether the file is
open in binary (1) or text (0) mode */
char* f_buf; /* Allocated readahead buffer */
char* f_bufend; /* Points after last occupied position */
char* f_bufptr; /* Current buffer position */
char *f_setbuf; /* Buffer for setbuf(3) and setvbuf(3) */
int f_univ_newline; /* Handle any newline convention */
int f_newlinetypes; /* Types of newlines seen */
int f_skipnextlf; /* Skip next \n */
PyObject *f_encoding;
PyObject *f_errors;
PyObject *weakreflist; /* List of weak references */
int unlocked_count; /* Num. currently running sections of code
using f_fp with the GIL released. */
int readable;
int writable;
} PyFileObject;
PyAPI_DATA(PyTypeObject) PyFile_Type;
#define PyFile_Check(op) PyObject_TypeCheck(op, &PyFile_Type)
#define PyFile_CheckExact(op) (Py_TYPE(op) == &PyFile_Type)
PyAPI_FUNC(PyObject *) PyFile_FromString(char *, char *);
PyAPI_FUNC(void) PyFile_SetBufSize(PyObject *, int);
PyAPI_FUNC(int) PyFile_SetEncoding(PyObject *, const char *);
PyAPI_FUNC(int) PyFile_SetEncodingAndErrors(PyObject *, const char *, char *errors);
PyAPI_FUNC(PyObject *) PyFile_FromFile(FILE *, char *, char *,
int (*)(FILE *));
PyAPI_FUNC(FILE *) PyFile_AsFile(PyObject *);
PyAPI_FUNC(void) PyFile_IncUseCount(PyFileObject *);
PyAPI_FUNC(void) PyFile_DecUseCount(PyFileObject *);
PyAPI_FUNC(PyObject *) PyFile_Name(PyObject *);
PyAPI_FUNC(PyObject *) PyFile_GetLine(PyObject *, int);
PyAPI_FUNC(int) PyFile_WriteObject(PyObject *, PyObject *, int);
PyAPI_FUNC(int) PyFile_SoftSpace(PyObject *, int);
PyAPI_FUNC(int) PyFile_WriteString(const char *, PyObject *);
PyAPI_FUNC(int) PyObject_AsFileDescriptor(PyObject *);
/* The default encoding used by the platform file system APIs
If non-NULL, this is different than the default encoding for strings
*/
PyAPI_DATA(const char *) Py_FileSystemDefaultEncoding;
/* Routines to replace fread() and fgets() which accept any of \r, \n
or \r\n as line terminators.
*/
#define PY_STDIOTEXTMODE "b"
char *Py_UniversalNewlineFgets(char *, int, FILE*, PyObject *);
size_t Py_UniversalNewlineFread(char *, size_t, FILE *, PyObject *);
/* A routine to do sanity checking on the file mode string. returns
non-zero on if an exception occurred
*/
int _PyFile_SanitizeMode(char *mode);
#if defined _MSC_VER && _MSC_VER >= 1400
/* A routine to check if a file descriptor is valid on Windows. Returns 0
* and sets errno to EBADF if it isn't. This is to avoid Assertions
* from various functions in the Windows CRT beginning with
* Visual Studio 2005
*/
int _PyVerify_fd(int fd);
#elif defined _MSC_VER && _MSC_VER >= 1200
/* fdopen doesn't set errno EBADF and crashes for large fd on debug build */
#define _PyVerify_fd(fd) (_get_osfhandle(fd) >= 0)
#else
#define _PyVerify_fd(A) (1) /* dummy */
#endif
/* A routine to check if a file descriptor can be select()-ed. */
#ifdef HAVE_SELECT
#define _PyIsSelectable_fd(FD) (((FD) >= 0) && ((FD) < FD_SETSIZE))
#else
#define _PyIsSelectable_fd(FD) (1)
#endif /* HAVE_SELECT */
#ifdef __cplusplus
}
#endif
#endif /* !Py_FILEOBJECT_H */

View File

@ -0,0 +1,140 @@
/* Float object interface */
/*
PyFloatObject represents a (double precision) floating point number.
*/
#ifndef Py_FLOATOBJECT_H
#define Py_FLOATOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObject;
PyAPI_DATA(PyTypeObject) PyFloat_Type;
#define PyFloat_Check(op) PyObject_TypeCheck(op, &PyFloat_Type)
#define PyFloat_CheckExact(op) (Py_TYPE(op) == &PyFloat_Type)
/* The str() precision PyFloat_STR_PRECISION is chosen so that in most cases,
the rounding noise created by various operations is suppressed, while
giving plenty of precision for practical use. */
#define PyFloat_STR_PRECISION 12
#ifdef Py_NAN
#define Py_RETURN_NAN return PyFloat_FromDouble(Py_NAN)
#endif
#define Py_RETURN_INF(sign) do \
if (copysign(1., sign) == 1.) { \
return PyFloat_FromDouble(Py_HUGE_VAL); \
} else { \
return PyFloat_FromDouble(-Py_HUGE_VAL); \
} while(0)
PyAPI_FUNC(double) PyFloat_GetMax(void);
PyAPI_FUNC(double) PyFloat_GetMin(void);
PyAPI_FUNC(PyObject *) PyFloat_GetInfo(void);
/* Return Python float from string PyObject. Second argument ignored on
input, and, if non-NULL, NULL is stored into *junk (this tried to serve a
purpose once but can't be made to work as intended). */
PyAPI_FUNC(PyObject *) PyFloat_FromString(PyObject*, char** junk);
/* Return Python float from C double. */
PyAPI_FUNC(PyObject *) PyFloat_FromDouble(double);
/* Extract C double from Python float. The macro version trades safety for
speed. */
PyAPI_FUNC(double) PyFloat_AsDouble(PyObject *);
#define PyFloat_AS_DOUBLE(op) (((PyFloatObject *)(op))->ob_fval)
/* Write repr(v) into the char buffer argument, followed by null byte. The
buffer must be "big enough"; >= 100 is very safe.
PyFloat_AsReprString(buf, x) strives to print enough digits so that
PyFloat_FromString(buf) then reproduces x exactly. */
PyAPI_FUNC(void) PyFloat_AsReprString(char*, PyFloatObject *v);
/* Write str(v) into the char buffer argument, followed by null byte. The
buffer must be "big enough"; >= 100 is very safe. Note that it's
unusual to be able to get back the float you started with from
PyFloat_AsString's result -- use PyFloat_AsReprString() if you want to
preserve precision across conversions. */
PyAPI_FUNC(void) PyFloat_AsString(char*, PyFloatObject *v);
/* _PyFloat_{Pack,Unpack}{4,8}
*
* The struct and pickle (at least) modules need an efficient platform-
* independent way to store floating-point values as byte strings.
* The Pack routines produce a string from a C double, and the Unpack
* routines produce a C double from such a string. The suffix (4 or 8)
* specifies the number of bytes in the string.
*
* On platforms that appear to use (see _PyFloat_Init()) IEEE-754 formats
* these functions work by copying bits. On other platforms, the formats the
* 4- byte format is identical to the IEEE-754 single precision format, and
* the 8-byte format to the IEEE-754 double precision format, although the
* packing of INFs and NaNs (if such things exist on the platform) isn't
* handled correctly, and attempting to unpack a string containing an IEEE
* INF or NaN will raise an exception.
*
* On non-IEEE platforms with more precision, or larger dynamic range, than
* 754 supports, not all values can be packed; on non-IEEE platforms with less
* precision, or smaller dynamic range, not all values can be unpacked. What
* happens in such cases is partly accidental (alas).
*/
/* The pack routines write 4 or 8 bytes, starting at p. le is a bool
* argument, true if you want the string in little-endian format (exponent
* last, at p+3 or p+7), false if you want big-endian format (exponent
* first, at p).
* Return value: 0 if all is OK, -1 if error (and an exception is
* set, most likely OverflowError).
* There are two problems on non-IEEE platforms:
* 1): What this does is undefined if x is a NaN or infinity.
* 2): -0.0 and +0.0 produce the same string.
*/
PyAPI_FUNC(int) _PyFloat_Pack4(double x, unsigned char *p, int le);
PyAPI_FUNC(int) _PyFloat_Pack8(double x, unsigned char *p, int le);
/* Used to get the important decimal digits of a double */
PyAPI_FUNC(int) _PyFloat_Digits(char *buf, double v, int *signum);
PyAPI_FUNC(void) _PyFloat_DigitsInit(void);
/* The unpack routines read 4 or 8 bytes, starting at p. le is a bool
* argument, true if the string is in little-endian format (exponent
* last, at p+3 or p+7), false if big-endian (exponent first, at p).
* Return value: The unpacked double. On error, this is -1.0 and
* PyErr_Occurred() is true (and an exception is set, most likely
* OverflowError). Note that on a non-IEEE platform this will refuse
* to unpack a string that represents a NaN or infinity.
*/
PyAPI_FUNC(double) _PyFloat_Unpack4(const unsigned char *p, int le);
PyAPI_FUNC(double) _PyFloat_Unpack8(const unsigned char *p, int le);
/* free list api */
PyAPI_FUNC(int) PyFloat_ClearFreeList(void);
/* Format the object based on the format_spec, as defined in PEP 3101
(Advanced String Formatting). */
PyAPI_FUNC(PyObject *) _PyFloat_FormatAdvanced(PyObject *obj,
char *format_spec,
Py_ssize_t format_spec_len);
/* Round a C double x to the closest multiple of 10**-ndigits. Returns a
Python float on success, or NULL (with an appropriate exception set) on
failure. Used in builtin_round in bltinmodule.c. */
PyAPI_FUNC(PyObject *) _Py_double_round(double x, int ndigits);
#ifdef __cplusplus
}
#endif
#endif /* !Py_FLOATOBJECT_H */

View File

@ -0,0 +1,89 @@
/* Frame object interface */
#ifndef Py_FRAMEOBJECT_H
#define Py_FRAMEOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
int b_type; /* what kind of block this is */
int b_handler; /* where to jump to find handler */
int b_level; /* value stack level to pop to */
} PyTryBlock;
typedef struct _frame {
PyObject_VAR_HEAD
struct _frame *f_back; /* previous frame, or NULL */
PyCodeObject *f_code; /* code segment */
PyObject *f_builtins; /* builtin symbol table (PyDictObject) */
PyObject *f_globals; /* global symbol table (PyDictObject) */
PyObject *f_locals; /* local symbol table (any mapping) */
PyObject **f_valuestack; /* points after the last local */
/* Next free slot in f_valuestack. Frame creation sets to f_valuestack.
Frame evaluation usually NULLs it, but a frame that yields sets it
to the current stack top. */
PyObject **f_stacktop;
PyObject *f_trace; /* Trace function */
/* If an exception is raised in this frame, the next three are used to
* record the exception info (if any) originally in the thread state. See
* comments before set_exc_info() -- it's not obvious.
* Invariant: if _type is NULL, then so are _value and _traceback.
* Desired invariant: all three are NULL, or all three are non-NULL. That
* one isn't currently true, but "should be".
*/
PyObject *f_exc_type, *f_exc_value, *f_exc_traceback;
PyThreadState *f_tstate;
int f_lasti; /* Last instruction if called */
/* Call PyFrame_GetLineNumber() instead of reading this field
directly. As of 2.3 f_lineno is only valid when tracing is
active (i.e. when f_trace is set). At other times we use
PyCode_Addr2Line to calculate the line from the current
bytecode index. */
int f_lineno; /* Current line number */
int f_iblock; /* index in f_blockstack */
PyTryBlock f_blockstack[CO_MAXBLOCKS]; /* for try and loop blocks */
PyObject *f_localsplus[1]; /* locals+stack, dynamically sized */
} PyFrameObject;
/* Standard object interface */
PyAPI_DATA(PyTypeObject) PyFrame_Type;
#define PyFrame_Check(op) ((op)->ob_type == &PyFrame_Type)
#define PyFrame_IsRestricted(f) \
((f)->f_builtins != (f)->f_tstate->interp->builtins)
PyAPI_FUNC(PyFrameObject *) PyFrame_New(PyThreadState *, PyCodeObject *,
PyObject *, PyObject *);
/* The rest of the interface is specific for frame objects */
/* Block management functions */
PyAPI_FUNC(void) PyFrame_BlockSetup(PyFrameObject *, int, int, int);
PyAPI_FUNC(PyTryBlock *) PyFrame_BlockPop(PyFrameObject *);
/* Extend the value stack */
PyAPI_FUNC(PyObject **) PyFrame_ExtendStack(PyFrameObject *, int, int);
/* Conversions between "fast locals" and locals in dictionary */
PyAPI_FUNC(void) PyFrame_LocalsToFast(PyFrameObject *, int);
PyAPI_FUNC(void) PyFrame_FastToLocals(PyFrameObject *);
PyAPI_FUNC(int) PyFrame_ClearFreeList(void);
/* Return the line of code the frame is currently executing. */
PyAPI_FUNC(int) PyFrame_GetLineNumber(PyFrameObject *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_FRAMEOBJECT_H */

View File

@ -0,0 +1,76 @@
/* Function object interface */
#ifndef Py_FUNCOBJECT_H
#define Py_FUNCOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Function objects and code objects should not be confused with each other:
*
* Function objects are created by the execution of the 'def' statement.
* They reference a code object in their func_code attribute, which is a
* purely syntactic object, i.e. nothing more than a compiled version of some
* source code lines. There is one code object per source code "fragment",
* but each code object can be referenced by zero or many function objects
* depending only on how many times the 'def' statement in the source was
* executed so far.
*/
typedef struct {
PyObject_HEAD
PyObject *func_code; /* A code object */
PyObject *func_globals; /* A dictionary (other mappings won't do) */
PyObject *func_defaults; /* NULL or a tuple */
PyObject *func_closure; /* NULL or a tuple of cell objects */
PyObject *func_doc; /* The __doc__ attribute, can be anything */
PyObject *func_name; /* The __name__ attribute, a string object */
PyObject *func_dict; /* The __dict__ attribute, a dict or NULL */
PyObject *func_weakreflist; /* List of weak references */
PyObject *func_module; /* The __module__ attribute, can be anything */
/* Invariant:
* func_closure contains the bindings for func_code->co_freevars, so
* PyTuple_Size(func_closure) == PyCode_GetNumFree(func_code)
* (func_closure may be NULL if PyCode_GetNumFree(func_code) == 0).
*/
} PyFunctionObject;
PyAPI_DATA(PyTypeObject) PyFunction_Type;
#define PyFunction_Check(op) (Py_TYPE(op) == &PyFunction_Type)
PyAPI_FUNC(PyObject *) PyFunction_New(PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) PyFunction_GetCode(PyObject *);
PyAPI_FUNC(PyObject *) PyFunction_GetGlobals(PyObject *);
PyAPI_FUNC(PyObject *) PyFunction_GetModule(PyObject *);
PyAPI_FUNC(PyObject *) PyFunction_GetDefaults(PyObject *);
PyAPI_FUNC(int) PyFunction_SetDefaults(PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) PyFunction_GetClosure(PyObject *);
PyAPI_FUNC(int) PyFunction_SetClosure(PyObject *, PyObject *);
/* Macros for direct access to these values. Type checks are *not*
done, so use with care. */
#define PyFunction_GET_CODE(func) \
(((PyFunctionObject *)func) -> func_code)
#define PyFunction_GET_GLOBALS(func) \
(((PyFunctionObject *)func) -> func_globals)
#define PyFunction_GET_MODULE(func) \
(((PyFunctionObject *)func) -> func_module)
#define PyFunction_GET_DEFAULTS(func) \
(((PyFunctionObject *)func) -> func_defaults)
#define PyFunction_GET_CLOSURE(func) \
(((PyFunctionObject *)func) -> func_closure)
/* The classmethod and staticmethod types lives here, too */
PyAPI_DATA(PyTypeObject) PyClassMethod_Type;
PyAPI_DATA(PyTypeObject) PyStaticMethod_Type;
PyAPI_FUNC(PyObject *) PyClassMethod_New(PyObject *);
PyAPI_FUNC(PyObject *) PyStaticMethod_New(PyObject *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_FUNCOBJECT_H */

View File

@ -0,0 +1,40 @@
/* Generator object interface */
#ifndef Py_GENOBJECT_H
#define Py_GENOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
struct _frame; /* Avoid including frameobject.h */
typedef struct {
PyObject_HEAD
/* The gi_ prefix is intended to remind of generator-iterator. */
/* Note: gi_frame can be NULL if the generator is "finished" */
struct _frame *gi_frame;
/* True if generator is being executed. */
int gi_running;
/* The code object backing the generator */
PyObject *gi_code;
/* List of weak reference. */
PyObject *gi_weakreflist;
} PyGenObject;
PyAPI_DATA(PyTypeObject) PyGen_Type;
#define PyGen_Check(op) PyObject_TypeCheck(op, &PyGen_Type)
#define PyGen_CheckExact(op) (Py_TYPE(op) == &PyGen_Type)
PyAPI_FUNC(PyObject *) PyGen_New(struct _frame *);
PyAPI_FUNC(int) PyGen_NeedsFinalizing(PyGenObject *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_GENOBJECT_H */

View File

@ -0,0 +1,87 @@
/* Generated by Parser/pgen */
#define single_input 256
#define file_input 257
#define eval_input 258
#define decorator 259
#define decorators 260
#define decorated 261
#define funcdef 262
#define parameters 263
#define varargslist 264
#define fpdef 265
#define fplist 266
#define stmt 267
#define simple_stmt 268
#define small_stmt 269
#define expr_stmt 270
#define augassign 271
#define print_stmt 272
#define del_stmt 273
#define pass_stmt 274
#define flow_stmt 275
#define break_stmt 276
#define continue_stmt 277
#define return_stmt 278
#define yield_stmt 279
#define raise_stmt 280
#define import_stmt 281
#define import_name 282
#define import_from 283
#define import_as_name 284
#define dotted_as_name 285
#define import_as_names 286
#define dotted_as_names 287
#define dotted_name 288
#define global_stmt 289
#define exec_stmt 290
#define assert_stmt 291
#define compound_stmt 292
#define if_stmt 293
#define while_stmt 294
#define for_stmt 295
#define try_stmt 296
#define with_stmt 297
#define with_item 298
#define except_clause 299
#define suite 300
#define testlist_safe 301
#define old_test 302
#define old_lambdef 303
#define test 304
#define or_test 305
#define and_test 306
#define not_test 307
#define comparison 308
#define comp_op 309
#define expr 310
#define xor_expr 311
#define and_expr 312
#define shift_expr 313
#define arith_expr 314
#define term 315
#define factor 316
#define power 317
#define atom 318
#define listmaker 319
#define testlist_comp 320
#define lambdef 321
#define trailer 322
#define subscriptlist 323
#define subscript 324
#define sliceop 325
#define exprlist 326
#define testlist 327
#define dictorsetmaker 328
#define classdef 329
#define arglist 330
#define argument 331
#define list_iter 332
#define list_for 333
#define list_if 334
#define comp_iter 335
#define comp_for 336
#define comp_if 337
#define testlist1 338
#define encoding_decl 339
#define yield_expr 340

View File

@ -0,0 +1,93 @@
/* Grammar interface */
#ifndef Py_GRAMMAR_H
#define Py_GRAMMAR_H
#ifdef __cplusplus
extern "C" {
#endif
#include "bitset.h" /* Sigh... */
/* A label of an arc */
typedef struct {
int lb_type;
char *lb_str;
} label;
#define EMPTY 0 /* Label number 0 is by definition the empty label */
/* A list of labels */
typedef struct {
int ll_nlabels;
label *ll_label;
} labellist;
/* An arc from one state to another */
typedef struct {
short a_lbl; /* Label of this arc */
short a_arrow; /* State where this arc goes to */
} arc;
/* A state in a DFA */
typedef struct {
int s_narcs;
arc *s_arc; /* Array of arcs */
/* Optional accelerators */
int s_lower; /* Lowest label index */
int s_upper; /* Highest label index */
int *s_accel; /* Accelerator */
int s_accept; /* Nonzero for accepting state */
} state;
/* A DFA */
typedef struct {
int d_type; /* Non-terminal this represents */
char *d_name; /* For printing */
int d_initial; /* Initial state */
int d_nstates;
state *d_state; /* Array of states */
bitset d_first;
} dfa;
/* A grammar */
typedef struct {
int g_ndfas;
dfa *g_dfa; /* Array of DFAs */
labellist g_ll;
int g_start; /* Start symbol of the grammar */
int g_accel; /* Set if accelerators present */
} grammar;
/* FUNCTIONS */
grammar *newgrammar(int start);
dfa *adddfa(grammar *g, int type, char *name);
int addstate(dfa *d);
void addarc(dfa *d, int from, int to, int lbl);
dfa *PyGrammar_FindDFA(grammar *g, int type);
int addlabel(labellist *ll, int type, char *str);
int findlabel(labellist *ll, int type, char *str);
char *PyGrammar_LabelRepr(label *lb);
void translatelabels(grammar *g);
void addfirstsets(grammar *g);
void PyGrammar_AddAccelerators(grammar *g);
void PyGrammar_RemoveAccelerators(grammar *);
void printgrammar(grammar *g, FILE *fp);
void printnonterminals(grammar *g, FILE *fp);
#ifdef __cplusplus
}
#endif
#endif /* !Py_GRAMMAR_H */

View File

@ -0,0 +1,71 @@
/* Module definition and import interface */
#ifndef Py_IMPORT_H
#define Py_IMPORT_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(long) PyImport_GetMagicNumber(void);
PyAPI_FUNC(PyObject *) PyImport_ExecCodeModule(char *name, PyObject *co);
PyAPI_FUNC(PyObject *) PyImport_ExecCodeModuleEx(
char *name, PyObject *co, char *pathname);
PyAPI_FUNC(PyObject *) PyImport_GetModuleDict(void);
PyAPI_FUNC(PyObject *) PyImport_AddModule(const char *name);
PyAPI_FUNC(PyObject *) PyImport_ImportModule(const char *name);
PyAPI_FUNC(PyObject *) PyImport_ImportModuleNoBlock(const char *);
PyAPI_FUNC(PyObject *) PyImport_ImportModuleLevel(char *name,
PyObject *globals, PyObject *locals, PyObject *fromlist, int level);
#define PyImport_ImportModuleEx(n, g, l, f) \
PyImport_ImportModuleLevel(n, g, l, f, -1)
PyAPI_FUNC(PyObject *) PyImport_GetImporter(PyObject *path);
PyAPI_FUNC(PyObject *) PyImport_Import(PyObject *name);
PyAPI_FUNC(PyObject *) PyImport_ReloadModule(PyObject *m);
PyAPI_FUNC(void) PyImport_Cleanup(void);
PyAPI_FUNC(int) PyImport_ImportFrozenModule(char *);
#ifdef WITH_THREAD
PyAPI_FUNC(void) _PyImport_AcquireLock(void);
PyAPI_FUNC(int) _PyImport_ReleaseLock(void);
#else
#define _PyImport_AcquireLock()
#define _PyImport_ReleaseLock() 1
#endif
PyAPI_FUNC(struct filedescr *) _PyImport_FindModule(
const char *, PyObject *, char *, size_t, FILE **, PyObject **);
PyAPI_FUNC(int) _PyImport_IsScript(struct filedescr *);
PyAPI_FUNC(void) _PyImport_ReInitLock(void);
PyAPI_FUNC(PyObject *) _PyImport_FindExtension(char *, char *);
PyAPI_FUNC(PyObject *) _PyImport_FixupExtension(char *, char *);
struct _inittab {
char *name;
void (*initfunc)(void);
};
PyAPI_DATA(PyTypeObject) PyNullImporter_Type;
PyAPI_DATA(struct _inittab *) PyImport_Inittab;
PyAPI_FUNC(int) PyImport_AppendInittab(const char *name, void (*initfunc)(void));
PyAPI_FUNC(int) PyImport_ExtendInittab(struct _inittab *newtab);
struct _frozen {
char *name;
unsigned char *code;
int size;
};
/* Embedding apps may change this pointer to point to their favorite
collection of frozen modules: */
PyAPI_DATA(struct _frozen *) PyImport_FrozenModules;
#ifdef __cplusplus
}
#endif
#endif /* !Py_IMPORT_H */

View File

@ -0,0 +1,81 @@
/* Integer object interface */
/*
PyIntObject represents a (long) integer. This is an immutable object;
an integer cannot change its value after creation.
There are functions to create new integer objects, to test an object
for integer-ness, and to get the integer value. The latter functions
returns -1 and sets errno to EBADF if the object is not an PyIntObject.
None of the functions should be applied to nil objects.
The type PyIntObject is (unfortunately) exposed here so we can declare
_Py_TrueStruct and _Py_ZeroStruct in boolobject.h; don't use this.
*/
#ifndef Py_INTOBJECT_H
#define Py_INTOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
PyObject_HEAD
long ob_ival;
} PyIntObject;
PyAPI_DATA(PyTypeObject) PyInt_Type;
#define PyInt_Check(op) \
PyType_FastSubclass((op)->ob_type, Py_TPFLAGS_INT_SUBCLASS)
#define PyInt_CheckExact(op) ((op)->ob_type == &PyInt_Type)
PyAPI_FUNC(PyObject *) PyInt_FromString(char*, char**, int);
#ifdef Py_USING_UNICODE
PyAPI_FUNC(PyObject *) PyInt_FromUnicode(Py_UNICODE*, Py_ssize_t, int);
#endif
PyAPI_FUNC(PyObject *) PyInt_FromLong(long);
PyAPI_FUNC(PyObject *) PyInt_FromSize_t(size_t);
PyAPI_FUNC(PyObject *) PyInt_FromSsize_t(Py_ssize_t);
PyAPI_FUNC(long) PyInt_AsLong(PyObject *);
PyAPI_FUNC(Py_ssize_t) PyInt_AsSsize_t(PyObject *);
PyAPI_FUNC(int) _PyInt_AsInt(PyObject *);
PyAPI_FUNC(unsigned long) PyInt_AsUnsignedLongMask(PyObject *);
#ifdef HAVE_LONG_LONG
PyAPI_FUNC(unsigned PY_LONG_LONG) PyInt_AsUnsignedLongLongMask(PyObject *);
#endif
PyAPI_FUNC(long) PyInt_GetMax(void);
/* Macro, trading safety for speed */
#define PyInt_AS_LONG(op) (((PyIntObject *)(op))->ob_ival)
/* These aren't really part of the Int object, but they're handy; the protos
* are necessary for systems that need the magic of PyAPI_FUNC and that want
* to have stropmodule as a dynamically loaded module instead of building it
* into the main Python shared library/DLL. Guido thinks I'm weird for
* building it this way. :-) [cjh]
*/
PyAPI_FUNC(unsigned long) PyOS_strtoul(char *, char **, int);
PyAPI_FUNC(long) PyOS_strtol(char *, char **, int);
/* free list api */
PyAPI_FUNC(int) PyInt_ClearFreeList(void);
/* Convert an integer to the given base. Returns a string.
If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'.
If newstyle is zero, then use the pre-2.6 behavior of octal having
a leading "0" */
PyAPI_FUNC(PyObject*) _PyInt_Format(PyIntObject* v, int base, int newstyle);
/* Format the object based on the format_spec, as defined in PEP 3101
(Advanced String Formatting). */
PyAPI_FUNC(PyObject *) _PyInt_FormatAdvanced(PyObject *obj,
char *format_spec,
Py_ssize_t format_spec_len);
#ifdef __cplusplus
}
#endif
#endif /* !Py_INTOBJECT_H */

View File

@ -0,0 +1,15 @@
#ifndef Py_INTRCHECK_H
#define Py_INTRCHECK_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(int) PyOS_InterruptOccurred(void);
PyAPI_FUNC(void) PyOS_InitInterrupts(void);
PyAPI_FUNC(void) PyOS_AfterFork(void);
#ifdef __cplusplus
}
#endif
#endif /* !Py_INTRCHECK_H */

View File

@ -0,0 +1,23 @@
#ifndef Py_ITEROBJECT_H
#define Py_ITEROBJECT_H
/* Iterators (the basic kind, over a sequence) */
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_DATA(PyTypeObject) PySeqIter_Type;
#define PySeqIter_Check(op) (Py_TYPE(op) == &PySeqIter_Type)
PyAPI_FUNC(PyObject *) PySeqIter_New(PyObject *);
PyAPI_DATA(PyTypeObject) PyCallIter_Type;
#define PyCallIter_Check(op) (Py_TYPE(op) == &PyCallIter_Type)
PyAPI_FUNC(PyObject *) PyCallIter_New(PyObject *, PyObject *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_ITEROBJECT_H */

View File

@ -0,0 +1,68 @@
/* List object interface */
/*
Another generally useful object type is an list of object pointers.
This is a mutable type: the list items can be changed, and items can be
added or removed. Out-of-range indices or non-list objects are ignored.
*** WARNING *** PyList_SetItem does not increment the new item's reference
count, but does decrement the reference count of the item it replaces,
if not nil. It does *decrement* the reference count if it is *not*
inserted in the list. Similarly, PyList_GetItem does not increment the
returned item's reference count.
*/
#ifndef Py_LISTOBJECT_H
#define Py_LISTOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
PyObject_VAR_HEAD
/* Vector of pointers to list elements. list[0] is ob_item[0], etc. */
PyObject **ob_item;
/* ob_item contains space for 'allocated' elements. The number
* currently in use is ob_size.
* Invariants:
* 0 <= ob_size <= allocated
* len(list) == ob_size
* ob_item == NULL implies ob_size == allocated == 0
* list.sort() temporarily sets allocated to -1 to detect mutations.
*
* Items must normally not be NULL, except during construction when
* the list is not yet visible outside the function that builds it.
*/
Py_ssize_t allocated;
} PyListObject;
PyAPI_DATA(PyTypeObject) PyList_Type;
#define PyList_Check(op) \
PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_LIST_SUBCLASS)
#define PyList_CheckExact(op) (Py_TYPE(op) == &PyList_Type)
PyAPI_FUNC(PyObject *) PyList_New(Py_ssize_t size);
PyAPI_FUNC(Py_ssize_t) PyList_Size(PyObject *);
PyAPI_FUNC(PyObject *) PyList_GetItem(PyObject *, Py_ssize_t);
PyAPI_FUNC(int) PyList_SetItem(PyObject *, Py_ssize_t, PyObject *);
PyAPI_FUNC(int) PyList_Insert(PyObject *, Py_ssize_t, PyObject *);
PyAPI_FUNC(int) PyList_Append(PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) PyList_GetSlice(PyObject *, Py_ssize_t, Py_ssize_t);
PyAPI_FUNC(int) PyList_SetSlice(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
PyAPI_FUNC(int) PyList_Sort(PyObject *);
PyAPI_FUNC(int) PyList_Reverse(PyObject *);
PyAPI_FUNC(PyObject *) PyList_AsTuple(PyObject *);
PyAPI_FUNC(PyObject *) _PyList_Extend(PyListObject *, PyObject *);
/* Macro, trading safety for speed */
#define PyList_GET_ITEM(op, i) (((PyListObject *)(op))->ob_item[i])
#define PyList_SET_ITEM(op, i, v) (((PyListObject *)(op))->ob_item[i] = (v))
#define PyList_GET_SIZE(op) Py_SIZE(op)
#ifdef __cplusplus
}
#endif
#endif /* !Py_LISTOBJECT_H */

View File

@ -0,0 +1,103 @@
#ifndef Py_LONGINTREPR_H
#define Py_LONGINTREPR_H
#ifdef __cplusplus
extern "C" {
#endif
/* This is published for the benefit of "friend" marshal.c only. */
/* Parameters of the long integer representation. There are two different
sets of parameters: one set for 30-bit digits, stored in an unsigned 32-bit
integer type, and one set for 15-bit digits with each digit stored in an
unsigned short. The value of PYLONG_BITS_IN_DIGIT, defined either at
configure time or in pyport.h, is used to decide which digit size to use.
Type 'digit' should be able to hold 2*PyLong_BASE-1, and type 'twodigits'
should be an unsigned integer type able to hold all integers up to
PyLong_BASE*PyLong_BASE-1. x_sub assumes that 'digit' is an unsigned type,
and that overflow is handled by taking the result modulo 2**N for some N >
PyLong_SHIFT. The majority of the code doesn't care about the precise
value of PyLong_SHIFT, but there are some notable exceptions:
- long_pow() requires that PyLong_SHIFT be divisible by 5
- PyLong_{As,From}ByteArray require that PyLong_SHIFT be at least 8
- long_hash() requires that PyLong_SHIFT is *strictly* less than the number
of bits in an unsigned long, as do the PyLong <-> long (or unsigned long)
conversion functions
- the long <-> size_t/Py_ssize_t conversion functions expect that
PyLong_SHIFT is strictly less than the number of bits in a size_t
- the marshal code currently expects that PyLong_SHIFT is a multiple of 15
The values 15 and 30 should fit all of the above requirements, on any
platform.
*/
#if PYLONG_BITS_IN_DIGIT == 30
#if !(defined HAVE_UINT64_T && defined HAVE_UINT32_T && \
defined HAVE_INT64_T && defined HAVE_INT32_T)
#error "30-bit long digits requested, but the necessary types are not available on this platform"
#endif
typedef PY_UINT32_T digit;
typedef PY_INT32_T sdigit; /* signed variant of digit */
typedef PY_UINT64_T twodigits;
typedef PY_INT64_T stwodigits; /* signed variant of twodigits */
#define PyLong_SHIFT 30
#define _PyLong_DECIMAL_SHIFT 9 /* max(e such that 10**e fits in a digit) */
#define _PyLong_DECIMAL_BASE ((digit)1000000000) /* 10 ** DECIMAL_SHIFT */
#elif PYLONG_BITS_IN_DIGIT == 15
typedef unsigned short digit;
typedef short sdigit; /* signed variant of digit */
typedef unsigned long twodigits;
typedef long stwodigits; /* signed variant of twodigits */
#define PyLong_SHIFT 15
#define _PyLong_DECIMAL_SHIFT 4 /* max(e such that 10**e fits in a digit) */
#define _PyLong_DECIMAL_BASE ((digit)10000) /* 10 ** DECIMAL_SHIFT */
#else
#error "PYLONG_BITS_IN_DIGIT should be 15 or 30"
#endif
#define PyLong_BASE ((digit)1 << PyLong_SHIFT)
#define PyLong_MASK ((digit)(PyLong_BASE - 1))
/* b/w compatibility with Python 2.5 */
#define SHIFT PyLong_SHIFT
#define BASE PyLong_BASE
#define MASK PyLong_MASK
#if PyLong_SHIFT % 5 != 0
#error "longobject.c requires that PyLong_SHIFT be divisible by 5"
#endif
/* Long integer representation.
The absolute value of a number is equal to
SUM(for i=0 through abs(ob_size)-1) ob_digit[i] * 2**(SHIFT*i)
Negative numbers are represented with ob_size < 0;
zero is represented by ob_size == 0.
In a normalized number, ob_digit[abs(ob_size)-1] (the most significant
digit) is never zero. Also, in all cases, for all valid i,
0 <= ob_digit[i] <= MASK.
The allocation function takes care of allocating extra memory
so that ob_digit[0] ... ob_digit[abs(ob_size)-1] are actually available.
CAUTION: Generic code manipulating subtypes of PyVarObject has to
aware that longs abuse ob_size's sign bit.
*/
struct _longobject {
PyObject_VAR_HEAD
digit ob_digit[1];
};
PyAPI_FUNC(PyLongObject *) _PyLong_New(Py_ssize_t);
/* Return a copy of src. */
PyAPI_FUNC(PyObject *) _PyLong_Copy(PyLongObject *src);
#ifdef __cplusplus
}
#endif
#endif /* !Py_LONGINTREPR_H */

View File

@ -0,0 +1,135 @@
#ifndef Py_LONGOBJECT_H
#define Py_LONGOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Long (arbitrary precision) integer object interface */
typedef struct _longobject PyLongObject; /* Revealed in longintrepr.h */
PyAPI_DATA(PyTypeObject) PyLong_Type;
#define PyLong_Check(op) \
PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_LONG_SUBCLASS)
#define PyLong_CheckExact(op) (Py_TYPE(op) == &PyLong_Type)
PyAPI_FUNC(PyObject *) PyLong_FromLong(long);
PyAPI_FUNC(PyObject *) PyLong_FromUnsignedLong(unsigned long);
PyAPI_FUNC(PyObject *) PyLong_FromDouble(double);
PyAPI_FUNC(PyObject *) PyLong_FromSize_t(size_t);
PyAPI_FUNC(PyObject *) PyLong_FromSsize_t(Py_ssize_t);
PyAPI_FUNC(long) PyLong_AsLong(PyObject *);
PyAPI_FUNC(long) PyLong_AsLongAndOverflow(PyObject *, int *);
PyAPI_FUNC(unsigned long) PyLong_AsUnsignedLong(PyObject *);
PyAPI_FUNC(unsigned long) PyLong_AsUnsignedLongMask(PyObject *);
PyAPI_FUNC(Py_ssize_t) PyLong_AsSsize_t(PyObject *);
PyAPI_FUNC(int) _PyLong_AsInt(PyObject *);
PyAPI_FUNC(PyObject *) PyLong_GetInfo(void);
/* For use by intobject.c only */
#define _PyLong_AsSsize_t PyLong_AsSsize_t
#define _PyLong_FromSize_t PyLong_FromSize_t
#define _PyLong_FromSsize_t PyLong_FromSsize_t
PyAPI_DATA(int) _PyLong_DigitValue[256];
/* _PyLong_Frexp returns a double x and an exponent e such that the
true value is approximately equal to x * 2**e. e is >= 0. x is
0.0 if and only if the input is 0 (in which case, e and x are both
zeroes); otherwise, 0.5 <= abs(x) < 1.0. On overflow, which is
possible if the number of bits doesn't fit into a Py_ssize_t, sets
OverflowError and returns -1.0 for x, 0 for e. */
PyAPI_FUNC(double) _PyLong_Frexp(PyLongObject *a, Py_ssize_t *e);
PyAPI_FUNC(double) PyLong_AsDouble(PyObject *);
PyAPI_FUNC(PyObject *) PyLong_FromVoidPtr(void *);
PyAPI_FUNC(void *) PyLong_AsVoidPtr(PyObject *);
#ifdef HAVE_LONG_LONG
PyAPI_FUNC(PyObject *) PyLong_FromLongLong(PY_LONG_LONG);
PyAPI_FUNC(PyObject *) PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG);
PyAPI_FUNC(PY_LONG_LONG) PyLong_AsLongLong(PyObject *);
PyAPI_FUNC(unsigned PY_LONG_LONG) PyLong_AsUnsignedLongLong(PyObject *);
PyAPI_FUNC(unsigned PY_LONG_LONG) PyLong_AsUnsignedLongLongMask(PyObject *);
PyAPI_FUNC(PY_LONG_LONG) PyLong_AsLongLongAndOverflow(PyObject *, int *);
#endif /* HAVE_LONG_LONG */
PyAPI_FUNC(PyObject *) PyLong_FromString(char *, char **, int);
#ifdef Py_USING_UNICODE
PyAPI_FUNC(PyObject *) PyLong_FromUnicode(Py_UNICODE*, Py_ssize_t, int);
#endif
/* _PyLong_Sign. Return 0 if v is 0, -1 if v < 0, +1 if v > 0.
v must not be NULL, and must be a normalized long.
There are no error cases.
*/
PyAPI_FUNC(int) _PyLong_Sign(PyObject *v);
/* _PyLong_NumBits. Return the number of bits needed to represent the
absolute value of a long. For example, this returns 1 for 1 and -1, 2
for 2 and -2, and 2 for 3 and -3. It returns 0 for 0.
v must not be NULL, and must be a normalized long.
(size_t)-1 is returned and OverflowError set if the true result doesn't
fit in a size_t.
*/
PyAPI_FUNC(size_t) _PyLong_NumBits(PyObject *v);
/* _PyLong_FromByteArray: View the n unsigned bytes as a binary integer in
base 256, and return a Python long with the same numeric value.
If n is 0, the integer is 0. Else:
If little_endian is 1/true, bytes[n-1] is the MSB and bytes[0] the LSB;
else (little_endian is 0/false) bytes[0] is the MSB and bytes[n-1] the
LSB.
If is_signed is 0/false, view the bytes as a non-negative integer.
If is_signed is 1/true, view the bytes as a 2's-complement integer,
non-negative if bit 0x80 of the MSB is clear, negative if set.
Error returns:
+ Return NULL with the appropriate exception set if there's not
enough memory to create the Python long.
*/
PyAPI_FUNC(PyObject *) _PyLong_FromByteArray(
const unsigned char* bytes, size_t n,
int little_endian, int is_signed);
/* _PyLong_AsByteArray: Convert the least-significant 8*n bits of long
v to a base-256 integer, stored in array bytes. Normally return 0,
return -1 on error.
If little_endian is 1/true, store the MSB at bytes[n-1] and the LSB at
bytes[0]; else (little_endian is 0/false) store the MSB at bytes[0] and
the LSB at bytes[n-1].
If is_signed is 0/false, it's an error if v < 0; else (v >= 0) n bytes
are filled and there's nothing special about bit 0x80 of the MSB.
If is_signed is 1/true, bytes is filled with the 2's-complement
representation of v's value. Bit 0x80 of the MSB is the sign bit.
Error returns (-1):
+ is_signed is 0 and v < 0. TypeError is set in this case, and bytes
isn't altered.
+ n isn't big enough to hold the full mathematical value of v. For
example, if is_signed is 0 and there are more digits in the v than
fit in n; or if is_signed is 1, v < 0, and n is just 1 bit shy of
being large enough to hold a sign bit. OverflowError is set in this
case, but bytes holds the least-signficant n bytes of the true value.
*/
PyAPI_FUNC(int) _PyLong_AsByteArray(PyLongObject* v,
unsigned char* bytes, size_t n,
int little_endian, int is_signed);
/* _PyLong_Format: Convert the long to a string object with given base,
appending a base prefix of 0[box] if base is 2, 8 or 16.
Add a trailing "L" if addL is non-zero.
If newstyle is zero, then use the pre-2.6 behavior of octal having
a leading "0", instead of the prefix "0o" */
PyAPI_FUNC(PyObject *) _PyLong_Format(PyObject *aa, int base, int addL, int newstyle);
/* Format the object based on the format_spec, as defined in PEP 3101
(Advanced String Formatting). */
PyAPI_FUNC(PyObject *) _PyLong_FormatAdvanced(PyObject *obj,
char *format_spec,
Py_ssize_t format_spec_len);
#ifdef __cplusplus
}
#endif
#endif /* !Py_LONGOBJECT_H */

View File

@ -0,0 +1,25 @@
/* Interface for marshal.c */
#ifndef Py_MARSHAL_H
#define Py_MARSHAL_H
#ifdef __cplusplus
extern "C" {
#endif
#define Py_MARSHAL_VERSION 2
PyAPI_FUNC(void) PyMarshal_WriteLongToFile(long, FILE *, int);
PyAPI_FUNC(void) PyMarshal_WriteObjectToFile(PyObject *, FILE *, int);
PyAPI_FUNC(PyObject *) PyMarshal_WriteObjectToString(PyObject *, int);
PyAPI_FUNC(long) PyMarshal_ReadLongFromFile(FILE *);
PyAPI_FUNC(int) PyMarshal_ReadShortFromFile(FILE *);
PyAPI_FUNC(PyObject *) PyMarshal_ReadObjectFromFile(FILE *);
PyAPI_FUNC(PyObject *) PyMarshal_ReadLastObjectFromFile(FILE *);
PyAPI_FUNC(PyObject *) PyMarshal_ReadObjectFromString(char *, Py_ssize_t);
#ifdef __cplusplus
}
#endif
#endif /* !Py_MARSHAL_H */

View File

@ -0,0 +1,74 @@
/* Memory view object. In Python this is available as "memoryview". */
#ifndef Py_MEMORYOBJECT_H
#define Py_MEMORYOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_DATA(PyTypeObject) PyMemoryView_Type;
#define PyMemoryView_Check(op) (Py_TYPE(op) == &PyMemoryView_Type)
/* Get a pointer to the underlying Py_buffer of a memoryview object. */
#define PyMemoryView_GET_BUFFER(op) (&((PyMemoryViewObject *)(op))->view)
/* Get a pointer to the PyObject from which originates a memoryview object. */
#define PyMemoryView_GET_BASE(op) (((PyMemoryViewObject *)(op))->view.obj)
PyAPI_FUNC(PyObject *) PyMemoryView_GetContiguous(PyObject *base,
int buffertype,
char fort);
/* Return a contiguous chunk of memory representing the buffer
from an object in a memory view object. If a copy is made then the
base object for the memory view will be a *new* bytes object.
Otherwise, the base-object will be the object itself and no
data-copying will be done.
The buffertype argument can be PyBUF_READ, PyBUF_WRITE,
PyBUF_SHADOW to determine whether the returned buffer
should be READONLY, WRITABLE, or set to update the
original buffer if a copy must be made. If buffertype is
PyBUF_WRITE and the buffer is not contiguous an error will
be raised. In this circumstance, the user can use
PyBUF_SHADOW to ensure that a a writable temporary
contiguous buffer is returned. The contents of this
contiguous buffer will be copied back into the original
object after the memoryview object is deleted as long as
the original object is writable and allows setting an
exclusive write lock. If this is not allowed by the
original object, then a BufferError is raised.
If the object is multi-dimensional and if fortran is 'F',
the first dimension of the underlying array will vary the
fastest in the buffer. If fortran is 'C', then the last
dimension will vary the fastest (C-style contiguous). If
fortran is 'A', then it does not matter and you will get
whatever the object decides is more efficient.
A new reference is returned that must be DECREF'd when finished.
*/
PyAPI_FUNC(PyObject *) PyMemoryView_FromObject(PyObject *base);
PyAPI_FUNC(PyObject *) PyMemoryView_FromBuffer(Py_buffer *info);
/* create new if bufptr is NULL
will be a new bytesobject in base */
/* The struct is declared here so that macros can work, but it shouldn't
be considered public. Don't access those fields directly, use the macros
and functions instead! */
typedef struct {
PyObject_HEAD
PyObject *base;
Py_buffer view;
} PyMemoryViewObject;
#ifdef __cplusplus
}
#endif
#endif /* !Py_MEMORYOBJECT_H */

View File

@ -0,0 +1,18 @@
#ifndef Py_METAGRAMMAR_H
#define Py_METAGRAMMAR_H
#ifdef __cplusplus
extern "C" {
#endif
#define MSTART 256
#define RULE 257
#define RHS 258
#define ALT 259
#define ITEM 260
#define ATOM 261
#ifdef __cplusplus
}
#endif
#endif /* !Py_METAGRAMMAR_H */

View File

@ -0,0 +1,93 @@
/* Method object interface */
#ifndef Py_METHODOBJECT_H
#define Py_METHODOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/* This is about the type 'builtin_function_or_method',
not Python methods in user-defined classes. See classobject.h
for the latter. */
PyAPI_DATA(PyTypeObject) PyCFunction_Type;
#define PyCFunction_Check(op) (Py_TYPE(op) == &PyCFunction_Type)
typedef PyObject *(*PyCFunction)(PyObject *, PyObject *);
typedef PyObject *(*PyCFunctionWithKeywords)(PyObject *, PyObject *,
PyObject *);
typedef PyObject *(*PyNoArgsFunction)(PyObject *);
PyAPI_FUNC(PyCFunction) PyCFunction_GetFunction(PyObject *);
PyAPI_FUNC(PyObject *) PyCFunction_GetSelf(PyObject *);
PyAPI_FUNC(int) PyCFunction_GetFlags(PyObject *);
/* Macros for direct access to these values. Type checks are *not*
done, so use with care. */
#define PyCFunction_GET_FUNCTION(func) \
(((PyCFunctionObject *)func) -> m_ml -> ml_meth)
#define PyCFunction_GET_SELF(func) \
(((PyCFunctionObject *)func) -> m_self)
#define PyCFunction_GET_FLAGS(func) \
(((PyCFunctionObject *)func) -> m_ml -> ml_flags)
PyAPI_FUNC(PyObject *) PyCFunction_Call(PyObject *, PyObject *, PyObject *);
struct PyMethodDef {
const char *ml_name; /* The name of the built-in function/method */
PyCFunction ml_meth; /* The C function that implements it */
int ml_flags; /* Combination of METH_xxx flags, which mostly
describe the args expected by the C func */
const char *ml_doc; /* The __doc__ attribute, or NULL */
};
typedef struct PyMethodDef PyMethodDef;
PyAPI_FUNC(PyObject *) Py_FindMethod(PyMethodDef[], PyObject *, const char *);
#define PyCFunction_New(ML, SELF) PyCFunction_NewEx((ML), (SELF), NULL)
PyAPI_FUNC(PyObject *) PyCFunction_NewEx(PyMethodDef *, PyObject *,
PyObject *);
/* Flag passed to newmethodobject */
#define METH_OLDARGS 0x0000
#define METH_VARARGS 0x0001
#define METH_KEYWORDS 0x0002
/* METH_NOARGS and METH_O must not be combined with the flags above. */
#define METH_NOARGS 0x0004
#define METH_O 0x0008
/* METH_CLASS and METH_STATIC are a little different; these control
the construction of methods for a class. These cannot be used for
functions in modules. */
#define METH_CLASS 0x0010
#define METH_STATIC 0x0020
/* METH_COEXIST allows a method to be entered eventhough a slot has
already filled the entry. When defined, the flag allows a separate
method, "__contains__" for example, to coexist with a defined
slot like sq_contains. */
#define METH_COEXIST 0x0040
typedef struct PyMethodChain {
PyMethodDef *methods; /* Methods of this type */
struct PyMethodChain *link; /* NULL or base type */
} PyMethodChain;
PyAPI_FUNC(PyObject *) Py_FindMethodInChain(PyMethodChain *, PyObject *,
const char *);
typedef struct {
PyObject_HEAD
PyMethodDef *m_ml; /* Description of the C function to call */
PyObject *m_self; /* Passed as 'self' arg to the C func, can be NULL */
PyObject *m_module; /* The __module__ attribute, can be anything */
} PyCFunctionObject;
PyAPI_FUNC(int) PyCFunction_ClearFreeList(void);
#ifdef __cplusplus
}
#endif
#endif /* !Py_METHODOBJECT_H */

View File

@ -0,0 +1,134 @@
#ifndef Py_MODSUPPORT_H
#define Py_MODSUPPORT_H
#ifdef __cplusplus
extern "C" {
#endif
/* Module support interface */
#include <stdarg.h>
/* If PY_SSIZE_T_CLEAN is defined, each functions treats #-specifier
to mean Py_ssize_t */
#ifdef PY_SSIZE_T_CLEAN
#define PyArg_Parse _PyArg_Parse_SizeT
#define PyArg_ParseTuple _PyArg_ParseTuple_SizeT
#define PyArg_ParseTupleAndKeywords _PyArg_ParseTupleAndKeywords_SizeT
#define PyArg_VaParse _PyArg_VaParse_SizeT
#define PyArg_VaParseTupleAndKeywords _PyArg_VaParseTupleAndKeywords_SizeT
#define Py_BuildValue _Py_BuildValue_SizeT
#define Py_VaBuildValue _Py_VaBuildValue_SizeT
#else
PyAPI_FUNC(PyObject *) _Py_VaBuildValue_SizeT(const char *, va_list);
#endif
PyAPI_FUNC(int) PyArg_Parse(PyObject *, const char *, ...);
PyAPI_FUNC(int) PyArg_ParseTuple(PyObject *, const char *, ...) Py_FORMAT_PARSETUPLE(PyArg_ParseTuple, 2, 3);
PyAPI_FUNC(int) PyArg_ParseTupleAndKeywords(PyObject *, PyObject *,
const char *, char **, ...);
PyAPI_FUNC(int) PyArg_UnpackTuple(PyObject *, const char *, Py_ssize_t, Py_ssize_t, ...);
PyAPI_FUNC(PyObject *) Py_BuildValue(const char *, ...);
PyAPI_FUNC(PyObject *) _Py_BuildValue_SizeT(const char *, ...);
PyAPI_FUNC(int) _PyArg_NoKeywords(const char *funcname, PyObject *kw);
PyAPI_FUNC(int) PyArg_VaParse(PyObject *, const char *, va_list);
PyAPI_FUNC(int) PyArg_VaParseTupleAndKeywords(PyObject *, PyObject *,
const char *, char **, va_list);
PyAPI_FUNC(PyObject *) Py_VaBuildValue(const char *, va_list);
PyAPI_FUNC(int) PyModule_AddObject(PyObject *, const char *, PyObject *);
PyAPI_FUNC(int) PyModule_AddIntConstant(PyObject *, const char *, long);
PyAPI_FUNC(int) PyModule_AddStringConstant(PyObject *, const char *, const char *);
#define PyModule_AddIntMacro(m, c) PyModule_AddIntConstant(m, #c, c)
#define PyModule_AddStringMacro(m, c) PyModule_AddStringConstant(m, #c, c)
#define PYTHON_API_VERSION 1013
#define PYTHON_API_STRING "1013"
/* The API version is maintained (independently from the Python version)
so we can detect mismatches between the interpreter and dynamically
loaded modules. These are diagnosed by an error message but
the module is still loaded (because the mismatch can only be tested
after loading the module). The error message is intended to
explain the core dump a few seconds later.
The symbol PYTHON_API_STRING defines the same value as a string
literal. *** PLEASE MAKE SURE THE DEFINITIONS MATCH. ***
Please add a line or two to the top of this log for each API
version change:
22-Feb-2006 MvL 1013 PEP 353 - long indices for sequence lengths
19-Aug-2002 GvR 1012 Changes to string object struct for
interning changes, saving 3 bytes.
17-Jul-2001 GvR 1011 Descr-branch, just to be on the safe side
25-Jan-2001 FLD 1010 Parameters added to PyCode_New() and
PyFrame_New(); Python 2.1a2
14-Mar-2000 GvR 1009 Unicode API added
3-Jan-1999 GvR 1007 Decided to change back! (Don't reuse 1008!)
3-Dec-1998 GvR 1008 Python 1.5.2b1
18-Jan-1997 GvR 1007 string interning and other speedups
11-Oct-1996 GvR renamed Py_Ellipses to Py_Ellipsis :-(
30-Jul-1996 GvR Slice and ellipses syntax added
23-Jul-1996 GvR For 1.4 -- better safe than sorry this time :-)
7-Nov-1995 GvR Keyword arguments (should've been done at 1.3 :-( )
10-Jan-1995 GvR Renamed globals to new naming scheme
9-Jan-1995 GvR Initial version (incompatible with older API)
*/
#ifdef MS_WINDOWS
/* Special defines for Windows versions used to live here. Things
have changed, and the "Version" is now in a global string variable.
Reason for this is that this for easier branding of a "custom DLL"
without actually needing a recompile. */
#endif /* MS_WINDOWS */
#if SIZEOF_SIZE_T != SIZEOF_INT
/* On a 64-bit system, rename the Py_InitModule4 so that 2.4
modules cannot get loaded into a 2.5 interpreter */
#define Py_InitModule4 Py_InitModule4_64
#endif
#ifdef Py_TRACE_REFS
/* When we are tracing reference counts, rename Py_InitModule4 so
modules compiled with incompatible settings will generate a
link-time error. */
#if SIZEOF_SIZE_T != SIZEOF_INT
#undef Py_InitModule4
#define Py_InitModule4 Py_InitModule4TraceRefs_64
#else
#define Py_InitModule4 Py_InitModule4TraceRefs
#endif
#endif
PyAPI_FUNC(PyObject *) Py_InitModule4(const char *name, PyMethodDef *methods,
const char *doc, PyObject *self,
int apiver);
#define Py_InitModule(name, methods) \
Py_InitModule4(name, methods, (char *)NULL, (PyObject *)NULL, \
PYTHON_API_VERSION)
#define Py_InitModule3(name, methods, doc) \
Py_InitModule4(name, methods, doc, (PyObject *)NULL, \
PYTHON_API_VERSION)
PyAPI_DATA(char *) _Py_PackageContext;
#ifdef __cplusplus
}
#endif
#endif /* !Py_MODSUPPORT_H */

View File

@ -0,0 +1,24 @@
/* Module object interface */
#ifndef Py_MODULEOBJECT_H
#define Py_MODULEOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_DATA(PyTypeObject) PyModule_Type;
#define PyModule_Check(op) PyObject_TypeCheck(op, &PyModule_Type)
#define PyModule_CheckExact(op) (Py_TYPE(op) == &PyModule_Type)
PyAPI_FUNC(PyObject *) PyModule_New(const char *);
PyAPI_FUNC(PyObject *) PyModule_GetDict(PyObject *);
PyAPI_FUNC(char *) PyModule_GetName(PyObject *);
PyAPI_FUNC(char *) PyModule_GetFilename(PyObject *);
PyAPI_FUNC(void) _PyModule_Clear(PyObject *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_MODULEOBJECT_H */

View File

@ -0,0 +1,41 @@
/* Parse tree node interface */
#ifndef Py_NODE_H
#define Py_NODE_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct _node {
short n_type;
char *n_str;
int n_lineno;
int n_col_offset;
int n_nchildren;
struct _node *n_child;
} node;
PyAPI_FUNC(node *) PyNode_New(int type);
PyAPI_FUNC(int) PyNode_AddChild(node *n, int type,
char *str, int lineno, int col_offset);
PyAPI_FUNC(void) PyNode_Free(node *n);
PyAPI_FUNC(Py_ssize_t) _PyNode_SizeOf(node *n);
/* Node access functions */
#define NCH(n) ((n)->n_nchildren)
#define CHILD(n, i) (&(n)->n_child[i])
#define RCHILD(n, i) (CHILD(n, NCH(n) + i))
#define TYPE(n) ((n)->n_type)
#define STR(n) ((n)->n_str)
/* Assert that the type of a node is what we expect */
#define REQ(n, type) assert(TYPE(n) == (type))
PyAPI_FUNC(void) PyNode_ListTree(node *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_NODE_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,354 @@
/* The PyObject_ memory family: high-level object memory interfaces.
See pymem.h for the low-level PyMem_ family.
*/
#ifndef Py_OBJIMPL_H
#define Py_OBJIMPL_H
#include "pymem.h"
#ifdef __cplusplus
extern "C" {
#endif
/* BEWARE:
Each interface exports both functions and macros. Extension modules should
use the functions, to ensure binary compatibility across Python versions.
Because the Python implementation is free to change internal details, and
the macros may (or may not) expose details for speed, if you do use the
macros you must recompile your extensions with each Python release.
Never mix calls to PyObject_ memory functions with calls to the platform
malloc/realloc/ calloc/free, or with calls to PyMem_.
*/
/*
Functions and macros for modules that implement new object types.
- PyObject_New(type, typeobj) allocates memory for a new object of the given
type, and initializes part of it. 'type' must be the C structure type used
to represent the object, and 'typeobj' the address of the corresponding
type object. Reference count and type pointer are filled in; the rest of
the bytes of the object are *undefined*! The resulting expression type is
'type *'. The size of the object is determined by the tp_basicsize field
of the type object.
- PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
object with room for n items. In addition to the refcount and type pointer
fields, this also fills in the ob_size field.
- PyObject_Del(op) releases the memory allocated for an object. It does not
run a destructor -- it only frees the memory. PyObject_Free is identical.
- PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
allocate memory. Instead of a 'type' parameter, they take a pointer to a
new object (allocated by an arbitrary allocator), and initialize its object
header fields.
Note that objects created with PyObject_{New, NewVar} are allocated using the
specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG
is also #defined.
In case a specific form of memory management is needed (for example, if you
must use the platform malloc heap(s), or shared memory, or C++ local storage or
operator new), you must first allocate the object with your custom allocator,
then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
specific fields: reference count, type pointer, possibly others. You should
be aware that Python no control over these objects because they don't
cooperate with the Python memory manager. Such objects may not be eligible
for automatic garbage collection and you have to make sure that they are
released accordingly whenever their destructor gets called (cf. the specific
form of memory management you're using).
Unless you have specific memory management requirements, use
PyObject_{New, NewVar, Del}.
*/
/*
* Raw object memory interface
* ===========================
*/
/* Functions to call the same malloc/realloc/free as used by Python's
object allocator. If WITH_PYMALLOC is enabled, these may differ from
the platform malloc/realloc/free. The Python object allocator is
designed for fast, cache-conscious allocation of many "small" objects,
and with low hidden memory overhead.
PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory
at p.
Returned pointers must be checked for NULL explicitly; no action is
performed on failure other than to return NULL (no warning it printed, no
exception is set, etc).
For allocating objects, use PyObject_{New, NewVar} instead whenever
possible. The PyObject_{Malloc, Realloc, Free} family is exposed
so that you can exploit Python's small-block allocator for non-object
uses. If you must use these routines to allocate object memory, make sure
the object gets initialized via PyObject_{Init, InitVar} after obtaining
the raw memory.
*/
PyAPI_FUNC(void *) PyObject_Malloc(size_t);
PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t);
PyAPI_FUNC(void) PyObject_Free(void *);
/* Macros */
#ifdef WITH_PYMALLOC
#ifdef PYMALLOC_DEBUG /* WITH_PYMALLOC && PYMALLOC_DEBUG */
PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes);
PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes);
PyAPI_FUNC(void) _PyObject_DebugFree(void *p);
PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p);
PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p);
PyAPI_FUNC(void) _PyObject_DebugMallocStats(void);
PyAPI_FUNC(void *) _PyObject_DebugMallocApi(char api, size_t nbytes);
PyAPI_FUNC(void *) _PyObject_DebugReallocApi(char api, void *p, size_t nbytes);
PyAPI_FUNC(void) _PyObject_DebugFreeApi(char api, void *p);
PyAPI_FUNC(void) _PyObject_DebugCheckAddressApi(char api, const void *p);
PyAPI_FUNC(void *) _PyMem_DebugMalloc(size_t nbytes);
PyAPI_FUNC(void *) _PyMem_DebugRealloc(void *p, size_t nbytes);
PyAPI_FUNC(void) _PyMem_DebugFree(void *p);
#define PyObject_MALLOC _PyObject_DebugMalloc
#define PyObject_Malloc _PyObject_DebugMalloc
#define PyObject_REALLOC _PyObject_DebugRealloc
#define PyObject_Realloc _PyObject_DebugRealloc
#define PyObject_FREE _PyObject_DebugFree
#define PyObject_Free _PyObject_DebugFree
#else /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */
#define PyObject_MALLOC PyObject_Malloc
#define PyObject_REALLOC PyObject_Realloc
#define PyObject_FREE PyObject_Free
#endif
#else /* ! WITH_PYMALLOC */
#define PyObject_MALLOC PyMem_MALLOC
#define PyObject_REALLOC PyMem_REALLOC
#define PyObject_FREE PyMem_FREE
#endif /* WITH_PYMALLOC */
#define PyObject_Del PyObject_Free
#define PyObject_DEL PyObject_FREE
/* for source compatibility with 2.2 */
#define _PyObject_Del PyObject_Free
/*
* Generic object allocator interface
* ==================================
*/
/* Functions */
PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
PyTypeObject *, Py_ssize_t);
PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
#define PyObject_New(type, typeobj) \
( (type *) _PyObject_New(typeobj) )
#define PyObject_NewVar(type, typeobj, n) \
( (type *) _PyObject_NewVar((typeobj), (n)) )
/* Macros trading binary compatibility for speed. See also pymem.h.
Note that these macros expect non-NULL object pointers.*/
#define PyObject_INIT(op, typeobj) \
( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
#define PyObject_INIT_VAR(op, typeobj, size) \
( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
#define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
/* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
vrbl-size object with nitems items, exclusive of gc overhead (if any). The
value is rounded up to the closest multiple of sizeof(void *), in order to
ensure that pointer fields at the end of the object are correctly aligned
for the platform (this is of special importance for subclasses of, e.g.,
str or long, so that pointers can be stored after the embedded data).
Note that there's no memory wastage in doing this, as malloc has to
return (at worst) pointer-aligned memory anyway.
*/
#if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
# error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
#endif
#define _PyObject_VAR_SIZE(typeobj, nitems) \
(size_t) \
( ( (typeobj)->tp_basicsize + \
(nitems)*(typeobj)->tp_itemsize + \
(SIZEOF_VOID_P - 1) \
) & ~(SIZEOF_VOID_P - 1) \
)
#define PyObject_NEW(type, typeobj) \
( (type *) PyObject_Init( \
(PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
#define PyObject_NEW_VAR(type, typeobj, n) \
( (type *) PyObject_InitVar( \
(PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
(typeobj), (n)) )
/* This example code implements an object constructor with a custom
allocator, where PyObject_New is inlined, and shows the important
distinction between two steps (at least):
1) the actual allocation of the object storage;
2) the initialization of the Python specific fields
in this storage with PyObject_{Init, InitVar}.
PyObject *
YourObject_New(...)
{
PyObject *op;
op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
if (op == NULL)
return PyErr_NoMemory();
PyObject_Init(op, &YourTypeStruct);
op->ob_field = value;
...
return op;
}
Note that in C++, the use of the new operator usually implies that
the 1st step is performed automatically for you, so in a C++ class
constructor you would start directly with PyObject_Init/InitVar
*/
/*
* Garbage Collection Support
* ==========================
*/
/* C equivalent of gc.collect(). */
PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
/* Test if a type has a GC head */
#define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
/* Test if an object has a GC head */
#define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
(Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
#define PyObject_GC_Resize(type, op, n) \
( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
/* for source compatibility with 2.2 */
#define _PyObject_GC_Del PyObject_GC_Del
/* GC information is stored BEFORE the object structure. */
typedef union _gc_head {
struct {
union _gc_head *gc_next;
union _gc_head *gc_prev;
Py_ssize_t gc_refs;
} gc;
long double dummy; /* force worst-case alignment */
} PyGC_Head;
extern PyGC_Head *_PyGC_generation0;
#define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)
#define _PyGC_REFS_UNTRACKED (-2)
#define _PyGC_REFS_REACHABLE (-3)
#define _PyGC_REFS_TENTATIVELY_UNREACHABLE (-4)
/* Tell the GC to track this object. NB: While the object is tracked the
* collector it must be safe to call the ob_traverse method. */
#define _PyObject_GC_TRACK(o) do { \
PyGC_Head *g = _Py_AS_GC(o); \
if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \
Py_FatalError("GC object already tracked"); \
g->gc.gc_refs = _PyGC_REFS_REACHABLE; \
g->gc.gc_next = _PyGC_generation0; \
g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
g->gc.gc_prev->gc.gc_next = g; \
_PyGC_generation0->gc.gc_prev = g; \
} while (0);
/* Tell the GC to stop tracking this object.
* gc_next doesn't need to be set to NULL, but doing so is a good
* way to provoke memory errors if calling code is confused.
*/
#define _PyObject_GC_UNTRACK(o) do { \
PyGC_Head *g = _Py_AS_GC(o); \
assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \
g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \
g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
g->gc.gc_next = NULL; \
} while (0);
/* True if the object is currently tracked by the GC. */
#define _PyObject_GC_IS_TRACKED(o) \
((_Py_AS_GC(o))->gc.gc_refs != _PyGC_REFS_UNTRACKED)
/* True if the object may be tracked by the GC in the future, or already is.
This can be useful to implement some optimizations. */
#define _PyObject_GC_MAY_BE_TRACKED(obj) \
(PyObject_IS_GC(obj) && \
(!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj)))
PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t);
PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
PyAPI_FUNC(void) PyObject_GC_Track(void *);
PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
PyAPI_FUNC(void) PyObject_GC_Del(void *);
#define PyObject_GC_New(type, typeobj) \
( (type *) _PyObject_GC_New(typeobj) )
#define PyObject_GC_NewVar(type, typeobj, n) \
( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
/* Utility macro to help write tp_traverse functions.
* To use this macro, the tp_traverse function must name its arguments
* "visit" and "arg". This is intended to keep tp_traverse functions
* looking as much alike as possible.
*/
#define Py_VISIT(op) \
do { \
if (op) { \
int vret = visit((PyObject *)(op), arg); \
if (vret) \
return vret; \
} \
} while (0)
/* This is here for the sake of backwards compatibility. Extensions that
* use the old GC API will still compile but the objects will not be
* tracked by the GC. */
#define PyGC_HEAD_SIZE 0
#define PyObject_GC_Init(op)
#define PyObject_GC_Fini(op)
#define PyObject_AS_GC(op) (op)
#define PyObject_FROM_GC(op) (op)
/* Test if a type supports weak references */
#define PyType_SUPPORTS_WEAKREFS(t) \
(PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \
&& ((t)->tp_weaklistoffset > 0))
#define PyObject_GET_WEAKREFS_LISTPTR(o) \
((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
#ifdef __cplusplus
}
#endif
#endif /* !Py_OBJIMPL_H */

View File

@ -0,0 +1,171 @@
#ifndef Py_OPCODE_H
#define Py_OPCODE_H
#ifdef __cplusplus
extern "C" {
#endif
/* Instruction opcodes for compiled code */
#define STOP_CODE 0
#define POP_TOP 1
#define ROT_TWO 2
#define ROT_THREE 3
#define DUP_TOP 4
#define ROT_FOUR 5
#define NOP 9
#define UNARY_POSITIVE 10
#define UNARY_NEGATIVE 11
#define UNARY_NOT 12
#define UNARY_CONVERT 13
#define UNARY_INVERT 15
#define BINARY_POWER 19
#define BINARY_MULTIPLY 20
#define BINARY_DIVIDE 21
#define BINARY_MODULO 22
#define BINARY_ADD 23
#define BINARY_SUBTRACT 24
#define BINARY_SUBSCR 25
#define BINARY_FLOOR_DIVIDE 26
#define BINARY_TRUE_DIVIDE 27
#define INPLACE_FLOOR_DIVIDE 28
#define INPLACE_TRUE_DIVIDE 29
#define SLICE 30
/* Also uses 31-33 */
#define SLICE_1 31
#define SLICE_2 32
#define SLICE_3 33
#define STORE_SLICE 40
/* Also uses 41-43 */
#define STORE_SLICE_1 41
#define STORE_SLICE_2 42
#define STORE_SLICE_3 43
#define DELETE_SLICE 50
/* Also uses 51-53 */
#define DELETE_SLICE_1 51
#define DELETE_SLICE_2 52
#define DELETE_SLICE_3 53
#define STORE_MAP 54
#define INPLACE_ADD 55
#define INPLACE_SUBTRACT 56
#define INPLACE_MULTIPLY 57
#define INPLACE_DIVIDE 58
#define INPLACE_MODULO 59
#define STORE_SUBSCR 60
#define DELETE_SUBSCR 61
#define BINARY_LSHIFT 62
#define BINARY_RSHIFT 63
#define BINARY_AND 64
#define BINARY_XOR 65
#define BINARY_OR 66
#define INPLACE_POWER 67
#define GET_ITER 68
#define PRINT_EXPR 70
#define PRINT_ITEM 71
#define PRINT_NEWLINE 72
#define PRINT_ITEM_TO 73
#define PRINT_NEWLINE_TO 74
#define INPLACE_LSHIFT 75
#define INPLACE_RSHIFT 76
#define INPLACE_AND 77
#define INPLACE_XOR 78
#define INPLACE_OR 79
#define BREAK_LOOP 80
#define WITH_CLEANUP 81
#define LOAD_LOCALS 82
#define RETURN_VALUE 83
#define IMPORT_STAR 84
#define EXEC_STMT 85
#define YIELD_VALUE 86
#define POP_BLOCK 87
#define END_FINALLY 88
#define BUILD_CLASS 89
#define HAVE_ARGUMENT 90 /* Opcodes from here have an argument: */
#define STORE_NAME 90 /* Index in name list */
#define DELETE_NAME 91 /* "" */
#define UNPACK_SEQUENCE 92 /* Number of sequence items */
#define FOR_ITER 93
#define LIST_APPEND 94
#define STORE_ATTR 95 /* Index in name list */
#define DELETE_ATTR 96 /* "" */
#define STORE_GLOBAL 97 /* "" */
#define DELETE_GLOBAL 98 /* "" */
#define DUP_TOPX 99 /* number of items to duplicate */
#define LOAD_CONST 100 /* Index in const list */
#define LOAD_NAME 101 /* Index in name list */
#define BUILD_TUPLE 102 /* Number of tuple items */
#define BUILD_LIST 103 /* Number of list items */
#define BUILD_SET 104 /* Number of set items */
#define BUILD_MAP 105 /* Always zero for now */
#define LOAD_ATTR 106 /* Index in name list */
#define COMPARE_OP 107 /* Comparison operator */
#define IMPORT_NAME 108 /* Index in name list */
#define IMPORT_FROM 109 /* Index in name list */
#define JUMP_FORWARD 110 /* Number of bytes to skip */
#define JUMP_IF_FALSE_OR_POP 111 /* Target byte offset from beginning
of code */
#define JUMP_IF_TRUE_OR_POP 112 /* "" */
#define JUMP_ABSOLUTE 113 /* "" */
#define POP_JUMP_IF_FALSE 114 /* "" */
#define POP_JUMP_IF_TRUE 115 /* "" */
#define LOAD_GLOBAL 116 /* Index in name list */
#define CONTINUE_LOOP 119 /* Start of loop (absolute) */
#define SETUP_LOOP 120 /* Target address (relative) */
#define SETUP_EXCEPT 121 /* "" */
#define SETUP_FINALLY 122 /* "" */
#define LOAD_FAST 124 /* Local variable number */
#define STORE_FAST 125 /* Local variable number */
#define DELETE_FAST 126 /* Local variable number */
#define RAISE_VARARGS 130 /* Number of raise arguments (1, 2 or 3) */
/* CALL_FUNCTION_XXX opcodes defined below depend on this definition */
#define CALL_FUNCTION 131 /* #args + (#kwargs<<8) */
#define MAKE_FUNCTION 132 /* #defaults */
#define BUILD_SLICE 133 /* Number of items */
#define MAKE_CLOSURE 134 /* #free vars */
#define LOAD_CLOSURE 135 /* Load free variable from closure */
#define LOAD_DEREF 136 /* Load and dereference from closure cell */
#define STORE_DEREF 137 /* Store into cell */
/* The next 3 opcodes must be contiguous and satisfy
(CALL_FUNCTION_VAR - CALL_FUNCTION) & 3 == 1 */
#define CALL_FUNCTION_VAR 140 /* #args + (#kwargs<<8) */
#define CALL_FUNCTION_KW 141 /* #args + (#kwargs<<8) */
#define CALL_FUNCTION_VAR_KW 142 /* #args + (#kwargs<<8) */
#define SETUP_WITH 143
/* Support for opargs more than 16 bits long */
#define EXTENDED_ARG 145
#define SET_ADD 146
#define MAP_ADD 147
enum cmp_op {PyCmp_LT=Py_LT, PyCmp_LE=Py_LE, PyCmp_EQ=Py_EQ, PyCmp_NE=Py_NE, PyCmp_GT=Py_GT, PyCmp_GE=Py_GE,
PyCmp_IN, PyCmp_NOT_IN, PyCmp_IS, PyCmp_IS_NOT, PyCmp_EXC_MATCH, PyCmp_BAD};
#define HAS_ARG(op) ((op) >= HAVE_ARGUMENT)
#ifdef __cplusplus
}
#endif
#endif /* !Py_OPCODE_H */

View File

@ -0,0 +1,63 @@
#ifndef Py_OSDEFS_H
#define Py_OSDEFS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Operating system dependencies */
/* Mod by chrish: QNX has WATCOM, but isn't DOS */
#if !defined(__QNX__)
#if defined(MS_WINDOWS) || defined(__BORLANDC__) || defined(__WATCOMC__) || defined(__DJGPP__) || defined(PYOS_OS2)
#if defined(PYOS_OS2) && defined(PYCC_GCC)
#define MAXPATHLEN 260
#define SEP '/'
#define ALTSEP '\\'
#else
#define SEP '\\'
#define ALTSEP '/'
#define MAXPATHLEN 256
#endif
#define DELIM ';'
#endif
#endif
#ifdef RISCOS
#define SEP '.'
#define MAXPATHLEN 256
#define DELIM ','
#endif
/* Filename separator */
#ifndef SEP
#define SEP '/'
#endif
/* Max pathname length */
#ifdef __hpux
#include <sys/param.h>
#include <limits.h>
#ifndef PATH_MAX
#define PATH_MAX MAXPATHLEN
#endif
#endif
#ifndef MAXPATHLEN
#if defined(PATH_MAX) && PATH_MAX > 1024
#define MAXPATHLEN PATH_MAX
#else
#define MAXPATHLEN 1024
#endif
#endif
/* Search path entry delimiter */
#ifndef DELIM
#define DELIM ':'
#endif
#ifdef __cplusplus
}
#endif
#endif /* !Py_OSDEFS_H */

View File

@ -0,0 +1,64 @@
/* Parser-tokenizer link interface */
#ifndef Py_PARSETOK_H
#define Py_PARSETOK_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
int error;
const char *filename;
int lineno;
int offset;
char *text;
int token;
int expected;
} perrdetail;
#if 0
#define PyPARSE_YIELD_IS_KEYWORD 0x0001
#endif
#define PyPARSE_DONT_IMPLY_DEDENT 0x0002
#if 0
#define PyPARSE_WITH_IS_KEYWORD 0x0003
#endif
#define PyPARSE_PRINT_IS_FUNCTION 0x0004
#define PyPARSE_UNICODE_LITERALS 0x0008
PyAPI_FUNC(node *) PyParser_ParseString(const char *, grammar *, int,
perrdetail *);
PyAPI_FUNC(node *) PyParser_ParseFile (FILE *, const char *, grammar *, int,
char *, char *, perrdetail *);
PyAPI_FUNC(node *) PyParser_ParseStringFlags(const char *, grammar *, int,
perrdetail *, int);
PyAPI_FUNC(node *) PyParser_ParseFileFlags(FILE *, const char *, grammar *,
int, char *, char *,
perrdetail *, int);
PyAPI_FUNC(node *) PyParser_ParseFileFlagsEx(FILE *, const char *, grammar *,
int, char *, char *,
perrdetail *, int *);
PyAPI_FUNC(node *) PyParser_ParseStringFlagsFilename(const char *,
const char *,
grammar *, int,
perrdetail *, int);
PyAPI_FUNC(node *) PyParser_ParseStringFlagsFilenameEx(const char *,
const char *,
grammar *, int,
perrdetail *, int *);
/* Note that he following function is defined in pythonrun.c not parsetok.c. */
PyAPI_FUNC(void) PyParser_SetError(perrdetail *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_PARSETOK_H */

View File

@ -0,0 +1,43 @@
/* Newfangled version identification scheme.
This scheme was added in Python 1.5.2b2; before that time, only PATCHLEVEL
was available. To test for presence of the scheme, test for
defined(PY_MAJOR_VERSION).
When the major or minor version changes, the VERSION variable in
configure.ac must also be changed.
There is also (independent) API version information in modsupport.h.
*/
/* Values for PY_RELEASE_LEVEL */
#define PY_RELEASE_LEVEL_ALPHA 0xA
#define PY_RELEASE_LEVEL_BETA 0xB
#define PY_RELEASE_LEVEL_GAMMA 0xC /* For release candidates */
#define PY_RELEASE_LEVEL_FINAL 0xF /* Serial should be 0 here */
/* Higher for patch releases */
/* Version parsed out into numeric values */
/*--start constants--*/
#define PY_MAJOR_VERSION 2
#define PY_MINOR_VERSION 7
#define PY_MICRO_VERSION 10
#define PY_RELEASE_LEVEL PY_RELEASE_LEVEL_FINAL
#define PY_RELEASE_SERIAL 0
/* Version as a string */
#define PY_VERSION "2.7.10+"
/*--end constants--*/
/* Subversion Revision number of this file (not of the repository). Empty
since Mercurial migration. */
#define PY_PATCHLEVEL_REVISION ""
/* Version as a single 4-byte hex number, e.g. 0x010502B2 == 1.5.2b2.
Use this for numeric comparisons, e.g. #if PY_VERSION_HEX >= ... */
#define PY_VERSION_HEX ((PY_MAJOR_VERSION << 24) | \
(PY_MINOR_VERSION << 16) | \
(PY_MICRO_VERSION << 8) | \
(PY_RELEASE_LEVEL << 4) | \
(PY_RELEASE_SERIAL << 0))

View File

@ -0,0 +1,18 @@
#ifndef Py_PGEN_H
#define Py_PGEN_H
#ifdef __cplusplus
extern "C" {
#endif
/* Parser generator interface */
extern grammar *meta_grammar(void);
struct _node;
extern grammar *pgen(struct _node *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_PGEN_H */

View File

@ -0,0 +1,42 @@
#ifndef Py_PGENHEADERS_H
#define Py_PGENHEADERS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Include files and extern declarations used by most of the parser. */
#include "Python.h"
PyAPI_FUNC(void) PySys_WriteStdout(const char *format, ...)
Py_GCC_ATTRIBUTE((format(printf, 1, 2)));
PyAPI_FUNC(void) PySys_WriteStderr(const char *format, ...)
Py_GCC_ATTRIBUTE((format(printf, 1, 2)));
#define addarc _Py_addarc
#define addbit _Py_addbit
#define adddfa _Py_adddfa
#define addfirstsets _Py_addfirstsets
#define addlabel _Py_addlabel
#define addstate _Py_addstate
#define delbitset _Py_delbitset
#define dumptree _Py_dumptree
#define findlabel _Py_findlabel
#define mergebitset _Py_mergebitset
#define meta_grammar _Py_meta_grammar
#define newbitset _Py_newbitset
#define newgrammar _Py_newgrammar
#define pgen _Py_pgen
#define printgrammar _Py_printgrammar
#define printnonterminals _Py_printnonterminals
#define printtree _Py_printtree
#define samebitset _Py_samebitset
#define showtree _Py_showtree
#define tok_dump _Py_tok_dump
#define translatelabels _Py_translatelabels
#ifdef __cplusplus
}
#endif
#endif /* !Py_PGENHEADERS_H */

View File

@ -0,0 +1,176 @@
#ifndef Py_CURSES_H
#define Py_CURSES_H
#ifdef __APPLE__
/*
** On Mac OS X 10.2 [n]curses.h and stdlib.h use different guards
** against multiple definition of wchar_t.
*/
#ifdef _BSD_WCHAR_T_DEFINED_
#define _WCHAR_T
#endif
/* the following define is necessary for OS X 10.6; without it, the
Apple-supplied ncurses.h sets NCURSES_OPAQUE to 1, and then Python
can't get at the WINDOW flags field. */
#define NCURSES_OPAQUE 0
#endif /* __APPLE__ */
#ifdef __FreeBSD__
/*
** On FreeBSD, [n]curses.h and stdlib.h/wchar.h use different guards
** against multiple definition of wchar_t and wint_t.
*/
#ifdef _XOPEN_SOURCE_EXTENDED
#ifndef __FreeBSD_version
#include <osreldate.h>
#endif
#if __FreeBSD_version >= 500000
#ifndef __wchar_t
#define __wchar_t
#endif
#ifndef __wint_t
#define __wint_t
#endif
#else
#ifndef _WCHAR_T
#define _WCHAR_T
#endif
#ifndef _WINT_T
#define _WINT_T
#endif
#endif
#endif
#endif
#ifdef HAVE_NCURSES_H
#include <ncurses.h>
#else
#include <curses.h>
#ifdef HAVE_TERM_H
/* for tigetstr, which is not declared in SysV curses */
#include <term.h>
#endif
#endif
#ifdef HAVE_NCURSES_H
/* configure was checking <curses.h>, but we will
use <ncurses.h>, which has all these features. */
#ifndef WINDOW_HAS_FLAGS
#define WINDOW_HAS_FLAGS 1
#endif
#ifndef MVWDELCH_IS_EXPRESSION
#define MVWDELCH_IS_EXPRESSION 1
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define PyCurses_API_pointers 4
/* Type declarations */
typedef struct {
PyObject_HEAD
WINDOW *win;
} PyCursesWindowObject;
#define PyCursesWindow_Check(v) (Py_TYPE(v) == &PyCursesWindow_Type)
#define PyCurses_CAPSULE_NAME "_curses._C_API"
#ifdef CURSES_MODULE
/* This section is used when compiling _cursesmodule.c */
#else
/* This section is used in modules that use the _cursesmodule API */
static void **PyCurses_API;
#define PyCursesWindow_Type (*(PyTypeObject *) PyCurses_API[0])
#define PyCursesSetupTermCalled {if (! ((int (*)(void))PyCurses_API[1]) () ) return NULL;}
#define PyCursesInitialised {if (! ((int (*)(void))PyCurses_API[2]) () ) return NULL;}
#define PyCursesInitialisedColor {if (! ((int (*)(void))PyCurses_API[3]) () ) return NULL;}
#define import_curses() \
PyCurses_API = (void **)PyCapsule_Import(PyCurses_CAPSULE_NAME, 1);
#endif
/* general error messages */
static char *catchall_ERR = "curses function returned ERR";
static char *catchall_NULL = "curses function returned NULL";
/* Function Prototype Macros - They are ugly but very, very useful. ;-)
X - function name
TYPE - parameter Type
ERGSTR - format string for construction of the return value
PARSESTR - format string for argument parsing
*/
#define NoArgNoReturnFunction(X) \
static PyObject *PyCurses_ ## X (PyObject *self) \
{ \
PyCursesInitialised \
return PyCursesCheckERR(X(), # X); }
#define NoArgOrFlagNoReturnFunction(X) \
static PyObject *PyCurses_ ## X (PyObject *self, PyObject *args) \
{ \
int flag = 0; \
PyCursesInitialised \
switch(PyTuple_Size(args)) { \
case 0: \
return PyCursesCheckERR(X(), # X); \
case 1: \
if (!PyArg_ParseTuple(args, "i;True(1) or False(0)", &flag)) return NULL; \
if (flag) return PyCursesCheckERR(X(), # X); \
else return PyCursesCheckERR(no ## X (), # X); \
default: \
PyErr_SetString(PyExc_TypeError, # X " requires 0 or 1 arguments"); \
return NULL; } }
#define NoArgReturnIntFunction(X) \
static PyObject *PyCurses_ ## X (PyObject *self) \
{ \
PyCursesInitialised \
return PyInt_FromLong((long) X()); }
#define NoArgReturnStringFunction(X) \
static PyObject *PyCurses_ ## X (PyObject *self) \
{ \
PyCursesInitialised \
return PyString_FromString(X()); }
#define NoArgTrueFalseFunction(X) \
static PyObject *PyCurses_ ## X (PyObject *self) \
{ \
PyCursesInitialised \
if (X () == FALSE) { \
Py_INCREF(Py_False); \
return Py_False; \
} \
Py_INCREF(Py_True); \
return Py_True; }
#define NoArgNoReturnVoidFunction(X) \
static PyObject *PyCurses_ ## X (PyObject *self) \
{ \
PyCursesInitialised \
X(); \
Py_INCREF(Py_None); \
return Py_None; }
#ifdef __cplusplus
}
#endif
#endif /* !defined(Py_CURSES_H) */

View File

@ -0,0 +1,62 @@
/* An arena-like memory interface for the compiler.
*/
#ifndef Py_PYARENA_H
#define Py_PYARENA_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct _arena PyArena;
/* PyArena_New() and PyArena_Free() create a new arena and free it,
respectively. Once an arena has been created, it can be used
to allocate memory via PyArena_Malloc(). Pointers to PyObject can
also be registered with the arena via PyArena_AddPyObject(), and the
arena will ensure that the PyObjects stay alive at least until
PyArena_Free() is called. When an arena is freed, all the memory it
allocated is freed, the arena releases internal references to registered
PyObject*, and none of its pointers are valid.
XXX (tim) What does "none of its pointers are valid" mean? Does it
XXX mean that pointers previously obtained via PyArena_Malloc() are
XXX no longer valid? (That's clearly true, but not sure that's what
XXX the text is trying to say.)
PyArena_New() returns an arena pointer. On error, it
returns a negative number and sets an exception.
XXX (tim): Not true. On error, PyArena_New() actually returns NULL,
XXX and looks like it may or may not set an exception (e.g., if the
XXX internal PyList_New(0) returns NULL, PyArena_New() passes that on
XXX and an exception is set; OTOH, if the internal
XXX block_new(DEFAULT_BLOCK_SIZE) returns NULL, that's passed on but
XXX an exception is not set in that case).
*/
PyAPI_FUNC(PyArena *) PyArena_New(void);
PyAPI_FUNC(void) PyArena_Free(PyArena *);
/* Mostly like malloc(), return the address of a block of memory spanning
* `size` bytes, or return NULL (without setting an exception) if enough
* new memory can't be obtained. Unlike malloc(0), PyArena_Malloc() with
* size=0 does not guarantee to return a unique pointer (the pointer
* returned may equal one or more other pointers obtained from
* PyArena_Malloc()).
* Note that pointers obtained via PyArena_Malloc() must never be passed to
* the system free() or realloc(), or to any of Python's similar memory-
* management functions. PyArena_Malloc()-obtained pointers remain valid
* until PyArena_Free(ar) is called, at which point all pointers obtained
* from the arena `ar` become invalid simultaneously.
*/
PyAPI_FUNC(void *) PyArena_Malloc(PyArena *, size_t size);
/* This routine isn't a proper arena allocation routine. It takes
* a PyObject* and records it so that it can be DECREFed when the
* arena is freed.
*/
PyAPI_FUNC(int) PyArena_AddPyObject(PyArena *, PyObject *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_PYARENA_H */

View File

@ -0,0 +1,56 @@
/* Capsule objects let you wrap a C "void *" pointer in a Python
object. They're a way of passing data through the Python interpreter
without creating your own custom type.
Capsules are used for communication between extension modules.
They provide a way for an extension module to export a C interface
to other extension modules, so that extension modules can use the
Python import mechanism to link to one another.
For more information, please see "c-api/capsule.html" in the
documentation.
*/
#ifndef Py_CAPSULE_H
#define Py_CAPSULE_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_DATA(PyTypeObject) PyCapsule_Type;
typedef void (*PyCapsule_Destructor)(PyObject *);
#define PyCapsule_CheckExact(op) (Py_TYPE(op) == &PyCapsule_Type)
PyAPI_FUNC(PyObject *) PyCapsule_New(
void *pointer,
const char *name,
PyCapsule_Destructor destructor);
PyAPI_FUNC(void *) PyCapsule_GetPointer(PyObject *capsule, const char *name);
PyAPI_FUNC(PyCapsule_Destructor) PyCapsule_GetDestructor(PyObject *capsule);
PyAPI_FUNC(const char *) PyCapsule_GetName(PyObject *capsule);
PyAPI_FUNC(void *) PyCapsule_GetContext(PyObject *capsule);
PyAPI_FUNC(int) PyCapsule_IsValid(PyObject *capsule, const char *name);
PyAPI_FUNC(int) PyCapsule_SetPointer(PyObject *capsule, void *pointer);
PyAPI_FUNC(int) PyCapsule_SetDestructor(PyObject *capsule, PyCapsule_Destructor destructor);
PyAPI_FUNC(int) PyCapsule_SetName(PyObject *capsule, const char *name);
PyAPI_FUNC(int) PyCapsule_SetContext(PyObject *capsule, void *context);
PyAPI_FUNC(void *) PyCapsule_Import(const char *name, int no_block);
#ifdef __cplusplus
}
#endif
#endif /* !Py_CAPSULE_H */

View File

@ -0,0 +1,31 @@
#ifndef PYCTYPE_H
#define PYCTYPE_H
#define PY_CTF_LOWER 0x01
#define PY_CTF_UPPER 0x02
#define PY_CTF_ALPHA (PY_CTF_LOWER|PY_CTF_UPPER)
#define PY_CTF_DIGIT 0x04
#define PY_CTF_ALNUM (PY_CTF_ALPHA|PY_CTF_DIGIT)
#define PY_CTF_SPACE 0x08
#define PY_CTF_XDIGIT 0x10
PyAPI_DATA(const unsigned int) _Py_ctype_table[256];
/* Unlike their C counterparts, the following macros are not meant to
* handle an int with any of the values [EOF, 0-UCHAR_MAX]. The argument
* must be a signed/unsigned char. */
#define Py_ISLOWER(c) (_Py_ctype_table[Py_CHARMASK(c)] & PY_CTF_LOWER)
#define Py_ISUPPER(c) (_Py_ctype_table[Py_CHARMASK(c)] & PY_CTF_UPPER)
#define Py_ISALPHA(c) (_Py_ctype_table[Py_CHARMASK(c)] & PY_CTF_ALPHA)
#define Py_ISDIGIT(c) (_Py_ctype_table[Py_CHARMASK(c)] & PY_CTF_DIGIT)
#define Py_ISXDIGIT(c) (_Py_ctype_table[Py_CHARMASK(c)] & PY_CTF_XDIGIT)
#define Py_ISALNUM(c) (_Py_ctype_table[Py_CHARMASK(c)] & PY_CTF_ALNUM)
#define Py_ISSPACE(c) (_Py_ctype_table[Py_CHARMASK(c)] & PY_CTF_SPACE)
PyAPI_DATA(const unsigned char) _Py_ctype_tolower[256];
PyAPI_DATA(const unsigned char) _Py_ctype_toupper[256];
#define Py_TOLOWER(c) (_Py_ctype_tolower[Py_CHARMASK(c)])
#define Py_TOUPPER(c) (_Py_ctype_toupper[Py_CHARMASK(c)])
#endif /* !PYCTYPE_H */

View File

@ -0,0 +1,41 @@
#ifndef Py_PYDEBUG_H
#define Py_PYDEBUG_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_DATA(int) Py_DebugFlag;
PyAPI_DATA(int) Py_VerboseFlag;
PyAPI_DATA(int) Py_InteractiveFlag;
PyAPI_DATA(int) Py_InspectFlag;
PyAPI_DATA(int) Py_OptimizeFlag;
PyAPI_DATA(int) Py_NoSiteFlag;
PyAPI_DATA(int) Py_BytesWarningFlag;
PyAPI_DATA(int) Py_UseClassExceptionsFlag;
PyAPI_DATA(int) Py_FrozenFlag;
PyAPI_DATA(int) Py_TabcheckFlag;
PyAPI_DATA(int) Py_UnicodeFlag;
PyAPI_DATA(int) Py_IgnoreEnvironmentFlag;
PyAPI_DATA(int) Py_DivisionWarningFlag;
PyAPI_DATA(int) Py_DontWriteBytecodeFlag;
PyAPI_DATA(int) Py_NoUserSiteDirectory;
/* _XXX Py_QnewFlag should go away in 3.0. It's true iff -Qnew is passed,
on the command line, and is used in 2.2 by ceval.c to make all "/" divisions
true divisions (which they will be in 3.0). */
PyAPI_DATA(int) _Py_QnewFlag;
/* Warn about 3.x issues */
PyAPI_DATA(int) Py_Py3kWarningFlag;
PyAPI_DATA(int) Py_HashRandomizationFlag;
/* this is a wrapper around getenv() that pays attention to
Py_IgnoreEnvironmentFlag. It should be used for getting variables like
PYTHONPATH and PYTHONHOME from the environment */
#define Py_GETENV(s) (Py_IgnoreEnvironmentFlag ? NULL : getenv(s))
PyAPI_FUNC(void) Py_FatalError(const char *message);
#ifdef __cplusplus
}
#endif
#endif /* !Py_PYDEBUG_H */

View File

@ -0,0 +1,329 @@
#ifndef Py_ERRORS_H
#define Py_ERRORS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Error objects */
typedef struct {
PyObject_HEAD
PyObject *dict;
PyObject *args;
PyObject *message;
} PyBaseExceptionObject;
typedef struct {
PyObject_HEAD
PyObject *dict;
PyObject *args;
PyObject *message;
PyObject *msg;
PyObject *filename;
PyObject *lineno;
PyObject *offset;
PyObject *text;
PyObject *print_file_and_line;
} PySyntaxErrorObject;
#ifdef Py_USING_UNICODE
typedef struct {
PyObject_HEAD
PyObject *dict;
PyObject *args;
PyObject *message;
PyObject *encoding;
PyObject *object;
Py_ssize_t start;
Py_ssize_t end;
PyObject *reason;
} PyUnicodeErrorObject;
#endif
typedef struct {
PyObject_HEAD
PyObject *dict;
PyObject *args;
PyObject *message;
PyObject *code;
} PySystemExitObject;
typedef struct {
PyObject_HEAD
PyObject *dict;
PyObject *args;
PyObject *message;
PyObject *myerrno;
PyObject *strerror;
PyObject *filename;
} PyEnvironmentErrorObject;
#ifdef MS_WINDOWS
typedef struct {
PyObject_HEAD
PyObject *dict;
PyObject *args;
PyObject *message;
PyObject *myerrno;
PyObject *strerror;
PyObject *filename;
PyObject *winerror;
} PyWindowsErrorObject;
#endif
/* Error handling definitions */
PyAPI_FUNC(void) PyErr_SetNone(PyObject *);
PyAPI_FUNC(void) PyErr_SetObject(PyObject *, PyObject *);
PyAPI_FUNC(void) PyErr_SetString(PyObject *, const char *);
PyAPI_FUNC(PyObject *) PyErr_Occurred(void);
PyAPI_FUNC(void) PyErr_Clear(void);
PyAPI_FUNC(void) PyErr_Fetch(PyObject **, PyObject **, PyObject **);
PyAPI_FUNC(void) PyErr_Restore(PyObject *, PyObject *, PyObject *);
#ifdef Py_DEBUG
#define _PyErr_OCCURRED() PyErr_Occurred()
#else
#define _PyErr_OCCURRED() (_PyThreadState_Current->curexc_type)
#endif
/* Error testing and normalization */
PyAPI_FUNC(int) PyErr_GivenExceptionMatches(PyObject *, PyObject *);
PyAPI_FUNC(int) PyErr_ExceptionMatches(PyObject *);
PyAPI_FUNC(void) PyErr_NormalizeException(PyObject**, PyObject**, PyObject**);
PyAPI_FUNC(void) _PyErr_ReplaceException(PyObject *, PyObject *, PyObject *);
/* */
#define PyExceptionClass_Check(x) \
(PyClass_Check((x)) || (PyType_Check((x)) && \
PyType_FastSubclass((PyTypeObject*)(x), Py_TPFLAGS_BASE_EXC_SUBCLASS)))
#define PyExceptionInstance_Check(x) \
(PyInstance_Check((x)) || \
PyType_FastSubclass((x)->ob_type, Py_TPFLAGS_BASE_EXC_SUBCLASS))
#define PyExceptionClass_Name(x) \
(PyClass_Check((x)) \
? PyString_AS_STRING(((PyClassObject*)(x))->cl_name) \
: (char *)(((PyTypeObject*)(x))->tp_name))
#define PyExceptionInstance_Class(x) \
((PyInstance_Check((x)) \
? (PyObject*)((PyInstanceObject*)(x))->in_class \
: (PyObject*)((x)->ob_type)))
/* Predefined exceptions */
PyAPI_DATA(PyObject *) PyExc_BaseException;
PyAPI_DATA(PyObject *) PyExc_Exception;
PyAPI_DATA(PyObject *) PyExc_StopIteration;
PyAPI_DATA(PyObject *) PyExc_GeneratorExit;
PyAPI_DATA(PyObject *) PyExc_StandardError;
PyAPI_DATA(PyObject *) PyExc_ArithmeticError;
PyAPI_DATA(PyObject *) PyExc_LookupError;
PyAPI_DATA(PyObject *) PyExc_AssertionError;
PyAPI_DATA(PyObject *) PyExc_AttributeError;
PyAPI_DATA(PyObject *) PyExc_EOFError;
PyAPI_DATA(PyObject *) PyExc_FloatingPointError;
PyAPI_DATA(PyObject *) PyExc_EnvironmentError;
PyAPI_DATA(PyObject *) PyExc_IOError;
PyAPI_DATA(PyObject *) PyExc_OSError;
PyAPI_DATA(PyObject *) PyExc_ImportError;
PyAPI_DATA(PyObject *) PyExc_IndexError;
PyAPI_DATA(PyObject *) PyExc_KeyError;
PyAPI_DATA(PyObject *) PyExc_KeyboardInterrupt;
PyAPI_DATA(PyObject *) PyExc_MemoryError;
PyAPI_DATA(PyObject *) PyExc_NameError;
PyAPI_DATA(PyObject *) PyExc_OverflowError;
PyAPI_DATA(PyObject *) PyExc_RuntimeError;
PyAPI_DATA(PyObject *) PyExc_NotImplementedError;
PyAPI_DATA(PyObject *) PyExc_SyntaxError;
PyAPI_DATA(PyObject *) PyExc_IndentationError;
PyAPI_DATA(PyObject *) PyExc_TabError;
PyAPI_DATA(PyObject *) PyExc_ReferenceError;
PyAPI_DATA(PyObject *) PyExc_SystemError;
PyAPI_DATA(PyObject *) PyExc_SystemExit;
PyAPI_DATA(PyObject *) PyExc_TypeError;
PyAPI_DATA(PyObject *) PyExc_UnboundLocalError;
PyAPI_DATA(PyObject *) PyExc_UnicodeError;
PyAPI_DATA(PyObject *) PyExc_UnicodeEncodeError;
PyAPI_DATA(PyObject *) PyExc_UnicodeDecodeError;
PyAPI_DATA(PyObject *) PyExc_UnicodeTranslateError;
PyAPI_DATA(PyObject *) PyExc_ValueError;
PyAPI_DATA(PyObject *) PyExc_ZeroDivisionError;
#ifdef MS_WINDOWS
PyAPI_DATA(PyObject *) PyExc_WindowsError;
#endif
#ifdef __VMS
PyAPI_DATA(PyObject *) PyExc_VMSError;
#endif
PyAPI_DATA(PyObject *) PyExc_BufferError;
PyAPI_DATA(PyObject *) PyExc_MemoryErrorInst;
PyAPI_DATA(PyObject *) PyExc_RecursionErrorInst;
/* Predefined warning categories */
PyAPI_DATA(PyObject *) PyExc_Warning;
PyAPI_DATA(PyObject *) PyExc_UserWarning;
PyAPI_DATA(PyObject *) PyExc_DeprecationWarning;
PyAPI_DATA(PyObject *) PyExc_PendingDeprecationWarning;
PyAPI_DATA(PyObject *) PyExc_SyntaxWarning;
PyAPI_DATA(PyObject *) PyExc_RuntimeWarning;
PyAPI_DATA(PyObject *) PyExc_FutureWarning;
PyAPI_DATA(PyObject *) PyExc_ImportWarning;
PyAPI_DATA(PyObject *) PyExc_UnicodeWarning;
PyAPI_DATA(PyObject *) PyExc_BytesWarning;
/* Convenience functions */
PyAPI_FUNC(int) PyErr_BadArgument(void);
PyAPI_FUNC(PyObject *) PyErr_NoMemory(void);
PyAPI_FUNC(PyObject *) PyErr_SetFromErrno(PyObject *);
PyAPI_FUNC(PyObject *) PyErr_SetFromErrnoWithFilenameObject(
PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) PyErr_SetFromErrnoWithFilename(
PyObject *, const char *);
#ifdef MS_WINDOWS
PyAPI_FUNC(PyObject *) PyErr_SetFromErrnoWithUnicodeFilename(
PyObject *, const Py_UNICODE *);
#endif /* MS_WINDOWS */
PyAPI_FUNC(PyObject *) PyErr_Format(PyObject *, const char *, ...)
Py_GCC_ATTRIBUTE((format(printf, 2, 3)));
#ifdef MS_WINDOWS
PyAPI_FUNC(PyObject *) PyErr_SetFromWindowsErrWithFilenameObject(
int, const char *);
PyAPI_FUNC(PyObject *) PyErr_SetFromWindowsErrWithFilename(
int, const char *);
PyAPI_FUNC(PyObject *) PyErr_SetFromWindowsErrWithUnicodeFilename(
int, const Py_UNICODE *);
PyAPI_FUNC(PyObject *) PyErr_SetFromWindowsErr(int);
PyAPI_FUNC(PyObject *) PyErr_SetExcFromWindowsErrWithFilenameObject(
PyObject *,int, PyObject *);
PyAPI_FUNC(PyObject *) PyErr_SetExcFromWindowsErrWithFilename(
PyObject *,int, const char *);
PyAPI_FUNC(PyObject *) PyErr_SetExcFromWindowsErrWithUnicodeFilename(
PyObject *,int, const Py_UNICODE *);
PyAPI_FUNC(PyObject *) PyErr_SetExcFromWindowsErr(PyObject *, int);
#endif /* MS_WINDOWS */
/* Export the old function so that the existing API remains available: */
PyAPI_FUNC(void) PyErr_BadInternalCall(void);
PyAPI_FUNC(void) _PyErr_BadInternalCall(char *filename, int lineno);
/* Mask the old API with a call to the new API for code compiled under
Python 2.0: */
#define PyErr_BadInternalCall() _PyErr_BadInternalCall(__FILE__, __LINE__)
/* Function to create a new exception */
PyAPI_FUNC(PyObject *) PyErr_NewException(
char *name, PyObject *base, PyObject *dict);
PyAPI_FUNC(PyObject *) PyErr_NewExceptionWithDoc(
char *name, char *doc, PyObject *base, PyObject *dict);
PyAPI_FUNC(void) PyErr_WriteUnraisable(PyObject *);
/* In sigcheck.c or signalmodule.c */
PyAPI_FUNC(int) PyErr_CheckSignals(void);
PyAPI_FUNC(void) PyErr_SetInterrupt(void);
/* In signalmodule.c */
int PySignal_SetWakeupFd(int fd);
/* Support for adding program text to SyntaxErrors */
PyAPI_FUNC(void) PyErr_SyntaxLocation(const char *, int);
PyAPI_FUNC(PyObject *) PyErr_ProgramText(const char *, int);
#ifdef Py_USING_UNICODE
/* The following functions are used to create and modify unicode
exceptions from C */
/* create a UnicodeDecodeError object */
PyAPI_FUNC(PyObject *) PyUnicodeDecodeError_Create(
const char *, const char *, Py_ssize_t, Py_ssize_t, Py_ssize_t, const char *);
/* create a UnicodeEncodeError object */
PyAPI_FUNC(PyObject *) PyUnicodeEncodeError_Create(
const char *, const Py_UNICODE *, Py_ssize_t, Py_ssize_t, Py_ssize_t, const char *);
/* create a UnicodeTranslateError object */
PyAPI_FUNC(PyObject *) PyUnicodeTranslateError_Create(
const Py_UNICODE *, Py_ssize_t, Py_ssize_t, Py_ssize_t, const char *);
/* get the encoding attribute */
PyAPI_FUNC(PyObject *) PyUnicodeEncodeError_GetEncoding(PyObject *);
PyAPI_FUNC(PyObject *) PyUnicodeDecodeError_GetEncoding(PyObject *);
/* get the object attribute */
PyAPI_FUNC(PyObject *) PyUnicodeEncodeError_GetObject(PyObject *);
PyAPI_FUNC(PyObject *) PyUnicodeDecodeError_GetObject(PyObject *);
PyAPI_FUNC(PyObject *) PyUnicodeTranslateError_GetObject(PyObject *);
/* get the value of the start attribute (the int * may not be NULL)
return 0 on success, -1 on failure */
PyAPI_FUNC(int) PyUnicodeEncodeError_GetStart(PyObject *, Py_ssize_t *);
PyAPI_FUNC(int) PyUnicodeDecodeError_GetStart(PyObject *, Py_ssize_t *);
PyAPI_FUNC(int) PyUnicodeTranslateError_GetStart(PyObject *, Py_ssize_t *);
/* assign a new value to the start attribute
return 0 on success, -1 on failure */
PyAPI_FUNC(int) PyUnicodeEncodeError_SetStart(PyObject *, Py_ssize_t);
PyAPI_FUNC(int) PyUnicodeDecodeError_SetStart(PyObject *, Py_ssize_t);
PyAPI_FUNC(int) PyUnicodeTranslateError_SetStart(PyObject *, Py_ssize_t);
/* get the value of the end attribute (the int *may not be NULL)
return 0 on success, -1 on failure */
PyAPI_FUNC(int) PyUnicodeEncodeError_GetEnd(PyObject *, Py_ssize_t *);
PyAPI_FUNC(int) PyUnicodeDecodeError_GetEnd(PyObject *, Py_ssize_t *);
PyAPI_FUNC(int) PyUnicodeTranslateError_GetEnd(PyObject *, Py_ssize_t *);
/* assign a new value to the end attribute
return 0 on success, -1 on failure */
PyAPI_FUNC(int) PyUnicodeEncodeError_SetEnd(PyObject *, Py_ssize_t);
PyAPI_FUNC(int) PyUnicodeDecodeError_SetEnd(PyObject *, Py_ssize_t);
PyAPI_FUNC(int) PyUnicodeTranslateError_SetEnd(PyObject *, Py_ssize_t);
/* get the value of the reason attribute */
PyAPI_FUNC(PyObject *) PyUnicodeEncodeError_GetReason(PyObject *);
PyAPI_FUNC(PyObject *) PyUnicodeDecodeError_GetReason(PyObject *);
PyAPI_FUNC(PyObject *) PyUnicodeTranslateError_GetReason(PyObject *);
/* assign a new value to the reason attribute
return 0 on success, -1 on failure */
PyAPI_FUNC(int) PyUnicodeEncodeError_SetReason(
PyObject *, const char *);
PyAPI_FUNC(int) PyUnicodeDecodeError_SetReason(
PyObject *, const char *);
PyAPI_FUNC(int) PyUnicodeTranslateError_SetReason(
PyObject *, const char *);
#endif
/* These APIs aren't really part of the error implementation, but
often needed to format error messages; the native C lib APIs are
not available on all platforms, which is why we provide emulations
for those platforms in Python/mysnprintf.c,
WARNING: The return value of snprintf varies across platforms; do
not rely on any particular behavior; eventually the C99 defn may
be reliable.
*/
#if defined(MS_WIN32) && !defined(HAVE_SNPRINTF)
# define HAVE_SNPRINTF
# define snprintf _snprintf
# define vsnprintf _vsnprintf
#endif
#include <stdarg.h>
PyAPI_FUNC(int) PyOS_snprintf(char *str, size_t size, const char *format, ...)
Py_GCC_ATTRIBUTE((format(printf, 3, 4)));
PyAPI_FUNC(int) PyOS_vsnprintf(char *str, size_t size, const char *format, va_list va)
Py_GCC_ATTRIBUTE((format(printf, 3, 0)));
#ifdef __cplusplus
}
#endif
#endif /* !Py_ERRORS_H */

View File

@ -0,0 +1,48 @@
/* Stuff to export relevant 'expat' entry points from pyexpat to other
* parser modules, such as cElementTree. */
/* note: you must import expat.h before importing this module! */
#define PyExpat_CAPI_MAGIC "pyexpat.expat_CAPI 1.0"
#define PyExpat_CAPSULE_NAME "pyexpat.expat_CAPI"
struct PyExpat_CAPI
{
char* magic; /* set to PyExpat_CAPI_MAGIC */
int size; /* set to sizeof(struct PyExpat_CAPI) */
int MAJOR_VERSION;
int MINOR_VERSION;
int MICRO_VERSION;
/* pointers to selected expat functions. add new functions at
the end, if needed */
const XML_LChar * (*ErrorString)(enum XML_Error code);
enum XML_Error (*GetErrorCode)(XML_Parser parser);
XML_Size (*GetErrorColumnNumber)(XML_Parser parser);
XML_Size (*GetErrorLineNumber)(XML_Parser parser);
enum XML_Status (*Parse)(
XML_Parser parser, const char *s, int len, int isFinal);
XML_Parser (*ParserCreate_MM)(
const XML_Char *encoding, const XML_Memory_Handling_Suite *memsuite,
const XML_Char *namespaceSeparator);
void (*ParserFree)(XML_Parser parser);
void (*SetCharacterDataHandler)(
XML_Parser parser, XML_CharacterDataHandler handler);
void (*SetCommentHandler)(
XML_Parser parser, XML_CommentHandler handler);
void (*SetDefaultHandlerExpand)(
XML_Parser parser, XML_DefaultHandler handler);
void (*SetElementHandler)(
XML_Parser parser, XML_StartElementHandler start,
XML_EndElementHandler end);
void (*SetNamespaceDeclHandler)(
XML_Parser parser, XML_StartNamespaceDeclHandler start,
XML_EndNamespaceDeclHandler end);
void (*SetProcessingInstructionHandler)(
XML_Parser parser, XML_ProcessingInstructionHandler handler);
void (*SetUnknownEncodingHandler)(
XML_Parser parser, XML_UnknownEncodingHandler handler,
void *encodingHandlerData);
void (*SetUserData)(XML_Parser parser, void *userData);
/* always add new stuff to the end! */
};

View File

@ -0,0 +1,176 @@
#ifndef Py_PYFPE_H
#define Py_PYFPE_H
#ifdef __cplusplus
extern "C" {
#endif
/*
---------------------------------------------------------------------
/ Copyright (c) 1996. \
| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /
---------------------------------------------------------------------
*/
/*
* Define macros for handling SIGFPE.
* Lee Busby, LLNL, November, 1996
* busby1@llnl.gov
*
*********************************************
* Overview of the system for handling SIGFPE:
*
* This file (Include/pyfpe.h) defines a couple of "wrapper" macros for
* insertion into your Python C code of choice. Their proper use is
* discussed below. The file Python/pyfpe.c defines a pair of global
* variables PyFPE_jbuf and PyFPE_counter which are used by the signal
* handler for SIGFPE to decide if a particular exception was protected
* by the macros. The signal handler itself, and code for enabling the
* generation of SIGFPE in the first place, is in a (new) Python module
* named fpectl. This module is standard in every respect. It can be loaded
* either statically or dynamically as you choose, and like any other
* Python module, has no effect until you import it.
*
* In the general case, there are three steps toward handling SIGFPE in any
* Python code:
*
* 1) Add the *_PROTECT macros to your C code as required to protect
* dangerous floating point sections.
*
* 2) Turn on the inclusion of the code by adding the ``--with-fpectl''
* flag at the time you run configure. If the fpectl or other modules
* which use the *_PROTECT macros are to be dynamically loaded, be
* sure they are compiled with WANT_SIGFPE_HANDLER defined.
*
* 3) When python is built and running, import fpectl, and execute
* fpectl.turnon_sigfpe(). This sets up the signal handler and enables
* generation of SIGFPE whenever an exception occurs. From this point
* on, any properly trapped SIGFPE should result in the Python
* FloatingPointError exception.
*
* Step 1 has been done already for the Python kernel code, and should be
* done soon for the NumPy array package. Step 2 is usually done once at
* python install time. Python's behavior with respect to SIGFPE is not
* changed unless you also do step 3. Thus you can control this new
* facility at compile time, or run time, or both.
*
********************************
* Using the macros in your code:
*
* static PyObject *foobar(PyObject *self,PyObject *args)
* {
* ....
* PyFPE_START_PROTECT("Error in foobar", return 0)
* result = dangerous_op(somearg1, somearg2, ...);
* PyFPE_END_PROTECT(result)
* ....
* }
*
* If a floating point error occurs in dangerous_op, foobar returns 0 (NULL),
* after setting the associated value of the FloatingPointError exception to
* "Error in foobar". ``Dangerous_op'' can be a single operation, or a block
* of code, function calls, or any combination, so long as no alternate
* return is possible before the PyFPE_END_PROTECT macro is reached.
*
* The macros can only be used in a function context where an error return
* can be recognized as signaling a Python exception. (Generally, most
* functions that return a PyObject * will qualify.)
*
* Guido's original design suggestion for PyFPE_START_PROTECT and
* PyFPE_END_PROTECT had them open and close a local block, with a locally
* defined jmp_buf and jmp_buf pointer. This would allow recursive nesting
* of the macros. The Ansi C standard makes it clear that such local
* variables need to be declared with the "volatile" type qualifier to keep
* setjmp from corrupting their values. Some current implementations seem
* to be more restrictive. For example, the HPUX man page for setjmp says
*
* Upon the return from a setjmp() call caused by a longjmp(), the
* values of any non-static local variables belonging to the routine
* from which setjmp() was called are undefined. Code which depends on
* such values is not guaranteed to be portable.
*
* I therefore decided on a more limited form of nesting, using a counter
* variable (PyFPE_counter) to keep track of any recursion. If an exception
* occurs in an ``inner'' pair of macros, the return will apparently
* come from the outermost level.
*
*/
#ifdef WANT_SIGFPE_HANDLER
#include <signal.h>
#include <setjmp.h>
#include <math.h>
extern jmp_buf PyFPE_jbuf;
extern int PyFPE_counter;
extern double PyFPE_dummy(void *);
#define PyFPE_START_PROTECT(err_string, leave_stmt) \
if (!PyFPE_counter++ && setjmp(PyFPE_jbuf)) { \
PyErr_SetString(PyExc_FloatingPointError, err_string); \
PyFPE_counter = 0; \
leave_stmt; \
}
/*
* This (following) is a heck of a way to decrement a counter. However,
* unless the macro argument is provided, code optimizers will sometimes move
* this statement so that it gets executed *before* the unsafe expression
* which we're trying to protect. That pretty well messes things up,
* of course.
*
* If the expression(s) you're trying to protect don't happen to return a
* value, you will need to manufacture a dummy result just to preserve the
* correct ordering of statements. Note that the macro passes the address
* of its argument (so you need to give it something which is addressable).
* If your expression returns multiple results, pass the last such result
* to PyFPE_END_PROTECT.
*
* Note that PyFPE_dummy returns a double, which is cast to int.
* This seeming insanity is to tickle the Floating Point Unit (FPU).
* If an exception has occurred in a preceding floating point operation,
* some architectures (notably Intel 80x86) will not deliver the interrupt
* until the *next* floating point operation. This is painful if you've
* already decremented PyFPE_counter.
*/
#define PyFPE_END_PROTECT(v) PyFPE_counter -= (int)PyFPE_dummy(&(v));
#else
#define PyFPE_START_PROTECT(err_string, leave_stmt)
#define PyFPE_END_PROTECT(v)
#endif
#ifdef __cplusplus
}
#endif
#endif /* !Py_PYFPE_H */

View File

@ -0,0 +1,18 @@
#ifndef Py_PYGETOPT_H
#define Py_PYGETOPT_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_DATA(int) _PyOS_opterr;
PyAPI_DATA(int) _PyOS_optind;
PyAPI_DATA(char *) _PyOS_optarg;
PyAPI_FUNC(void) _PyOS_ResetGetOpt(void);
PyAPI_FUNC(int) _PyOS_GetOpt(int argc, char **argv, char *optstring);
#ifdef __cplusplus
}
#endif
#endif /* !Py_PYGETOPT_H */

View File

@ -0,0 +1,102 @@
#ifndef PYMACCONFIG_H
#define PYMACCONFIG_H
/*
* This file moves some of the autoconf magic to compile-time
* when building on MacOSX. This is needed for building 4-way
* universal binaries and for 64-bit universal binaries because
* the values redefined below aren't configure-time constant but
* only compile-time constant in these scenarios.
*/
#if defined(__APPLE__)
# undef SIZEOF_LONG
# undef SIZEOF_PTHREAD_T
# undef SIZEOF_SIZE_T
# undef SIZEOF_TIME_T
# undef SIZEOF_VOID_P
# undef SIZEOF__BOOL
# undef SIZEOF_UINTPTR_T
# undef SIZEOF_PTHREAD_T
# undef WORDS_BIGENDIAN
# undef DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754
# undef DOUBLE_IS_BIG_ENDIAN_IEEE754
# undef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
# undef HAVE_GCC_ASM_FOR_X87
# undef VA_LIST_IS_ARRAY
# if defined(__LP64__) && defined(__x86_64__)
# define VA_LIST_IS_ARRAY 1
# endif
# undef HAVE_LARGEFILE_SUPPORT
# ifndef __LP64__
# define HAVE_LARGEFILE_SUPPORT 1
# endif
# undef SIZEOF_LONG
# ifdef __LP64__
# define SIZEOF__BOOL 1
# define SIZEOF__BOOL 1
# define SIZEOF_LONG 8
# define SIZEOF_PTHREAD_T 8
# define SIZEOF_SIZE_T 8
# define SIZEOF_TIME_T 8
# define SIZEOF_VOID_P 8
# define SIZEOF_UINTPTR_T 8
# define SIZEOF_PTHREAD_T 8
# else
# ifdef __ppc__
# define SIZEOF__BOOL 4
# else
# define SIZEOF__BOOL 1
# endif
# define SIZEOF_LONG 4
# define SIZEOF_PTHREAD_T 4
# define SIZEOF_SIZE_T 4
# define SIZEOF_TIME_T 4
# define SIZEOF_VOID_P 4
# define SIZEOF_UINTPTR_T 4
# define SIZEOF_PTHREAD_T 4
# endif
# if defined(__LP64__)
/* MacOSX 10.4 (the first release to support 64-bit code
* at all) only supports 64-bit in the UNIX layer.
* Therefore surpress the toolbox-glue in 64-bit mode.
*/
/* In 64-bit mode setpgrp always has no argments, in 32-bit
* mode that depends on the compilation environment
*/
# undef SETPGRP_HAVE_ARG
# endif
#ifdef __BIG_ENDIAN__
#define WORDS_BIGENDIAN 1
#define DOUBLE_IS_BIG_ENDIAN_IEEE754
#else
#define DOUBLE_IS_LITTLE_ENDIAN_IEEE754
#endif /* __BIG_ENDIAN */
#ifdef __i386__
# define HAVE_GCC_ASM_FOR_X87
#endif
/*
* The definition in pyconfig.h is only valid on the OS release
* where configure ran on and not necessarily for all systems where
* the executable can be used on.
*
* Specifically: OSX 10.4 has limited supported for '%zd', while
* 10.5 has full support for '%zd'. A binary built on 10.5 won't
* work properly on 10.4 unless we surpress the definition
* of PY_FORMAT_SIZE_T
*/
#undef PY_FORMAT_SIZE_T
#endif /* defined(_APPLE__) */
#endif /* PYMACCONFIG_H */

View File

@ -0,0 +1,217 @@
/*
** pymactoolbox.h - globals defined in mactoolboxglue.c
*/
#ifndef Py_PYMACTOOLBOX_H
#define Py_PYMACTOOLBOX_H
#ifdef __cplusplus
extern "C" {
#endif
#include <Carbon/Carbon.h>
#ifndef __LP64__
#include <QuickTime/QuickTime.h>
#endif /* !__LP64__ */
/*
** Helper routines for error codes and such.
*/
char *PyMac_StrError(int); /* strerror with mac errors */
extern PyObject *PyMac_OSErrException; /* Exception for OSErr */
PyObject *PyMac_GetOSErrException(void); /* Initialize & return it */
PyObject *PyErr_Mac(PyObject *, int); /* Exception with a mac error */
PyObject *PyMac_Error(OSErr); /* Uses PyMac_GetOSErrException */
#ifndef __LP64__
extern OSErr PyMac_GetFullPathname(FSSpec *, char *, int); /* convert
fsspec->path */
#endif /* __LP64__ */
/*
** These conversion routines are defined in mactoolboxglue.c itself.
*/
int PyMac_GetOSType(PyObject *, OSType *); /* argument parser for OSType */
PyObject *PyMac_BuildOSType(OSType); /* Convert OSType to PyObject */
PyObject *PyMac_BuildNumVersion(NumVersion);/* Convert NumVersion to PyObject */
int PyMac_GetStr255(PyObject *, Str255); /* argument parser for Str255 */
PyObject *PyMac_BuildStr255(Str255); /* Convert Str255 to PyObject */
PyObject *PyMac_BuildOptStr255(Str255); /* Convert Str255 to PyObject,
NULL to None */
int PyMac_GetRect(PyObject *, Rect *); /* argument parser for Rect */
PyObject *PyMac_BuildRect(Rect *); /* Convert Rect to PyObject */
int PyMac_GetPoint(PyObject *, Point *); /* argument parser for Point */
PyObject *PyMac_BuildPoint(Point); /* Convert Point to PyObject */
int PyMac_GetEventRecord(PyObject *, EventRecord *); /* argument parser for
EventRecord */
PyObject *PyMac_BuildEventRecord(EventRecord *); /* Convert EventRecord to
PyObject */
int PyMac_GetFixed(PyObject *, Fixed *); /* argument parser for Fixed */
PyObject *PyMac_BuildFixed(Fixed); /* Convert Fixed to PyObject */
int PyMac_Getwide(PyObject *, wide *); /* argument parser for wide */
PyObject *PyMac_Buildwide(wide *); /* Convert wide to PyObject */
/*
** The rest of the routines are implemented by extension modules. If they are
** dynamically loaded mactoolboxglue will contain a stub implementation of the
** routine, which imports the module, whereupon the module's init routine will
** communicate the routine pointer back to the stub.
** If USE_TOOLBOX_OBJECT_GLUE is not defined there is no glue code, and the
** extension modules simply declare the routine. This is the case for static
** builds (and could be the case for MacPython CFM builds, because CFM extension
** modules can reference each other without problems).
*/
#ifdef USE_TOOLBOX_OBJECT_GLUE
/*
** These macros are used in the module init code. If we use toolbox object glue
** it sets the function pointer to point to the real function.
*/
#define PyMac_INIT_TOOLBOX_OBJECT_NEW(object, rtn) { \
extern PyObject *(*PyMacGluePtr_##rtn)(object); \
PyMacGluePtr_##rtn = _##rtn; \
}
#define PyMac_INIT_TOOLBOX_OBJECT_CONVERT(object, rtn) { \
extern int (*PyMacGluePtr_##rtn)(PyObject *, object *); \
PyMacGluePtr_##rtn = _##rtn; \
}
#else
/*
** If we don't use toolbox object glue the init macros are empty. Moreover, we define
** _xxx_New to be the same as xxx_New, and the code in mactoolboxglue isn't included.
*/
#define PyMac_INIT_TOOLBOX_OBJECT_NEW(object, rtn)
#define PyMac_INIT_TOOLBOX_OBJECT_CONVERT(object, rtn)
#endif /* USE_TOOLBOX_OBJECT_GLUE */
/* macfs exports */
#ifndef __LP64__
int PyMac_GetFSSpec(PyObject *, FSSpec *); /* argument parser for FSSpec */
PyObject *PyMac_BuildFSSpec(FSSpec *); /* Convert FSSpec to PyObject */
#endif /* !__LP64__ */
int PyMac_GetFSRef(PyObject *, FSRef *); /* argument parser for FSRef */
PyObject *PyMac_BuildFSRef(FSRef *); /* Convert FSRef to PyObject */
/* AE exports */
extern PyObject *AEDesc_New(AppleEvent *); /* XXXX Why passed by address?? */
extern PyObject *AEDesc_NewBorrowed(AppleEvent *);
extern int AEDesc_Convert(PyObject *, AppleEvent *);
/* Cm exports */
extern PyObject *CmpObj_New(Component);
extern int CmpObj_Convert(PyObject *, Component *);
extern PyObject *CmpInstObj_New(ComponentInstance);
extern int CmpInstObj_Convert(PyObject *, ComponentInstance *);
/* Ctl exports */
#ifndef __LP64__
extern PyObject *CtlObj_New(ControlHandle);
extern int CtlObj_Convert(PyObject *, ControlHandle *);
#endif /* !__LP64__ */
/* Dlg exports */
#ifndef __LP64__
extern PyObject *DlgObj_New(DialogPtr);
extern int DlgObj_Convert(PyObject *, DialogPtr *);
extern PyObject *DlgObj_WhichDialog(DialogPtr);
#endif /* !__LP64__ */
/* Drag exports */
#ifndef __LP64__
extern PyObject *DragObj_New(DragReference);
extern int DragObj_Convert(PyObject *, DragReference *);
#endif /* !__LP64__ */
/* List exports */
#ifndef __LP64__
extern PyObject *ListObj_New(ListHandle);
extern int ListObj_Convert(PyObject *, ListHandle *);
#endif /* !__LP64__ */
/* Menu exports */
#ifndef __LP64__
extern PyObject *MenuObj_New(MenuHandle);
extern int MenuObj_Convert(PyObject *, MenuHandle *);
#endif /* !__LP64__ */
/* Qd exports */
#ifndef __LP64__
extern PyObject *GrafObj_New(GrafPtr);
extern int GrafObj_Convert(PyObject *, GrafPtr *);
extern PyObject *BMObj_New(BitMapPtr);
extern int BMObj_Convert(PyObject *, BitMapPtr *);
extern PyObject *QdRGB_New(RGBColor *);
extern int QdRGB_Convert(PyObject *, RGBColor *);
#endif /* !__LP64__ */
/* Qdoffs exports */
#ifndef __LP64__
extern PyObject *GWorldObj_New(GWorldPtr);
extern int GWorldObj_Convert(PyObject *, GWorldPtr *);
#endif /* !__LP64__ */
/* Qt exports */
#ifndef __LP64__
extern PyObject *TrackObj_New(Track);
extern int TrackObj_Convert(PyObject *, Track *);
extern PyObject *MovieObj_New(Movie);
extern int MovieObj_Convert(PyObject *, Movie *);
extern PyObject *MovieCtlObj_New(MovieController);
extern int MovieCtlObj_Convert(PyObject *, MovieController *);
extern PyObject *TimeBaseObj_New(TimeBase);
extern int TimeBaseObj_Convert(PyObject *, TimeBase *);
extern PyObject *UserDataObj_New(UserData);
extern int UserDataObj_Convert(PyObject *, UserData *);
extern PyObject *MediaObj_New(Media);
extern int MediaObj_Convert(PyObject *, Media *);
#endif /* !__LP64__ */
/* Res exports */
extern PyObject *ResObj_New(Handle);
extern int ResObj_Convert(PyObject *, Handle *);
extern PyObject *OptResObj_New(Handle);
extern int OptResObj_Convert(PyObject *, Handle *);
/* TE exports */
#ifndef __LP64__
extern PyObject *TEObj_New(TEHandle);
extern int TEObj_Convert(PyObject *, TEHandle *);
#endif /* !__LP64__ */
/* Win exports */
#ifndef __LP64__
extern PyObject *WinObj_New(WindowPtr);
extern int WinObj_Convert(PyObject *, WindowPtr *);
extern PyObject *WinObj_WhichWindow(WindowPtr);
#endif /* !__LP64__ */
/* CF exports */
extern PyObject *CFObj_New(CFTypeRef);
extern int CFObj_Convert(PyObject *, CFTypeRef *);
extern PyObject *CFTypeRefObj_New(CFTypeRef);
extern int CFTypeRefObj_Convert(PyObject *, CFTypeRef *);
extern PyObject *CFStringRefObj_New(CFStringRef);
extern int CFStringRefObj_Convert(PyObject *, CFStringRef *);
extern PyObject *CFMutableStringRefObj_New(CFMutableStringRef);
extern int CFMutableStringRefObj_Convert(PyObject *, CFMutableStringRef *);
extern PyObject *CFArrayRefObj_New(CFArrayRef);
extern int CFArrayRefObj_Convert(PyObject *, CFArrayRef *);
extern PyObject *CFMutableArrayRefObj_New(CFMutableArrayRef);
extern int CFMutableArrayRefObj_Convert(PyObject *, CFMutableArrayRef *);
extern PyObject *CFDictionaryRefObj_New(CFDictionaryRef);
extern int CFDictionaryRefObj_Convert(PyObject *, CFDictionaryRef *);
extern PyObject *CFMutableDictionaryRefObj_New(CFMutableDictionaryRef);
extern int CFMutableDictionaryRefObj_Convert(PyObject *, CFMutableDictionaryRef *);
extern PyObject *CFURLRefObj_New(CFURLRef);
extern int CFURLRefObj_Convert(PyObject *, CFURLRef *);
extern int OptionalCFURLRefObj_Convert(PyObject *, CFURLRef *);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,214 @@
#ifndef Py_PYMATH_H
#define Py_PYMATH_H
#include "pyconfig.h" /* include for defines */
/**************************************************************************
Symbols and macros to supply platform-independent interfaces to mathematical
functions and constants
**************************************************************************/
/* Python provides implementations for copysign, round and hypot in
* Python/pymath.c just in case your math library doesn't provide the
* functions.
*
*Note: PC/pyconfig.h defines copysign as _copysign
*/
#ifndef HAVE_COPYSIGN
extern double copysign(double, double);
#endif
#ifndef HAVE_ROUND
extern double round(double);
#endif
#ifndef HAVE_HYPOT
extern double hypot(double, double);
#endif
/* extra declarations */
#ifndef _MSC_VER
#ifndef __STDC__
extern double fmod (double, double);
extern double frexp (double, int *);
extern double ldexp (double, int);
extern double modf (double, double *);
extern double pow(double, double);
#endif /* __STDC__ */
#endif /* _MSC_VER */
#ifdef _OSF_SOURCE
/* OSF1 5.1 doesn't make these available with XOPEN_SOURCE_EXTENDED defined */
extern int finite(double);
extern double copysign(double, double);
#endif
/* High precision defintion of pi and e (Euler)
* The values are taken from libc6's math.h.
*/
#ifndef Py_MATH_PIl
#define Py_MATH_PIl 3.1415926535897932384626433832795029L
#endif
#ifndef Py_MATH_PI
#define Py_MATH_PI 3.14159265358979323846
#endif
#ifndef Py_MATH_El
#define Py_MATH_El 2.7182818284590452353602874713526625L
#endif
#ifndef Py_MATH_E
#define Py_MATH_E 2.7182818284590452354
#endif
/* On x86, Py_FORCE_DOUBLE forces a floating-point number out of an x87 FPU
register and into a 64-bit memory location, rounding from extended
precision to double precision in the process. On other platforms it does
nothing. */
/* we take double rounding as evidence of x87 usage */
#ifndef Py_FORCE_DOUBLE
# ifdef X87_DOUBLE_ROUNDING
PyAPI_FUNC(double) _Py_force_double(double);
# define Py_FORCE_DOUBLE(X) (_Py_force_double(X))
# else
# define Py_FORCE_DOUBLE(X) (X)
# endif
#endif
#ifdef HAVE_GCC_ASM_FOR_X87
PyAPI_FUNC(unsigned short) _Py_get_387controlword(void);
PyAPI_FUNC(void) _Py_set_387controlword(unsigned short);
#endif
/* Py_IS_NAN(X)
* Return 1 if float or double arg is a NaN, else 0.
* Caution:
* X is evaluated more than once.
* This may not work on all platforms. Each platform has *some*
* way to spell this, though -- override in pyconfig.h if you have
* a platform where it doesn't work.
* Note: PC/pyconfig.h defines Py_IS_NAN as _isnan
*/
#ifndef Py_IS_NAN
#if defined HAVE_DECL_ISNAN && HAVE_DECL_ISNAN == 1
#define Py_IS_NAN(X) isnan(X)
#else
#define Py_IS_NAN(X) ((X) != (X))
#endif
#endif
/* Py_IS_INFINITY(X)
* Return 1 if float or double arg is an infinity, else 0.
* Caution:
* X is evaluated more than once.
* This implementation may set the underflow flag if |X| is very small;
* it really can't be implemented correctly (& easily) before C99.
* Override in pyconfig.h if you have a better spelling on your platform.
* Py_FORCE_DOUBLE is used to avoid getting false negatives from a
* non-infinite value v sitting in an 80-bit x87 register such that
* v becomes infinite when spilled from the register to 64-bit memory.
* Note: PC/pyconfig.h defines Py_IS_INFINITY as _isinf
*/
#ifndef Py_IS_INFINITY
# if defined HAVE_DECL_ISINF && HAVE_DECL_ISINF == 1
# define Py_IS_INFINITY(X) isinf(X)
# else
# define Py_IS_INFINITY(X) ((X) && \
(Py_FORCE_DOUBLE(X)*0.5 == Py_FORCE_DOUBLE(X)))
# endif
#endif
/* Py_IS_FINITE(X)
* Return 1 if float or double arg is neither infinite nor NAN, else 0.
* Some compilers (e.g. VisualStudio) have intrisics for this, so a special
* macro for this particular test is useful
* Note: PC/pyconfig.h defines Py_IS_FINITE as _finite
*/
#ifndef Py_IS_FINITE
#if defined HAVE_DECL_ISFINITE && HAVE_DECL_ISFINITE == 1
#define Py_IS_FINITE(X) isfinite(X)
#elif defined HAVE_FINITE
#define Py_IS_FINITE(X) finite(X)
#else
#define Py_IS_FINITE(X) (!Py_IS_INFINITY(X) && !Py_IS_NAN(X))
#endif
#endif
/* HUGE_VAL is supposed to expand to a positive double infinity. Python
* uses Py_HUGE_VAL instead because some platforms are broken in this
* respect. We used to embed code in pyport.h to try to worm around that,
* but different platforms are broken in conflicting ways. If you're on
* a platform where HUGE_VAL is defined incorrectly, fiddle your Python
* config to #define Py_HUGE_VAL to something that works on your platform.
*/
#ifndef Py_HUGE_VAL
#define Py_HUGE_VAL HUGE_VAL
#endif
/* Py_NAN
* A value that evaluates to a NaN. On IEEE 754 platforms INF*0 or
* INF/INF works. Define Py_NO_NAN in pyconfig.h if your platform
* doesn't support NaNs.
*/
#if !defined(Py_NAN) && !defined(Py_NO_NAN)
#if !defined(__INTEL_COMPILER)
#define Py_NAN (Py_HUGE_VAL * 0.)
#else /* __INTEL_COMPILER */
#if defined(ICC_NAN_STRICT)
#pragma float_control(push)
#pragma float_control(precise, on)
#pragma float_control(except, on)
#if defined(_MSC_VER)
__declspec(noinline)
#else /* Linux */
__attribute__((noinline))
#endif /* _MSC_VER */
static double __icc_nan()
{
return sqrt(-1.0);
}
#pragma float_control (pop)
#define Py_NAN __icc_nan()
#else /* ICC_NAN_RELAXED as default for Intel Compiler */
static union { unsigned char buf[8]; double __icc_nan; } __nan_store = {0,0,0,0,0,0,0xf8,0x7f};
#define Py_NAN (__nan_store.__icc_nan)
#endif /* ICC_NAN_STRICT */
#endif /* __INTEL_COMPILER */
#endif
/* Py_OVERFLOWED(X)
* Return 1 iff a libm function overflowed. Set errno to 0 before calling
* a libm function, and invoke this macro after, passing the function
* result.
* Caution:
* This isn't reliable. C99 no longer requires libm to set errno under
* any exceptional condition, but does require +- HUGE_VAL return
* values on overflow. A 754 box *probably* maps HUGE_VAL to a
* double infinity, and we're cool if that's so, unless the input
* was an infinity and an infinity is the expected result. A C89
* system sets errno to ERANGE, so we check for that too. We're
* out of luck if a C99 754 box doesn't map HUGE_VAL to +Inf, or
* if the returned result is a NaN, or if a C89 box returns HUGE_VAL
* in non-overflow cases.
* X is evaluated more than once.
* Some platforms have better way to spell this, so expect some #ifdef'ery.
*
* OpenBSD uses 'isinf()' because a compiler bug on that platform causes
* the longer macro version to be mis-compiled. This isn't optimal, and
* should be removed once a newer compiler is available on that platform.
* The system that had the failure was running OpenBSD 3.2 on Intel, with
* gcc 2.95.3.
*
* According to Tim's checkin, the FreeBSD systems use isinf() to work
* around a FPE bug on that platform.
*/
#if defined(__FreeBSD__) || defined(__OpenBSD__)
#define Py_OVERFLOWED(X) isinf(X)
#else
#define Py_OVERFLOWED(X) ((X) != 0.0 && (errno == ERANGE || \
(X) == Py_HUGE_VAL || \
(X) == -Py_HUGE_VAL))
#endif
#endif /* Py_PYMATH_H */

View File

@ -0,0 +1,122 @@
/* The PyMem_ family: low-level memory allocation interfaces.
See objimpl.h for the PyObject_ memory family.
*/
#ifndef Py_PYMEM_H
#define Py_PYMEM_H
#include "pyport.h"
#ifdef __cplusplus
extern "C" {
#endif
/* BEWARE:
Each interface exports both functions and macros. Extension modules should
use the functions, to ensure binary compatibility across Python versions.
Because the Python implementation is free to change internal details, and
the macros may (or may not) expose details for speed, if you do use the
macros you must recompile your extensions with each Python release.
Never mix calls to PyMem_ with calls to the platform malloc/realloc/
calloc/free. For example, on Windows different DLLs may end up using
different heaps, and if you use PyMem_Malloc you'll get the memory from the
heap used by the Python DLL; it could be a disaster if you free()'ed that
directly in your own extension. Using PyMem_Free instead ensures Python
can return the memory to the proper heap. As another example, in
PYMALLOC_DEBUG mode, Python wraps all calls to all PyMem_ and PyObject_
memory functions in special debugging wrappers that add additional
debugging info to dynamic memory blocks. The system routines have no idea
what to do with that stuff, and the Python wrappers have no idea what to do
with raw blocks obtained directly by the system routines then.
The GIL must be held when using these APIs.
*/
/*
* Raw memory interface
* ====================
*/
/* Functions
Functions supplying platform-independent semantics for malloc/realloc/
free. These functions make sure that allocating 0 bytes returns a distinct
non-NULL pointer (whenever possible -- if we're flat out of memory, NULL
may be returned), even if the platform malloc and realloc don't.
Returned pointers must be checked for NULL explicitly. No action is
performed on failure (no exception is set, no warning is printed, etc).
*/
PyAPI_FUNC(void *) PyMem_Malloc(size_t);
PyAPI_FUNC(void *) PyMem_Realloc(void *, size_t);
PyAPI_FUNC(void) PyMem_Free(void *);
/* Starting from Python 1.6, the wrappers Py_{Malloc,Realloc,Free} are
no longer supported. They used to call PyErr_NoMemory() on failure. */
/* Macros. */
#ifdef PYMALLOC_DEBUG
/* Redirect all memory operations to Python's debugging allocator. */
#define PyMem_MALLOC _PyMem_DebugMalloc
#define PyMem_REALLOC _PyMem_DebugRealloc
#define PyMem_FREE _PyMem_DebugFree
#else /* ! PYMALLOC_DEBUG */
/* PyMem_MALLOC(0) means malloc(1). Some systems would return NULL
for malloc(0), which would be treated as an error. Some platforms
would return a pointer with no memory behind it, which would break
pymalloc. To solve these problems, allocate an extra byte. */
/* Returns NULL to indicate error if a negative size or size larger than
Py_ssize_t can represent is supplied. Helps prevents security holes. */
#define PyMem_MALLOC(n) ((size_t)(n) > (size_t)PY_SSIZE_T_MAX ? NULL \
: malloc((n) ? (n) : 1))
#define PyMem_REALLOC(p, n) ((size_t)(n) > (size_t)PY_SSIZE_T_MAX ? NULL \
: realloc((p), (n) ? (n) : 1))
#define PyMem_FREE free
#endif /* PYMALLOC_DEBUG */
/*
* Type-oriented memory interface
* ==============================
*
* Allocate memory for n objects of the given type. Returns a new pointer
* or NULL if the request was too large or memory allocation failed. Use
* these macros rather than doing the multiplication yourself so that proper
* overflow checking is always done.
*/
#define PyMem_New(type, n) \
( ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL : \
( (type *) PyMem_Malloc((n) * sizeof(type)) ) )
#define PyMem_NEW(type, n) \
( ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL : \
( (type *) PyMem_MALLOC((n) * sizeof(type)) ) )
/*
* The value of (p) is always clobbered by this macro regardless of success.
* The caller MUST check if (p) is NULL afterwards and deal with the memory
* error if so. This means the original value of (p) MUST be saved for the
* caller's memory error handler to not lose track of it.
*/
#define PyMem_Resize(p, type, n) \
( (p) = ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL : \
(type *) PyMem_Realloc((p), (n) * sizeof(type)) )
#define PyMem_RESIZE(p, type, n) \
( (p) = ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL : \
(type *) PyMem_REALLOC((p), (n) * sizeof(type)) )
/* PyMem{Del,DEL} are left over from ancient days, and shouldn't be used
* anymore. They're just confusing aliases for PyMem_{Free,FREE} now.
*/
#define PyMem_Del PyMem_Free
#define PyMem_DEL PyMem_FREE
#ifdef __cplusplus
}
#endif
#endif /* !Py_PYMEM_H */

View File

@ -0,0 +1,941 @@
#ifndef Py_PYPORT_H
#define Py_PYPORT_H
#include "pyconfig.h" /* include for defines */
/* Some versions of HP-UX & Solaris need inttypes.h for int32_t,
INT32_MAX, etc. */
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
/**************************************************************************
Symbols and macros to supply platform-independent interfaces to basic
C language & library operations whose spellings vary across platforms.
Please try to make documentation here as clear as possible: by definition,
the stuff here is trying to illuminate C's darkest corners.
Config #defines referenced here:
SIGNED_RIGHT_SHIFT_ZERO_FILLS
Meaning: To be defined iff i>>j does not extend the sign bit when i is a
signed integral type and i < 0.
Used in: Py_ARITHMETIC_RIGHT_SHIFT
Py_DEBUG
Meaning: Extra checks compiled in for debug mode.
Used in: Py_SAFE_DOWNCAST
HAVE_UINTPTR_T
Meaning: The C9X type uintptr_t is supported by the compiler
Used in: Py_uintptr_t
HAVE_LONG_LONG
Meaning: The compiler supports the C type "long long"
Used in: PY_LONG_LONG
**************************************************************************/
/* For backward compatibility only. Obsolete, do not use. */
#ifdef HAVE_PROTOTYPES
#define Py_PROTO(x) x
#else
#define Py_PROTO(x) ()
#endif
#ifndef Py_FPROTO
#define Py_FPROTO(x) Py_PROTO(x)
#endif
/* typedefs for some C9X-defined synonyms for integral types.
*
* The names in Python are exactly the same as the C9X names, except with a
* Py_ prefix. Until C9X is universally implemented, this is the only way
* to ensure that Python gets reliable names that don't conflict with names
* in non-Python code that are playing their own tricks to define the C9X
* names.
*
* NOTE: don't go nuts here! Python has no use for *most* of the C9X
* integral synonyms. Only define the ones we actually need.
*/
#ifdef HAVE_LONG_LONG
#ifndef PY_LONG_LONG
#define PY_LONG_LONG long long
#if defined(LLONG_MAX)
/* If LLONG_MAX is defined in limits.h, use that. */
#define PY_LLONG_MIN LLONG_MIN
#define PY_LLONG_MAX LLONG_MAX
#define PY_ULLONG_MAX ULLONG_MAX
#elif defined(__LONG_LONG_MAX__)
/* Otherwise, if GCC has a builtin define, use that. */
#define PY_LLONG_MAX __LONG_LONG_MAX__
#define PY_LLONG_MIN (-PY_LLONG_MAX-1)
#define PY_ULLONG_MAX (__LONG_LONG_MAX__*2ULL + 1ULL)
#else
/* Otherwise, rely on two's complement. */
#define PY_ULLONG_MAX (~0ULL)
#define PY_LLONG_MAX ((long long)(PY_ULLONG_MAX>>1))
#define PY_LLONG_MIN (-PY_LLONG_MAX-1)
#endif /* LLONG_MAX */
#endif
#endif /* HAVE_LONG_LONG */
/* a build with 30-bit digits for Python long integers needs an exact-width
* 32-bit unsigned integer type to store those digits. (We could just use
* type 'unsigned long', but that would be wasteful on a system where longs
* are 64-bits.) On Unix systems, the autoconf macro AC_TYPE_UINT32_T defines
* uint32_t to be such a type unless stdint.h or inttypes.h defines uint32_t.
* However, it doesn't set HAVE_UINT32_T, so we do that here.
*/
#ifdef uint32_t
#define HAVE_UINT32_T 1
#endif
#ifdef HAVE_UINT32_T
#ifndef PY_UINT32_T
#define PY_UINT32_T uint32_t
#endif
#endif
/* Macros for a 64-bit unsigned integer type; used for type 'twodigits' in the
* long integer implementation, when 30-bit digits are enabled.
*/
#ifdef uint64_t
#define HAVE_UINT64_T 1
#endif
#ifdef HAVE_UINT64_T
#ifndef PY_UINT64_T
#define PY_UINT64_T uint64_t
#endif
#endif
/* Signed variants of the above */
#ifdef int32_t
#define HAVE_INT32_T 1
#endif
#ifdef HAVE_INT32_T
#ifndef PY_INT32_T
#define PY_INT32_T int32_t
#endif
#endif
#ifdef int64_t
#define HAVE_INT64_T 1
#endif
#ifdef HAVE_INT64_T
#ifndef PY_INT64_T
#define PY_INT64_T int64_t
#endif
#endif
/* If PYLONG_BITS_IN_DIGIT is not defined then we'll use 30-bit digits if all
the necessary integer types are available, and we're on a 64-bit platform
(as determined by SIZEOF_VOID_P); otherwise we use 15-bit digits. */
#ifndef PYLONG_BITS_IN_DIGIT
#if (defined HAVE_UINT64_T && defined HAVE_INT64_T && \
defined HAVE_UINT32_T && defined HAVE_INT32_T && SIZEOF_VOID_P >= 8)
#define PYLONG_BITS_IN_DIGIT 30
#else
#define PYLONG_BITS_IN_DIGIT 15
#endif
#endif
/* uintptr_t is the C9X name for an unsigned integral type such that a
* legitimate void* can be cast to uintptr_t and then back to void* again
* without loss of information. Similarly for intptr_t, wrt a signed
* integral type.
*/
#ifdef HAVE_UINTPTR_T
typedef uintptr_t Py_uintptr_t;
typedef intptr_t Py_intptr_t;
#elif SIZEOF_VOID_P <= SIZEOF_INT
typedef unsigned int Py_uintptr_t;
typedef int Py_intptr_t;
#elif SIZEOF_VOID_P <= SIZEOF_LONG
typedef unsigned long Py_uintptr_t;
typedef long Py_intptr_t;
#elif defined(HAVE_LONG_LONG) && (SIZEOF_VOID_P <= SIZEOF_LONG_LONG)
typedef unsigned PY_LONG_LONG Py_uintptr_t;
typedef PY_LONG_LONG Py_intptr_t;
#else
# error "Python needs a typedef for Py_uintptr_t in pyport.h."
#endif /* HAVE_UINTPTR_T */
/* Py_ssize_t is a signed integral type such that sizeof(Py_ssize_t) ==
* sizeof(size_t). C99 doesn't define such a thing directly (size_t is an
* unsigned integral type). See PEP 353 for details.
*/
#ifdef HAVE_SSIZE_T
typedef ssize_t Py_ssize_t;
#elif SIZEOF_VOID_P == SIZEOF_SIZE_T
typedef Py_intptr_t Py_ssize_t;
#else
# error "Python needs a typedef for Py_ssize_t in pyport.h."
#endif
/* Largest possible value of size_t.
SIZE_MAX is part of C99, so it might be defined on some
platforms. If it is not defined, (size_t)-1 is a portable
definition for C89, due to the way signed->unsigned
conversion is defined. */
#ifdef SIZE_MAX
#define PY_SIZE_MAX SIZE_MAX
#else
#define PY_SIZE_MAX ((size_t)-1)
#endif
/* Largest positive value of type Py_ssize_t. */
#define PY_SSIZE_T_MAX ((Py_ssize_t)(((size_t)-1)>>1))
/* Smallest negative value of type Py_ssize_t. */
#define PY_SSIZE_T_MIN (-PY_SSIZE_T_MAX-1)
#if SIZEOF_PID_T > SIZEOF_LONG
# error "Python doesn't support sizeof(pid_t) > sizeof(long)"
#endif
/* PY_FORMAT_SIZE_T is a platform-specific modifier for use in a printf
* format to convert an argument with the width of a size_t or Py_ssize_t.
* C99 introduced "z" for this purpose, but not all platforms support that;
* e.g., MS compilers use "I" instead.
*
* These "high level" Python format functions interpret "z" correctly on
* all platforms (Python interprets the format string itself, and does whatever
* the platform C requires to convert a size_t/Py_ssize_t argument):
*
* PyString_FromFormat
* PyErr_Format
* PyString_FromFormatV
*
* Lower-level uses require that you interpolate the correct format modifier
* yourself (e.g., calling printf, fprintf, sprintf, PyOS_snprintf); for
* example,
*
* Py_ssize_t index;
* fprintf(stderr, "index %" PY_FORMAT_SIZE_T "d sucks\n", index);
*
* That will expand to %ld, or %Id, or to something else correct for a
* Py_ssize_t on the platform.
*/
#ifndef PY_FORMAT_SIZE_T
# if SIZEOF_SIZE_T == SIZEOF_INT && !defined(__APPLE__)
# define PY_FORMAT_SIZE_T ""
# elif SIZEOF_SIZE_T == SIZEOF_LONG
# define PY_FORMAT_SIZE_T "l"
# elif defined(MS_WINDOWS)
# define PY_FORMAT_SIZE_T "I"
# else
# error "This platform's pyconfig.h needs to define PY_FORMAT_SIZE_T"
# endif
#endif
/* PY_FORMAT_LONG_LONG is analogous to PY_FORMAT_SIZE_T above, but for
* the long long type instead of the size_t type. It's only available
* when HAVE_LONG_LONG is defined. The "high level" Python format
* functions listed above will interpret "lld" or "llu" correctly on
* all platforms.
*/
#ifdef HAVE_LONG_LONG
# ifndef PY_FORMAT_LONG_LONG
# if defined(MS_WIN64) || defined(MS_WINDOWS)
# define PY_FORMAT_LONG_LONG "I64"
# else
# error "This platform's pyconfig.h needs to define PY_FORMAT_LONG_LONG"
# endif
# endif
#endif
/* Py_LOCAL can be used instead of static to get the fastest possible calling
* convention for functions that are local to a given module.
*
* Py_LOCAL_INLINE does the same thing, and also explicitly requests inlining,
* for platforms that support that.
*
* If PY_LOCAL_AGGRESSIVE is defined before python.h is included, more
* "aggressive" inlining/optimizaion is enabled for the entire module. This
* may lead to code bloat, and may slow things down for those reasons. It may
* also lead to errors, if the code relies on pointer aliasing. Use with
* care.
*
* NOTE: You can only use this for functions that are entirely local to a
* module; functions that are exported via method tables, callbacks, etc,
* should keep using static.
*/
#undef USE_INLINE /* XXX - set via configure? */
#if defined(_MSC_VER)
#if defined(PY_LOCAL_AGGRESSIVE)
/* enable more aggressive optimization for visual studio */
#pragma optimize("agtw", on)
#endif
/* ignore warnings if the compiler decides not to inline a function */
#pragma warning(disable: 4710)
/* fastest possible local call under MSVC */
#define Py_LOCAL(type) static type __fastcall
#define Py_LOCAL_INLINE(type) static __inline type __fastcall
#elif defined(USE_INLINE)
#define Py_LOCAL(type) static type
#define Py_LOCAL_INLINE(type) static inline type
#else
#define Py_LOCAL(type) static type
#define Py_LOCAL_INLINE(type) static type
#endif
/* Py_MEMCPY can be used instead of memcpy in cases where the copied blocks
* are often very short. While most platforms have highly optimized code for
* large transfers, the setup costs for memcpy are often quite high. MEMCPY
* solves this by doing short copies "in line".
*/
#if defined(_MSC_VER)
#define Py_MEMCPY(target, source, length) do { \
size_t i_, n_ = (length); \
char *t_ = (void*) (target); \
const char *s_ = (void*) (source); \
if (n_ >= 16) \
memcpy(t_, s_, n_); \
else \
for (i_ = 0; i_ < n_; i_++) \
t_[i_] = s_[i_]; \
} while (0)
#else
#define Py_MEMCPY memcpy
#endif
#include <stdlib.h>
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h> /* needed for 'finite' declaration on some platforms */
#endif
#include <math.h> /* Moved here from the math section, before extern "C" */
/********************************************
* WRAPPER FOR <time.h> and/or <sys/time.h> *
********************************************/
#ifdef TIME_WITH_SYS_TIME
#include <sys/time.h>
#include <time.h>
#else /* !TIME_WITH_SYS_TIME */
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#else /* !HAVE_SYS_TIME_H */
#include <time.h>
#endif /* !HAVE_SYS_TIME_H */
#endif /* !TIME_WITH_SYS_TIME */
/******************************
* WRAPPER FOR <sys/select.h> *
******************************/
/* NB caller must include <sys/types.h> */
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif /* !HAVE_SYS_SELECT_H */
/*******************************
* stat() and fstat() fiddling *
*******************************/
/* We expect that stat and fstat exist on most systems.
* It's confirmed on Unix, Mac and Windows.
* If you don't have them, add
* #define DONT_HAVE_STAT
* and/or
* #define DONT_HAVE_FSTAT
* to your pyconfig.h. Python code beyond this should check HAVE_STAT and
* HAVE_FSTAT instead.
* Also
* #define HAVE_SYS_STAT_H
* if <sys/stat.h> exists on your platform, and
* #define HAVE_STAT_H
* if <stat.h> does.
*/
#ifndef DONT_HAVE_STAT
#define HAVE_STAT
#endif
#ifndef DONT_HAVE_FSTAT
#define HAVE_FSTAT
#endif
#ifdef RISCOS
#include <sys/types.h>
#include "unixstuff.h"
#endif
#ifdef HAVE_SYS_STAT_H
#if defined(PYOS_OS2) && defined(PYCC_GCC)
#include <sys/types.h>
#endif
#include <sys/stat.h>
#elif defined(HAVE_STAT_H)
#include <stat.h>
#endif
#if defined(PYCC_VACPP)
/* VisualAge C/C++ Failed to Define MountType Field in sys/stat.h */
#define S_IFMT (S_IFDIR|S_IFCHR|S_IFREG)
#endif
#ifndef S_ISREG
#define S_ISREG(x) (((x) & S_IFMT) == S_IFREG)
#endif
#ifndef S_ISDIR
#define S_ISDIR(x) (((x) & S_IFMT) == S_IFDIR)
#endif
#ifdef __cplusplus
/* Move this down here since some C++ #include's don't like to be included
inside an extern "C" */
extern "C" {
#endif
/* Py_ARITHMETIC_RIGHT_SHIFT
* C doesn't define whether a right-shift of a signed integer sign-extends
* or zero-fills. Here a macro to force sign extension:
* Py_ARITHMETIC_RIGHT_SHIFT(TYPE, I, J)
* Return I >> J, forcing sign extension. Arithmetically, return the
* floor of I/2**J.
* Requirements:
* I should have signed integer type. In the terminology of C99, this can
* be either one of the five standard signed integer types (signed char,
* short, int, long, long long) or an extended signed integer type.
* J is an integer >= 0 and strictly less than the number of bits in the
* type of I (because C doesn't define what happens for J outside that
* range either).
* TYPE used to specify the type of I, but is now ignored. It's been left
* in for backwards compatibility with versions <= 2.6 or 3.0.
* Caution:
* I may be evaluated more than once.
*/
#ifdef SIGNED_RIGHT_SHIFT_ZERO_FILLS
#define Py_ARITHMETIC_RIGHT_SHIFT(TYPE, I, J) \
((I) < 0 ? -1-((-1-(I)) >> (J)) : (I) >> (J))
#else
#define Py_ARITHMETIC_RIGHT_SHIFT(TYPE, I, J) ((I) >> (J))
#endif
/* Py_FORCE_EXPANSION(X)
* "Simply" returns its argument. However, macro expansions within the
* argument are evaluated. This unfortunate trickery is needed to get
* token-pasting to work as desired in some cases.
*/
#define Py_FORCE_EXPANSION(X) X
/* Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW)
* Cast VALUE to type NARROW from type WIDE. In Py_DEBUG mode, this
* assert-fails if any information is lost.
* Caution:
* VALUE may be evaluated more than once.
*/
#ifdef Py_DEBUG
#define Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW) \
(assert((WIDE)(NARROW)(VALUE) == (VALUE)), (NARROW)(VALUE))
#else
#define Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW) (NARROW)(VALUE)
#endif
/* Py_SET_ERRNO_ON_MATH_ERROR(x)
* If a libm function did not set errno, but it looks like the result
* overflowed or not-a-number, set errno to ERANGE or EDOM. Set errno
* to 0 before calling a libm function, and invoke this macro after,
* passing the function result.
* Caution:
* This isn't reliable. See Py_OVERFLOWED comments.
* X is evaluated more than once.
*/
#if defined(__FreeBSD__) || defined(__OpenBSD__) || (defined(__hpux) && defined(__ia64))
#define _Py_SET_EDOM_FOR_NAN(X) if (isnan(X)) errno = EDOM;
#else
#define _Py_SET_EDOM_FOR_NAN(X) ;
#endif
#define Py_SET_ERRNO_ON_MATH_ERROR(X) \
do { \
if (errno == 0) { \
if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL) \
errno = ERANGE; \
else _Py_SET_EDOM_FOR_NAN(X) \
} \
} while(0)
/* Py_SET_ERANGE_ON_OVERFLOW(x)
* An alias of Py_SET_ERRNO_ON_MATH_ERROR for backward-compatibility.
*/
#define Py_SET_ERANGE_IF_OVERFLOW(X) Py_SET_ERRNO_ON_MATH_ERROR(X)
/* Py_ADJUST_ERANGE1(x)
* Py_ADJUST_ERANGE2(x, y)
* Set errno to 0 before calling a libm function, and invoke one of these
* macros after, passing the function result(s) (Py_ADJUST_ERANGE2 is useful
* for functions returning complex results). This makes two kinds of
* adjustments to errno: (A) If it looks like the platform libm set
* errno=ERANGE due to underflow, clear errno. (B) If it looks like the
* platform libm overflowed but didn't set errno, force errno to ERANGE. In
* effect, we're trying to force a useful implementation of C89 errno
* behavior.
* Caution:
* This isn't reliable. See Py_OVERFLOWED comments.
* X and Y may be evaluated more than once.
*/
#define Py_ADJUST_ERANGE1(X) \
do { \
if (errno == 0) { \
if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL) \
errno = ERANGE; \
} \
else if (errno == ERANGE && (X) == 0.0) \
errno = 0; \
} while(0)
#define Py_ADJUST_ERANGE2(X, Y) \
do { \
if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL || \
(Y) == Py_HUGE_VAL || (Y) == -Py_HUGE_VAL) { \
if (errno == 0) \
errno = ERANGE; \
} \
else if (errno == ERANGE) \
errno = 0; \
} while(0)
/* The functions _Py_dg_strtod and _Py_dg_dtoa in Python/dtoa.c (which are
* required to support the short float repr introduced in Python 3.1) require
* that the floating-point unit that's being used for arithmetic operations
* on C doubles is set to use 53-bit precision. It also requires that the
* FPU rounding mode is round-half-to-even, but that's less often an issue.
*
* If your FPU isn't already set to 53-bit precision/round-half-to-even, and
* you want to make use of _Py_dg_strtod and _Py_dg_dtoa, then you should
*
* #define HAVE_PY_SET_53BIT_PRECISION 1
*
* and also give appropriate definitions for the following three macros:
*
* _PY_SET_53BIT_PRECISION_START : store original FPU settings, and
* set FPU to 53-bit precision/round-half-to-even
* _PY_SET_53BIT_PRECISION_END : restore original FPU settings
* _PY_SET_53BIT_PRECISION_HEADER : any variable declarations needed to
* use the two macros above.
*
* The macros are designed to be used within a single C function: see
* Python/pystrtod.c for an example of their use.
*/
/* get and set x87 control word for gcc/x86 */
#ifdef HAVE_GCC_ASM_FOR_X87
#define HAVE_PY_SET_53BIT_PRECISION 1
/* _Py_get/set_387controlword functions are defined in Python/pymath.c */
#define _Py_SET_53BIT_PRECISION_HEADER \
unsigned short old_387controlword, new_387controlword
#define _Py_SET_53BIT_PRECISION_START \
do { \
old_387controlword = _Py_get_387controlword(); \
new_387controlword = (old_387controlword & ~0x0f00) | 0x0200; \
if (new_387controlword != old_387controlword) \
_Py_set_387controlword(new_387controlword); \
} while (0)
#define _Py_SET_53BIT_PRECISION_END \
if (new_387controlword != old_387controlword) \
_Py_set_387controlword(old_387controlword)
#endif
/* get and set x87 control word for VisualStudio/x86 */
#if defined(_MSC_VER) && !defined(_WIN64) /* x87 not supported in 64-bit */
#define HAVE_PY_SET_53BIT_PRECISION 1
#define _Py_SET_53BIT_PRECISION_HEADER \
unsigned int old_387controlword, new_387controlword, out_387controlword
/* We use the __control87_2 function to set only the x87 control word.
The SSE control word is unaffected. */
#define _Py_SET_53BIT_PRECISION_START \
do { \
__control87_2(0, 0, &old_387controlword, NULL); \
new_387controlword = \
(old_387controlword & ~(_MCW_PC | _MCW_RC)) | (_PC_53 | _RC_NEAR); \
if (new_387controlword != old_387controlword) \
__control87_2(new_387controlword, _MCW_PC | _MCW_RC, \
&out_387controlword, NULL); \
} while (0)
#define _Py_SET_53BIT_PRECISION_END \
do { \
if (new_387controlword != old_387controlword) \
__control87_2(old_387controlword, _MCW_PC | _MCW_RC, \
&out_387controlword, NULL); \
} while (0)
#endif
/* default definitions are empty */
#ifndef HAVE_PY_SET_53BIT_PRECISION
#define _Py_SET_53BIT_PRECISION_HEADER
#define _Py_SET_53BIT_PRECISION_START
#define _Py_SET_53BIT_PRECISION_END
#endif
/* If we can't guarantee 53-bit precision, don't use the code
in Python/dtoa.c, but fall back to standard code. This
means that repr of a float will be long (17 sig digits).
Realistically, there are two things that could go wrong:
(1) doubles aren't IEEE 754 doubles, or
(2) we're on x86 with the rounding precision set to 64-bits
(extended precision), and we don't know how to change
the rounding precision.
*/
#if !defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) && \
!defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) && \
!defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
#define PY_NO_SHORT_FLOAT_REPR
#endif
/* double rounding is symptomatic of use of extended precision on x86. If
we're seeing double rounding, and we don't have any mechanism available for
changing the FPU rounding precision, then don't use Python/dtoa.c. */
#if defined(X87_DOUBLE_ROUNDING) && !defined(HAVE_PY_SET_53BIT_PRECISION)
#define PY_NO_SHORT_FLOAT_REPR
#endif
/* Py_DEPRECATED(version)
* Declare a variable, type, or function deprecated.
* Usage:
* extern int old_var Py_DEPRECATED(2.3);
* typedef int T1 Py_DEPRECATED(2.4);
* extern int x() Py_DEPRECATED(2.5);
*/
#if defined(__GNUC__) && ((__GNUC__ >= 4) || \
(__GNUC__ == 3) && (__GNUC_MINOR__ >= 1))
#define Py_DEPRECATED(VERSION_UNUSED) __attribute__((__deprecated__))
#else
#define Py_DEPRECATED(VERSION_UNUSED)
#endif
/**************************************************************************
Prototypes that are missing from the standard include files on some systems
(and possibly only some versions of such systems.)
Please be conservative with adding new ones, document them and enclose them
in platform-specific #ifdefs.
**************************************************************************/
#ifdef SOLARIS
/* Unchecked */
extern int gethostname(char *, int);
#endif
#ifdef __BEOS__
/* Unchecked */
/* It's in the libs, but not the headers... - [cjh] */
int shutdown( int, int );
#endif
#ifdef HAVE__GETPTY
#include <sys/types.h> /* we need to import mode_t */
extern char * _getpty(int *, int, mode_t, int);
#endif
/* On QNX 6, struct termio must be declared by including sys/termio.h
if TCGETA, TCSETA, TCSETAW, or TCSETAF are used. sys/termio.h must
be included before termios.h or it will generate an error. */
#if defined(HAVE_SYS_TERMIO_H) && !defined(__hpux)
#include <sys/termio.h>
#endif
#if defined(HAVE_OPENPTY) || defined(HAVE_FORKPTY)
#if !defined(HAVE_PTY_H) && !defined(HAVE_LIBUTIL_H) && !defined(HAVE_UTIL_H)
/* BSDI does not supply a prototype for the 'openpty' and 'forkpty'
functions, even though they are included in libutil. */
#include <termios.h>
extern int openpty(int *, int *, char *, struct termios *, struct winsize *);
extern pid_t forkpty(int *, char *, struct termios *, struct winsize *);
#endif /* !defined(HAVE_PTY_H) && !defined(HAVE_LIBUTIL_H) */
#endif /* defined(HAVE_OPENPTY) || defined(HAVE_FORKPTY) */
/* These are pulled from various places. It isn't obvious on what platforms
they are necessary, nor what the exact prototype should look like (which
is likely to vary between platforms!) If you find you need one of these
declarations, please move them to a platform-specific block and include
proper prototypes. */
#if 0
/* From Modules/resource.c */
extern int getrusage();
extern int getpagesize();
/* From Python/sysmodule.c and Modules/posixmodule.c */
extern int fclose(FILE *);
/* From Modules/posixmodule.c */
extern int fdatasync(int);
#endif /* 0 */
/* On 4.4BSD-descendants, ctype functions serves the whole range of
* wchar_t character set rather than single byte code points only.
* This characteristic can break some operations of string object
* including str.upper() and str.split() on UTF-8 locales. This
* workaround was provided by Tim Robbins of FreeBSD project.
*/
#ifdef __FreeBSD__
#include <osreldate.h>
#if __FreeBSD_version > 500039
# define _PY_PORT_CTYPE_UTF8_ISSUE
#endif
#endif
#if defined(__APPLE__)
# define _PY_PORT_CTYPE_UTF8_ISSUE
#endif
#ifdef _PY_PORT_CTYPE_UTF8_ISSUE
#include <ctype.h>
#include <wctype.h>
#undef isalnum
#define isalnum(c) iswalnum(btowc(c))
#undef isalpha
#define isalpha(c) iswalpha(btowc(c))
#undef islower
#define islower(c) iswlower(btowc(c))
#undef isspace
#define isspace(c) iswspace(btowc(c))
#undef isupper
#define isupper(c) iswupper(btowc(c))
#undef tolower
#define tolower(c) towlower(btowc(c))
#undef toupper
#define toupper(c) towupper(btowc(c))
#endif
/* Declarations for symbol visibility.
PyAPI_FUNC(type): Declares a public Python API function and return type
PyAPI_DATA(type): Declares public Python data and its type
PyMODINIT_FUNC: A Python module init function. If these functions are
inside the Python core, they are private to the core.
If in an extension module, it may be declared with
external linkage depending on the platform.
As a number of platforms support/require "__declspec(dllimport/dllexport)",
we support a HAVE_DECLSPEC_DLL macro to save duplication.
*/
/*
All windows ports, except cygwin, are handled in PC/pyconfig.h.
BeOS and cygwin are the only other autoconf platform requiring special
linkage handling and both of these use __declspec().
*/
#if defined(__CYGWIN__) || defined(__BEOS__)
# define HAVE_DECLSPEC_DLL
#endif
/* only get special linkage if built as shared or platform is Cygwin */
#if defined(Py_ENABLE_SHARED) || defined(__CYGWIN__)
# if defined(HAVE_DECLSPEC_DLL)
# ifdef Py_BUILD_CORE
# define PyAPI_FUNC(RTYPE) __declspec(dllexport) RTYPE
# define PyAPI_DATA(RTYPE) extern __declspec(dllexport) RTYPE
/* module init functions inside the core need no external linkage */
/* except for Cygwin to handle embedding (FIXME: BeOS too?) */
# if defined(__CYGWIN__)
# define PyMODINIT_FUNC __declspec(dllexport) void
# else /* __CYGWIN__ */
# define PyMODINIT_FUNC void
# endif /* __CYGWIN__ */
# else /* Py_BUILD_CORE */
/* Building an extension module, or an embedded situation */
/* public Python functions and data are imported */
/* Under Cygwin, auto-import functions to prevent compilation */
/* failures similar to those described at the bottom of 4.1: */
/* http://docs.python.org/extending/windows.html#a-cookbook-approach */
# if !defined(__CYGWIN__)
# define PyAPI_FUNC(RTYPE) __declspec(dllimport) RTYPE
# endif /* !__CYGWIN__ */
# define PyAPI_DATA(RTYPE) extern __declspec(dllimport) RTYPE
/* module init functions outside the core must be exported */
# if defined(__cplusplus)
# define PyMODINIT_FUNC extern "C" __declspec(dllexport) void
# else /* __cplusplus */
# define PyMODINIT_FUNC __declspec(dllexport) void
# endif /* __cplusplus */
# endif /* Py_BUILD_CORE */
# endif /* HAVE_DECLSPEC */
#endif /* Py_ENABLE_SHARED */
/* If no external linkage macros defined by now, create defaults */
#ifndef PyAPI_FUNC
# define PyAPI_FUNC(RTYPE) RTYPE
#endif
#ifndef PyAPI_DATA
# define PyAPI_DATA(RTYPE) extern RTYPE
#endif
#ifndef PyMODINIT_FUNC
# if defined(__cplusplus)
# define PyMODINIT_FUNC extern "C" void
# else /* __cplusplus */
# define PyMODINIT_FUNC void
# endif /* __cplusplus */
#endif
/* Deprecated DL_IMPORT and DL_EXPORT macros */
#if defined(Py_ENABLE_SHARED) && defined (HAVE_DECLSPEC_DLL)
# if defined(Py_BUILD_CORE)
# define DL_IMPORT(RTYPE) __declspec(dllexport) RTYPE
# define DL_EXPORT(RTYPE) __declspec(dllexport) RTYPE
# else
# define DL_IMPORT(RTYPE) __declspec(dllimport) RTYPE
# define DL_EXPORT(RTYPE) __declspec(dllexport) RTYPE
# endif
#endif
#ifndef DL_EXPORT
# define DL_EXPORT(RTYPE) RTYPE
#endif
#ifndef DL_IMPORT
# define DL_IMPORT(RTYPE) RTYPE
#endif
/* End of deprecated DL_* macros */
/* If the fd manipulation macros aren't defined,
here is a set that should do the job */
#if 0 /* disabled and probably obsolete */
#ifndef FD_SETSIZE
#define FD_SETSIZE 256
#endif
#ifndef FD_SET
typedef long fd_mask;
#define NFDBITS (sizeof(fd_mask) * NBBY) /* bits per mask */
#ifndef howmany
#define howmany(x, y) (((x)+((y)-1))/(y))
#endif /* howmany */
typedef struct fd_set {
fd_mask fds_bits[howmany(FD_SETSIZE, NFDBITS)];
} fd_set;
#define FD_SET(n, p) ((p)->fds_bits[(n)/NFDBITS] |= (1 << ((n) % NFDBITS)))
#define FD_CLR(n, p) ((p)->fds_bits[(n)/NFDBITS] &= ~(1 << ((n) % NFDBITS)))
#define FD_ISSET(n, p) ((p)->fds_bits[(n)/NFDBITS] & (1 << ((n) % NFDBITS)))
#define FD_ZERO(p) memset((char *)(p), '\0', sizeof(*(p)))
#endif /* FD_SET */
#endif /* fd manipulation macros */
/* limits.h constants that may be missing */
#ifndef INT_MAX
#define INT_MAX 2147483647
#endif
#ifndef LONG_MAX
#if SIZEOF_LONG == 4
#define LONG_MAX 0X7FFFFFFFL
#elif SIZEOF_LONG == 8
#define LONG_MAX 0X7FFFFFFFFFFFFFFFL
#else
#error "could not set LONG_MAX in pyport.h"
#endif
#endif
#ifndef LONG_MIN
#define LONG_MIN (-LONG_MAX-1)
#endif
#ifndef LONG_BIT
#define LONG_BIT (8 * SIZEOF_LONG)
#endif
#if LONG_BIT != 8 * SIZEOF_LONG
/* 04-Oct-2000 LONG_BIT is apparently (mis)defined as 64 on some recent
* 32-bit platforms using gcc. We try to catch that here at compile-time
* rather than waiting for integer multiplication to trigger bogus
* overflows.
*/
#error "LONG_BIT definition appears wrong for platform (bad gcc/glibc config?)."
#endif
#ifdef __cplusplus
}
#endif
/*
* Hide GCC attributes from compilers that don't support them.
*/
#if (!defined(__GNUC__) || __GNUC__ < 2 || \
(__GNUC__ == 2 && __GNUC_MINOR__ < 7) ) && \
!defined(RISCOS)
#define Py_GCC_ATTRIBUTE(x)
#else
#define Py_GCC_ATTRIBUTE(x) __attribute__(x)
#endif
/*
* Add PyArg_ParseTuple format where available.
*/
#ifdef HAVE_ATTRIBUTE_FORMAT_PARSETUPLE
#define Py_FORMAT_PARSETUPLE(func,p1,p2) __attribute__((format(func,p1,p2)))
#else
#define Py_FORMAT_PARSETUPLE(func,p1,p2)
#endif
/*
* Specify alignment on compilers that support it.
*/
#if defined(__GNUC__) && __GNUC__ >= 3
#define Py_ALIGNED(x) __attribute__((aligned(x)))
#else
#define Py_ALIGNED(x)
#endif
/* Eliminate end-of-loop code not reached warnings from SunPro C
* when using do{...}while(0) macros
*/
#ifdef __SUNPRO_C
#pragma error_messages (off,E_END_OF_LOOP_CODE_NOT_REACHED)
#endif
/*
* Older Microsoft compilers don't support the C99 long long literal suffixes,
* so these will be defined in PC/pyconfig.h for those compilers.
*/
#ifndef Py_LL
#define Py_LL(x) x##LL
#endif
#ifndef Py_ULL
#define Py_ULL(x) Py_LL(x##U)
#endif
#endif /* Py_PYPORT_H */

View File

@ -0,0 +1,200 @@
/* Thread and interpreter state structures and their interfaces */
#ifndef Py_PYSTATE_H
#define Py_PYSTATE_H
#ifdef __cplusplus
extern "C" {
#endif
/* State shared between threads */
struct _ts; /* Forward */
struct _is; /* Forward */
typedef struct _is {
struct _is *next;
struct _ts *tstate_head;
PyObject *modules;
PyObject *sysdict;
PyObject *builtins;
PyObject *modules_reloading;
PyObject *codec_search_path;
PyObject *codec_search_cache;
PyObject *codec_error_registry;
#ifdef HAVE_DLOPEN
int dlopenflags;
#endif
#ifdef WITH_TSC
int tscdump;
#endif
} PyInterpreterState;
/* State unique per thread */
struct _frame; /* Avoid including frameobject.h */
/* Py_tracefunc return -1 when raising an exception, or 0 for success. */
typedef int (*Py_tracefunc)(PyObject *, struct _frame *, int, PyObject *);
/* The following values are used for 'what' for tracefunc functions: */
#define PyTrace_CALL 0
#define PyTrace_EXCEPTION 1
#define PyTrace_LINE 2
#define PyTrace_RETURN 3
#define PyTrace_C_CALL 4
#define PyTrace_C_EXCEPTION 5
#define PyTrace_C_RETURN 6
typedef struct _ts {
/* See Python/ceval.c for comments explaining most fields */
struct _ts *next;
PyInterpreterState *interp;
struct _frame *frame;
int recursion_depth;
/* 'tracing' keeps track of the execution depth when tracing/profiling.
This is to prevent the actual trace/profile code from being recorded in
the trace/profile. */
int tracing;
int use_tracing;
Py_tracefunc c_profilefunc;
Py_tracefunc c_tracefunc;
PyObject *c_profileobj;
PyObject *c_traceobj;
PyObject *curexc_type;
PyObject *curexc_value;
PyObject *curexc_traceback;
PyObject *exc_type;
PyObject *exc_value;
PyObject *exc_traceback;
PyObject *dict; /* Stores per-thread state */
/* tick_counter is incremented whenever the check_interval ticker
* reaches zero. The purpose is to give a useful measure of the number
* of interpreted bytecode instructions in a given thread. This
* extremely lightweight statistic collector may be of interest to
* profilers (like psyco.jit()), although nothing in the core uses it.
*/
int tick_counter;
int gilstate_counter;
PyObject *async_exc; /* Asynchronous exception to raise */
long thread_id; /* Thread id where this tstate was created */
int trash_delete_nesting;
PyObject *trash_delete_later;
/* XXX signal handlers should also be here */
} PyThreadState;
PyAPI_FUNC(PyInterpreterState *) PyInterpreterState_New(void);
PyAPI_FUNC(void) PyInterpreterState_Clear(PyInterpreterState *);
PyAPI_FUNC(void) PyInterpreterState_Delete(PyInterpreterState *);
PyAPI_FUNC(PyThreadState *) PyThreadState_New(PyInterpreterState *);
PyAPI_FUNC(PyThreadState *) _PyThreadState_Prealloc(PyInterpreterState *);
PyAPI_FUNC(void) _PyThreadState_Init(PyThreadState *);
PyAPI_FUNC(void) PyThreadState_Clear(PyThreadState *);
PyAPI_FUNC(void) PyThreadState_Delete(PyThreadState *);
#ifdef WITH_THREAD
PyAPI_FUNC(void) PyThreadState_DeleteCurrent(void);
#endif
PyAPI_FUNC(PyThreadState *) PyThreadState_Get(void);
PyAPI_FUNC(PyThreadState *) PyThreadState_Swap(PyThreadState *);
PyAPI_FUNC(PyObject *) PyThreadState_GetDict(void);
PyAPI_FUNC(int) PyThreadState_SetAsyncExc(long, PyObject *);
/* Variable and macro for in-line access to current thread state */
PyAPI_DATA(PyThreadState *) _PyThreadState_Current;
#ifdef Py_DEBUG
#define PyThreadState_GET() PyThreadState_Get()
#else
#define PyThreadState_GET() (_PyThreadState_Current)
#endif
typedef
enum {PyGILState_LOCKED, PyGILState_UNLOCKED}
PyGILState_STATE;
/* Ensure that the current thread is ready to call the Python
C API, regardless of the current state of Python, or of its
thread lock. This may be called as many times as desired
by a thread so long as each call is matched with a call to
PyGILState_Release(). In general, other thread-state APIs may
be used between _Ensure() and _Release() calls, so long as the
thread-state is restored to its previous state before the Release().
For example, normal use of the Py_BEGIN_ALLOW_THREADS/
Py_END_ALLOW_THREADS macros are acceptable.
The return value is an opaque "handle" to the thread state when
PyGILState_Ensure() was called, and must be passed to
PyGILState_Release() to ensure Python is left in the same state. Even
though recursive calls are allowed, these handles can *not* be shared -
each unique call to PyGILState_Ensure must save the handle for its
call to PyGILState_Release.
When the function returns, the current thread will hold the GIL.
Failure is a fatal error.
*/
PyAPI_FUNC(PyGILState_STATE) PyGILState_Ensure(void);
/* Release any resources previously acquired. After this call, Python's
state will be the same as it was prior to the corresponding
PyGILState_Ensure() call (but generally this state will be unknown to
the caller, hence the use of the GILState API.)
Every call to PyGILState_Ensure must be matched by a call to
PyGILState_Release on the same thread.
*/
PyAPI_FUNC(void) PyGILState_Release(PyGILState_STATE);
/* Helper/diagnostic function - get the current thread state for
this thread. May return NULL if no GILState API has been used
on the current thread. Note that the main thread always has such a
thread-state, even if no auto-thread-state call has been made
on the main thread.
*/
PyAPI_FUNC(PyThreadState *) PyGILState_GetThisThreadState(void);
/* The implementation of sys._current_frames() Returns a dict mapping
thread id to that thread's current frame.
*/
PyAPI_FUNC(PyObject *) _PyThread_CurrentFrames(void);
/* Routines for advanced debuggers, requested by David Beazley.
Don't use unless you know what you are doing! */
PyAPI_FUNC(PyInterpreterState *) PyInterpreterState_Head(void);
PyAPI_FUNC(PyInterpreterState *) PyInterpreterState_Next(PyInterpreterState *);
PyAPI_FUNC(PyThreadState *) PyInterpreterState_ThreadHead(PyInterpreterState *);
PyAPI_FUNC(PyThreadState *) PyThreadState_Next(PyThreadState *);
typedef struct _frame *(*PyThreadFrameGetter)(PyThreadState *self_);
/* hook for PyEval_GetFrame(), requested for Psyco */
PyAPI_DATA(PyThreadFrameGetter) _PyThreadState_GetFrame;
#ifdef __cplusplus
}
#endif
#endif /* !Py_PYSTATE_H */

View File

@ -0,0 +1,23 @@
#ifndef Py_STRCMP_H
#define Py_STRCMP_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(int) PyOS_mystrnicmp(const char *, const char *, Py_ssize_t);
PyAPI_FUNC(int) PyOS_mystricmp(const char *, const char *);
#if defined(MS_WINDOWS) || defined(PYOS_OS2)
#define PyOS_strnicmp strnicmp
#define PyOS_stricmp stricmp
#else
#define PyOS_strnicmp PyOS_mystrnicmp
#define PyOS_stricmp PyOS_mystricmp
#endif
#ifdef __cplusplus
}
#endif
#endif /* !Py_STRCMP_H */

View File

@ -0,0 +1,45 @@
#ifndef Py_STRTOD_H
#define Py_STRTOD_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(double) PyOS_ascii_strtod(const char *str, char **ptr);
PyAPI_FUNC(double) PyOS_ascii_atof(const char *str);
/* Deprecated in 2.7 and 3.1. Will disappear in 2.8 (if it exists) and 3.2 */
PyAPI_FUNC(char *) PyOS_ascii_formatd(char *buffer, size_t buf_len,
const char *format, double d);
PyAPI_FUNC(double) PyOS_string_to_double(const char *str,
char **endptr,
PyObject *overflow_exception);
/* The caller is responsible for calling PyMem_Free to free the buffer
that's is returned. */
PyAPI_FUNC(char *) PyOS_double_to_string(double val,
char format_code,
int precision,
int flags,
int *type);
PyAPI_FUNC(double) _Py_parse_inf_or_nan(const char *p, char **endptr);
/* PyOS_double_to_string's "flags" parameter can be set to 0 or more of: */
#define Py_DTSF_SIGN 0x01 /* always add the sign */
#define Py_DTSF_ADD_DOT_0 0x02 /* if the result is an integer add ".0" */
#define Py_DTSF_ALT 0x04 /* "alternate" formatting. it's format_code
specific */
/* PyOS_double_to_string's "type", if non-NULL, will be set to one of: */
#define Py_DTST_FINITE 0
#define Py_DTST_INFINITE 1
#define Py_DTST_NAN 2
#ifdef __cplusplus
}
#endif
#endif /* !Py_STRTOD_H */

View File

@ -0,0 +1,182 @@
/* Interfaces to parse and execute pieces of python code */
#ifndef Py_PYTHONRUN_H
#define Py_PYTHONRUN_H
#ifdef __cplusplus
extern "C" {
#endif
#define PyCF_MASK (CO_FUTURE_DIVISION | CO_FUTURE_ABSOLUTE_IMPORT | \
CO_FUTURE_WITH_STATEMENT | CO_FUTURE_PRINT_FUNCTION | \
CO_FUTURE_UNICODE_LITERALS)
#define PyCF_MASK_OBSOLETE (CO_NESTED)
#define PyCF_SOURCE_IS_UTF8 0x0100
#define PyCF_DONT_IMPLY_DEDENT 0x0200
#define PyCF_ONLY_AST 0x0400
typedef struct {
int cf_flags; /* bitmask of CO_xxx flags relevant to future */
} PyCompilerFlags;
PyAPI_FUNC(void) Py_SetProgramName(char *);
PyAPI_FUNC(char *) Py_GetProgramName(void);
PyAPI_FUNC(void) Py_SetPythonHome(char *);
PyAPI_FUNC(char *) Py_GetPythonHome(void);
PyAPI_FUNC(void) Py_Initialize(void);
PyAPI_FUNC(void) Py_InitializeEx(int);
PyAPI_FUNC(void) Py_Finalize(void);
PyAPI_FUNC(int) Py_IsInitialized(void);
PyAPI_FUNC(PyThreadState *) Py_NewInterpreter(void);
PyAPI_FUNC(void) Py_EndInterpreter(PyThreadState *);
PyAPI_FUNC(int) PyRun_AnyFileFlags(FILE *, const char *, PyCompilerFlags *);
PyAPI_FUNC(int) PyRun_AnyFileExFlags(FILE *, const char *, int, PyCompilerFlags *);
PyAPI_FUNC(int) PyRun_SimpleStringFlags(const char *, PyCompilerFlags *);
PyAPI_FUNC(int) PyRun_SimpleFileExFlags(FILE *, const char *, int, PyCompilerFlags *);
PyAPI_FUNC(int) PyRun_InteractiveOneFlags(FILE *, const char *, PyCompilerFlags *);
PyAPI_FUNC(int) PyRun_InteractiveLoopFlags(FILE *, const char *, PyCompilerFlags *);
PyAPI_FUNC(struct _mod *) PyParser_ASTFromString(const char *, const char *,
int, PyCompilerFlags *flags,
PyArena *);
PyAPI_FUNC(struct _mod *) PyParser_ASTFromFile(FILE *, const char *, int,
char *, char *,
PyCompilerFlags *, int *,
PyArena *);
#define PyParser_SimpleParseString(S, B) \
PyParser_SimpleParseStringFlags(S, B, 0)
#define PyParser_SimpleParseFile(FP, S, B) \
PyParser_SimpleParseFileFlags(FP, S, B, 0)
PyAPI_FUNC(struct _node *) PyParser_SimpleParseStringFlags(const char *, int,
int);
PyAPI_FUNC(struct _node *) PyParser_SimpleParseFileFlags(FILE *, const char *,
int, int);
PyAPI_FUNC(PyObject *) PyRun_StringFlags(const char *, int, PyObject *,
PyObject *, PyCompilerFlags *);
PyAPI_FUNC(PyObject *) PyRun_FileExFlags(FILE *, const char *, int,
PyObject *, PyObject *, int,
PyCompilerFlags *);
#define Py_CompileString(str, p, s) Py_CompileStringFlags(str, p, s, NULL)
PyAPI_FUNC(PyObject *) Py_CompileStringFlags(const char *, const char *, int,
PyCompilerFlags *);
PyAPI_FUNC(struct symtable *) Py_SymtableString(const char *, const char *, int);
PyAPI_FUNC(void) PyErr_Print(void);
PyAPI_FUNC(void) PyErr_PrintEx(int);
PyAPI_FUNC(void) PyErr_Display(PyObject *, PyObject *, PyObject *);
PyAPI_FUNC(int) Py_AtExit(void (*func)(void));
PyAPI_FUNC(void) Py_Exit(int);
PyAPI_FUNC(int) Py_FdIsInteractive(FILE *, const char *);
/* Bootstrap */
PyAPI_FUNC(int) Py_Main(int argc, char **argv);
/* Use macros for a bunch of old variants */
#define PyRun_String(str, s, g, l) PyRun_StringFlags(str, s, g, l, NULL)
#define PyRun_AnyFile(fp, name) PyRun_AnyFileExFlags(fp, name, 0, NULL)
#define PyRun_AnyFileEx(fp, name, closeit) \
PyRun_AnyFileExFlags(fp, name, closeit, NULL)
#define PyRun_AnyFileFlags(fp, name, flags) \
PyRun_AnyFileExFlags(fp, name, 0, flags)
#define PyRun_SimpleString(s) PyRun_SimpleStringFlags(s, NULL)
#define PyRun_SimpleFile(f, p) PyRun_SimpleFileExFlags(f, p, 0, NULL)
#define PyRun_SimpleFileEx(f, p, c) PyRun_SimpleFileExFlags(f, p, c, NULL)
#define PyRun_InteractiveOne(f, p) PyRun_InteractiveOneFlags(f, p, NULL)
#define PyRun_InteractiveLoop(f, p) PyRun_InteractiveLoopFlags(f, p, NULL)
#define PyRun_File(fp, p, s, g, l) \
PyRun_FileExFlags(fp, p, s, g, l, 0, NULL)
#define PyRun_FileEx(fp, p, s, g, l, c) \
PyRun_FileExFlags(fp, p, s, g, l, c, NULL)
#define PyRun_FileFlags(fp, p, s, g, l, flags) \
PyRun_FileExFlags(fp, p, s, g, l, 0, flags)
/* In getpath.c */
PyAPI_FUNC(char *) Py_GetProgramFullPath(void);
PyAPI_FUNC(char *) Py_GetPrefix(void);
PyAPI_FUNC(char *) Py_GetExecPrefix(void);
PyAPI_FUNC(char *) Py_GetPath(void);
/* In their own files */
PyAPI_FUNC(const char *) Py_GetVersion(void);
PyAPI_FUNC(const char *) Py_GetPlatform(void);
PyAPI_FUNC(const char *) Py_GetCopyright(void);
PyAPI_FUNC(const char *) Py_GetCompiler(void);
PyAPI_FUNC(const char *) Py_GetBuildInfo(void);
PyAPI_FUNC(const char *) _Py_svnversion(void);
PyAPI_FUNC(const char *) Py_SubversionRevision(void);
PyAPI_FUNC(const char *) Py_SubversionShortBranch(void);
PyAPI_FUNC(const char *) _Py_hgidentifier(void);
PyAPI_FUNC(const char *) _Py_hgversion(void);
/* Internal -- various one-time initializations */
PyAPI_FUNC(PyObject *) _PyBuiltin_Init(void);
PyAPI_FUNC(PyObject *) _PySys_Init(void);
PyAPI_FUNC(void) _PyImport_Init(void);
PyAPI_FUNC(void) _PyExc_Init(void);
PyAPI_FUNC(void) _PyImportHooks_Init(void);
PyAPI_FUNC(int) _PyFrame_Init(void);
PyAPI_FUNC(int) _PyInt_Init(void);
PyAPI_FUNC(int) _PyLong_Init(void);
PyAPI_FUNC(void) _PyFloat_Init(void);
PyAPI_FUNC(int) PyByteArray_Init(void);
PyAPI_FUNC(void) _PyRandom_Init(void);
/* Various internal finalizers */
PyAPI_FUNC(void) _PyExc_Fini(void);
PyAPI_FUNC(void) _PyImport_Fini(void);
PyAPI_FUNC(void) PyMethod_Fini(void);
PyAPI_FUNC(void) PyFrame_Fini(void);
PyAPI_FUNC(void) PyCFunction_Fini(void);
PyAPI_FUNC(void) PyDict_Fini(void);
PyAPI_FUNC(void) PyTuple_Fini(void);
PyAPI_FUNC(void) PyList_Fini(void);
PyAPI_FUNC(void) PySet_Fini(void);
PyAPI_FUNC(void) PyString_Fini(void);
PyAPI_FUNC(void) PyInt_Fini(void);
PyAPI_FUNC(void) PyFloat_Fini(void);
PyAPI_FUNC(void) PyOS_FiniInterrupts(void);
PyAPI_FUNC(void) PyByteArray_Fini(void);
PyAPI_FUNC(void) _PyRandom_Fini(void);
/* Stuff with no proper home (yet) */
PyAPI_FUNC(char *) PyOS_Readline(FILE *, FILE *, char *);
PyAPI_DATA(int) (*PyOS_InputHook)(void);
PyAPI_DATA(char) *(*PyOS_ReadlineFunctionPointer)(FILE *, FILE *, char *);
PyAPI_DATA(PyThreadState*) _PyOS_ReadlineTState;
/* Stack size, in "pointers" (so we get extra safety margins
on 64-bit platforms). On a 32-bit platform, this translates
to a 8k margin. */
#define PYOS_STACK_MARGIN 2048
#if defined(WIN32) && !defined(MS_WIN64) && defined(_MSC_VER) && _MSC_VER >= 1300
/* Enable stack checking under Microsoft C */
#define USE_STACKCHECK
#endif
#ifdef USE_STACKCHECK
/* Check that we aren't overflowing our stack */
PyAPI_FUNC(int) PyOS_CheckStack(void);
#endif
/* Signals */
typedef void (*PyOS_sighandler_t)(int);
PyAPI_FUNC(PyOS_sighandler_t) PyOS_getsig(int);
PyAPI_FUNC(PyOS_sighandler_t) PyOS_setsig(int, PyOS_sighandler_t);
/* Random */
PyAPI_FUNC(int) _PyOS_URandom (void *buffer, Py_ssize_t size);
#ifdef __cplusplus
}
#endif
#endif /* !Py_PYTHONRUN_H */

View File

@ -0,0 +1,41 @@
#ifndef Py_PYTHREAD_H
#define Py_PYTHREAD_H
typedef void *PyThread_type_lock;
typedef void *PyThread_type_sema;
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(void) PyThread_init_thread(void);
PyAPI_FUNC(long) PyThread_start_new_thread(void (*)(void *), void *);
PyAPI_FUNC(void) PyThread_exit_thread(void);
PyAPI_FUNC(long) PyThread_get_thread_ident(void);
PyAPI_FUNC(PyThread_type_lock) PyThread_allocate_lock(void);
PyAPI_FUNC(void) PyThread_free_lock(PyThread_type_lock);
PyAPI_FUNC(int) PyThread_acquire_lock(PyThread_type_lock, int);
#define WAIT_LOCK 1
#define NOWAIT_LOCK 0
PyAPI_FUNC(void) PyThread_release_lock(PyThread_type_lock);
PyAPI_FUNC(size_t) PyThread_get_stacksize(void);
PyAPI_FUNC(int) PyThread_set_stacksize(size_t);
/* Thread Local Storage (TLS) API */
PyAPI_FUNC(int) PyThread_create_key(void);
PyAPI_FUNC(void) PyThread_delete_key(int);
PyAPI_FUNC(int) PyThread_set_key_value(int, void *);
PyAPI_FUNC(void *) PyThread_get_key_value(int);
PyAPI_FUNC(void) PyThread_delete_key_value(int key);
/* Cleanup after a fork */
PyAPI_FUNC(void) PyThread_ReInitTLS(void);
#ifdef __cplusplus
}
#endif
#endif /* !Py_PYTHREAD_H */

View File

@ -0,0 +1,28 @@
/* Range object interface */
#ifndef Py_RANGEOBJECT_H
#define Py_RANGEOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/* This is about the type 'xrange', not the built-in function range(), which
returns regular lists. */
/*
A range object represents an integer range. This is an immutable object;
a range cannot change its value after creation.
Range objects behave like the corresponding tuple objects except that
they are represented by a start, stop, and step datamembers.
*/
PyAPI_DATA(PyTypeObject) PyRange_Type;
#define PyRange_Check(op) (Py_TYPE(op) == &PyRange_Type)
#ifdef __cplusplus
}
#endif
#endif /* !Py_RANGEOBJECT_H */

View File

@ -0,0 +1,99 @@
/* Set object interface */
#ifndef Py_SETOBJECT_H
#define Py_SETOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/*
There are three kinds of slots in the table:
1. Unused: key == NULL
2. Active: key != NULL and key != dummy
3. Dummy: key == dummy
Note: .pop() abuses the hash field of an Unused or Dummy slot to
hold a search finger. The hash field of Unused or Dummy slots has
no meaning otherwise.
*/
#define PySet_MINSIZE 8
typedef struct {
long hash; /* cached hash code for the entry key */
PyObject *key;
} setentry;
/*
This data structure is shared by set and frozenset objects.
*/
typedef struct _setobject PySetObject;
struct _setobject {
PyObject_HEAD
Py_ssize_t fill; /* # Active + # Dummy */
Py_ssize_t used; /* # Active */
/* The table contains mask + 1 slots, and that's a power of 2.
* We store the mask instead of the size because the mask is more
* frequently needed.
*/
Py_ssize_t mask;
/* table points to smalltable for small tables, else to
* additional malloc'ed memory. table is never NULL! This rule
* saves repeated runtime null-tests.
*/
setentry *table;
setentry *(*lookup)(PySetObject *so, PyObject *key, long hash);
setentry smalltable[PySet_MINSIZE];
long hash; /* only used by frozenset objects */
PyObject *weakreflist; /* List of weak references */
};
PyAPI_DATA(PyTypeObject) PySet_Type;
PyAPI_DATA(PyTypeObject) PyFrozenSet_Type;
/* Invariants for frozensets:
* data is immutable.
* hash is the hash of the frozenset or -1 if not computed yet.
* Invariants for sets:
* hash is -1
*/
#define PyFrozenSet_CheckExact(ob) (Py_TYPE(ob) == &PyFrozenSet_Type)
#define PyAnySet_CheckExact(ob) \
(Py_TYPE(ob) == &PySet_Type || Py_TYPE(ob) == &PyFrozenSet_Type)
#define PyAnySet_Check(ob) \
(Py_TYPE(ob) == &PySet_Type || Py_TYPE(ob) == &PyFrozenSet_Type || \
PyType_IsSubtype(Py_TYPE(ob), &PySet_Type) || \
PyType_IsSubtype(Py_TYPE(ob), &PyFrozenSet_Type))
#define PySet_Check(ob) \
(Py_TYPE(ob) == &PySet_Type || \
PyType_IsSubtype(Py_TYPE(ob), &PySet_Type))
#define PyFrozenSet_Check(ob) \
(Py_TYPE(ob) == &PyFrozenSet_Type || \
PyType_IsSubtype(Py_TYPE(ob), &PyFrozenSet_Type))
PyAPI_FUNC(PyObject *) PySet_New(PyObject *);
PyAPI_FUNC(PyObject *) PyFrozenSet_New(PyObject *);
PyAPI_FUNC(Py_ssize_t) PySet_Size(PyObject *anyset);
#define PySet_GET_SIZE(so) (((PySetObject *)(so))->used)
PyAPI_FUNC(int) PySet_Clear(PyObject *set);
PyAPI_FUNC(int) PySet_Contains(PyObject *anyset, PyObject *key);
PyAPI_FUNC(int) PySet_Discard(PyObject *set, PyObject *key);
PyAPI_FUNC(int) PySet_Add(PyObject *set, PyObject *key);
PyAPI_FUNC(int) _PySet_Next(PyObject *set, Py_ssize_t *pos, PyObject **key);
PyAPI_FUNC(int) _PySet_NextEntry(PyObject *set, Py_ssize_t *pos, PyObject **key, long *hash);
PyAPI_FUNC(PyObject *) PySet_Pop(PyObject *set);
PyAPI_FUNC(int) _PySet_Update(PyObject *set, PyObject *iterable);
#ifdef __cplusplus
}
#endif
#endif /* !Py_SETOBJECT_H */

View File

@ -0,0 +1,44 @@
#ifndef Py_SLICEOBJECT_H
#define Py_SLICEOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/* The unique ellipsis object "..." */
PyAPI_DATA(PyObject) _Py_EllipsisObject; /* Don't use this directly */
#define Py_Ellipsis (&_Py_EllipsisObject)
/* Slice object interface */
/*
A slice object containing start, stop, and step data members (the
names are from range). After much talk with Guido, it was decided to
let these be any arbitrary python type. Py_None stands for omitted values.
*/
typedef struct {
PyObject_HEAD
PyObject *start, *stop, *step; /* not NULL */
} PySliceObject;
PyAPI_DATA(PyTypeObject) PySlice_Type;
PyAPI_DATA(PyTypeObject) PyEllipsis_Type;
#define PySlice_Check(op) (Py_TYPE(op) == &PySlice_Type)
PyAPI_FUNC(PyObject *) PySlice_New(PyObject* start, PyObject* stop,
PyObject* step);
PyAPI_FUNC(PyObject *) _PySlice_FromIndices(Py_ssize_t start, Py_ssize_t stop);
PyAPI_FUNC(int) PySlice_GetIndices(PySliceObject *r, Py_ssize_t length,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step);
PyAPI_FUNC(int) PySlice_GetIndicesEx(PySliceObject *r, Py_ssize_t length,
Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength);
#ifdef __cplusplus
}
#endif
#endif /* !Py_SLICEOBJECT_H */

View File

@ -0,0 +1,210 @@
/* String (str/bytes) object interface */
#ifndef Py_STRINGOBJECT_H
#define Py_STRINGOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdarg.h>
/*
Type PyStringObject represents a character string. An extra zero byte is
reserved at the end to ensure it is zero-terminated, but a size is
present so strings with null bytes in them can be represented. This
is an immutable object type.
There are functions to create new string objects, to test
an object for string-ness, and to get the
string value. The latter function returns a null pointer
if the object is not of the proper type.
There is a variant that takes an explicit size as well as a
variant that assumes a zero-terminated string. Note that none of the
functions should be applied to nil objects.
*/
/* Caching the hash (ob_shash) saves recalculation of a string's hash value.
Interning strings (ob_sstate) tries to ensure that only one string
object with a given value exists, so equality tests can be one pointer
comparison. This is generally restricted to strings that "look like"
Python identifiers, although the intern() builtin can be used to force
interning of any string.
Together, these sped the interpreter by up to 20%. */
typedef struct {
PyObject_VAR_HEAD
long ob_shash;
int ob_sstate;
char ob_sval[1];
/* Invariants:
* ob_sval contains space for 'ob_size+1' elements.
* ob_sval[ob_size] == 0.
* ob_shash is the hash of the string or -1 if not computed yet.
* ob_sstate != 0 iff the string object is in stringobject.c's
* 'interned' dictionary; in this case the two references
* from 'interned' to this object are *not counted* in ob_refcnt.
*/
} PyStringObject;
#define SSTATE_NOT_INTERNED 0
#define SSTATE_INTERNED_MORTAL 1
#define SSTATE_INTERNED_IMMORTAL 2
PyAPI_DATA(PyTypeObject) PyBaseString_Type;
PyAPI_DATA(PyTypeObject) PyString_Type;
#define PyString_Check(op) \
PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_STRING_SUBCLASS)
#define PyString_CheckExact(op) (Py_TYPE(op) == &PyString_Type)
PyAPI_FUNC(PyObject *) PyString_FromStringAndSize(const char *, Py_ssize_t);
PyAPI_FUNC(PyObject *) PyString_FromString(const char *);
PyAPI_FUNC(PyObject *) PyString_FromFormatV(const char*, va_list)
Py_GCC_ATTRIBUTE((format(printf, 1, 0)));
PyAPI_FUNC(PyObject *) PyString_FromFormat(const char*, ...)
Py_GCC_ATTRIBUTE((format(printf, 1, 2)));
PyAPI_FUNC(Py_ssize_t) PyString_Size(PyObject *);
PyAPI_FUNC(char *) PyString_AsString(PyObject *);
PyAPI_FUNC(PyObject *) PyString_Repr(PyObject *, int);
PyAPI_FUNC(void) PyString_Concat(PyObject **, PyObject *);
PyAPI_FUNC(void) PyString_ConcatAndDel(PyObject **, PyObject *);
PyAPI_FUNC(int) _PyString_Resize(PyObject **, Py_ssize_t);
PyAPI_FUNC(int) _PyString_Eq(PyObject *, PyObject*);
PyAPI_FUNC(PyObject *) PyString_Format(PyObject *, PyObject *);
PyAPI_FUNC(PyObject *) _PyString_FormatLong(PyObject*, int, int,
int, char**, int*);
PyAPI_FUNC(PyObject *) PyString_DecodeEscape(const char *, Py_ssize_t,
const char *, Py_ssize_t,
const char *);
PyAPI_FUNC(void) PyString_InternInPlace(PyObject **);
PyAPI_FUNC(void) PyString_InternImmortal(PyObject **);
PyAPI_FUNC(PyObject *) PyString_InternFromString(const char *);
PyAPI_FUNC(void) _Py_ReleaseInternedStrings(void);
/* Use only if you know it's a string */
#define PyString_CHECK_INTERNED(op) (((PyStringObject *)(op))->ob_sstate)
/* Macro, trading safety for speed */
#define PyString_AS_STRING(op) (((PyStringObject *)(op))->ob_sval)
#define PyString_GET_SIZE(op) Py_SIZE(op)
/* _PyString_Join(sep, x) is like sep.join(x). sep must be PyStringObject*,
x must be an iterable object. */
PyAPI_FUNC(PyObject *) _PyString_Join(PyObject *sep, PyObject *x);
/* --- Generic Codecs ----------------------------------------------------- */
/* Create an object by decoding the encoded string s of the
given size. */
PyAPI_FUNC(PyObject*) PyString_Decode(
const char *s, /* encoded string */
Py_ssize_t size, /* size of buffer */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Encodes a char buffer of the given size and returns a
Python object. */
PyAPI_FUNC(PyObject*) PyString_Encode(
const char *s, /* string char buffer */
Py_ssize_t size, /* number of chars to encode */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Encodes a string object and returns the result as Python
object. */
PyAPI_FUNC(PyObject*) PyString_AsEncodedObject(
PyObject *str, /* string object */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Encodes a string object and returns the result as Python string
object.
If the codec returns an Unicode object, the object is converted
back to a string using the default encoding.
DEPRECATED - use PyString_AsEncodedObject() instead. */
PyAPI_FUNC(PyObject*) PyString_AsEncodedString(
PyObject *str, /* string object */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Decodes a string object and returns the result as Python
object. */
PyAPI_FUNC(PyObject*) PyString_AsDecodedObject(
PyObject *str, /* string object */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Decodes a string object and returns the result as Python string
object.
If the codec returns an Unicode object, the object is converted
back to a string using the default encoding.
DEPRECATED - use PyString_AsDecodedObject() instead. */
PyAPI_FUNC(PyObject*) PyString_AsDecodedString(
PyObject *str, /* string object */
const char *encoding, /* encoding */
const char *errors /* error handling */
);
/* Provides access to the internal data buffer and size of a string
object or the default encoded version of an Unicode object. Passing
NULL as *len parameter will force the string buffer to be
0-terminated (passing a string with embedded NULL characters will
cause an exception). */
PyAPI_FUNC(int) PyString_AsStringAndSize(
register PyObject *obj, /* string or Unicode object */
register char **s, /* pointer to buffer variable */
register Py_ssize_t *len /* pointer to length variable or NULL
(only possible for 0-terminated
strings) */
);
/* Using the current locale, insert the thousands grouping
into the string pointed to by buffer. For the argument descriptions,
see Objects/stringlib/localeutil.h */
PyAPI_FUNC(Py_ssize_t) _PyString_InsertThousandsGroupingLocale(char *buffer,
Py_ssize_t n_buffer,
char *digits,
Py_ssize_t n_digits,
Py_ssize_t min_width);
/* Using explicit passed-in values, insert the thousands grouping
into the string pointed to by buffer. For the argument descriptions,
see Objects/stringlib/localeutil.h */
PyAPI_FUNC(Py_ssize_t) _PyString_InsertThousandsGrouping(char *buffer,
Py_ssize_t n_buffer,
char *digits,
Py_ssize_t n_digits,
Py_ssize_t min_width,
const char *grouping,
const char *thousands_sep);
/* Format the object based on the format_spec, as defined in PEP 3101
(Advanced String Formatting). */
PyAPI_FUNC(PyObject *) _PyBytes_FormatAdvanced(PyObject *obj,
char *format_spec,
Py_ssize_t format_spec_len);
#ifdef __cplusplus
}
#endif
#endif /* !Py_STRINGOBJECT_H */

View File

@ -0,0 +1,99 @@
#ifndef Py_STRUCTMEMBER_H
#define Py_STRUCTMEMBER_H
#ifdef __cplusplus
extern "C" {
#endif
/* Interface to map C struct members to Python object attributes */
#include <stddef.h> /* For offsetof */
/* The offsetof() macro calculates the offset of a structure member
in its structure. Unfortunately this cannot be written down
portably, hence it is provided by a Standard C header file.
For pre-Standard C compilers, here is a version that usually works
(but watch out!): */
#ifndef offsetof
#define offsetof(type, member) ( (int) & ((type*)0) -> member )
#endif
/* An array of memberlist structures defines the name, type and offset
of selected members of a C structure. These can be read by
PyMember_Get() and set by PyMember_Set() (except if their READONLY flag
is set). The array must be terminated with an entry whose name
pointer is NULL. */
struct memberlist {
/* Obsolete version, for binary backwards compatibility */
char *name;
int type;
int offset;
int flags;
};
typedef struct PyMemberDef {
/* Current version, use this */
char *name;
int type;
Py_ssize_t offset;
int flags;
char *doc;
} PyMemberDef;
/* Types */
#define T_SHORT 0
#define T_INT 1
#define T_LONG 2
#define T_FLOAT 3
#define T_DOUBLE 4
#define T_STRING 5
#define T_OBJECT 6
/* XXX the ordering here is weird for binary compatibility */
#define T_CHAR 7 /* 1-character string */
#define T_BYTE 8 /* 8-bit signed int */
/* unsigned variants: */
#define T_UBYTE 9
#define T_USHORT 10
#define T_UINT 11
#define T_ULONG 12
/* Added by Jack: strings contained in the structure */
#define T_STRING_INPLACE 13
/* Added by Lillo: bools contained in the structure (assumed char) */
#define T_BOOL 14
#define T_OBJECT_EX 16 /* Like T_OBJECT, but raises AttributeError
when the value is NULL, instead of
converting to None. */
#ifdef HAVE_LONG_LONG
#define T_LONGLONG 17
#define T_ULONGLONG 18
#endif /* HAVE_LONG_LONG */
#define T_PYSSIZET 19 /* Py_ssize_t */
/* Flags */
#define READONLY 1
#define RO READONLY /* Shorthand */
#define READ_RESTRICTED 2
#define PY_WRITE_RESTRICTED 4
#define RESTRICTED (READ_RESTRICTED | PY_WRITE_RESTRICTED)
/* Obsolete API, for binary backwards compatibility */
PyAPI_FUNC(PyObject *) PyMember_Get(const char *, struct memberlist *, const char *);
PyAPI_FUNC(int) PyMember_Set(char *, struct memberlist *, const char *, PyObject *);
/* Current API, use this */
PyAPI_FUNC(PyObject *) PyMember_GetOne(const char *, struct PyMemberDef *);
PyAPI_FUNC(int) PyMember_SetOne(char *, struct PyMemberDef *, PyObject *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_STRUCTMEMBER_H */

View File

@ -0,0 +1,41 @@
/* Tuple object interface */
#ifndef Py_STRUCTSEQ_H
#define Py_STRUCTSEQ_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct PyStructSequence_Field {
char *name;
char *doc;
} PyStructSequence_Field;
typedef struct PyStructSequence_Desc {
char *name;
char *doc;
struct PyStructSequence_Field *fields;
int n_in_sequence;
} PyStructSequence_Desc;
extern char* PyStructSequence_UnnamedField;
PyAPI_FUNC(void) PyStructSequence_InitType(PyTypeObject *type,
PyStructSequence_Desc *desc);
PyAPI_FUNC(PyObject *) PyStructSequence_New(PyTypeObject* type);
typedef struct {
PyObject_VAR_HEAD
PyObject *ob_item[1];
} PyStructSequence;
/* Macro, *only* to be used to fill in brand new objects */
#define PyStructSequence_SET_ITEM(op, i, v) \
(((PyStructSequence *)(op))->ob_item[i] = v)
#ifdef __cplusplus
}
#endif
#endif /* !Py_STRUCTSEQ_H */

View File

@ -0,0 +1,98 @@
#ifndef Py_SYMTABLE_H
#define Py_SYMTABLE_H
#ifdef __cplusplus
extern "C" {
#endif
typedef enum _block_type { FunctionBlock, ClassBlock, ModuleBlock }
_Py_block_ty;
struct _symtable_entry;
struct symtable {
const char *st_filename; /* name of file being compiled */
struct _symtable_entry *st_cur; /* current symbol table entry */
struct _symtable_entry *st_top; /* module entry */
PyObject *st_symbols; /* dictionary of symbol table entries */
PyObject *st_stack; /* stack of namespace info */
PyObject *st_global; /* borrowed ref to MODULE in st_symbols */
int st_nblocks; /* number of blocks */
PyObject *st_private; /* name of current class or NULL */
PyFutureFeatures *st_future; /* module's future features */
};
typedef struct _symtable_entry {
PyObject_HEAD
PyObject *ste_id; /* int: key in st_symbols */
PyObject *ste_symbols; /* dict: name to flags */
PyObject *ste_name; /* string: name of block */
PyObject *ste_varnames; /* list of variable names */
PyObject *ste_children; /* list of child ids */
_Py_block_ty ste_type; /* module, class, or function */
int ste_unoptimized; /* false if namespace is optimized */
int ste_nested; /* true if block is nested */
unsigned ste_free : 1; /* true if block has free variables */
unsigned ste_child_free : 1; /* true if a child block has free vars,
including free refs to globals */
unsigned ste_generator : 1; /* true if namespace is a generator */
unsigned ste_varargs : 1; /* true if block has varargs */
unsigned ste_varkeywords : 1; /* true if block has varkeywords */
unsigned ste_returns_value : 1; /* true if namespace uses return with
an argument */
int ste_lineno; /* first line of block */
int ste_opt_lineno; /* lineno of last exec or import * */
int ste_tmpname; /* counter for listcomp temp vars */
struct symtable *ste_table;
} PySTEntryObject;
PyAPI_DATA(PyTypeObject) PySTEntry_Type;
#define PySTEntry_Check(op) (Py_TYPE(op) == &PySTEntry_Type)
PyAPI_FUNC(int) PyST_GetScope(PySTEntryObject *, PyObject *);
PyAPI_FUNC(struct symtable *) PySymtable_Build(mod_ty, const char *,
PyFutureFeatures *);
PyAPI_FUNC(PySTEntryObject *) PySymtable_Lookup(struct symtable *, void *);
PyAPI_FUNC(void) PySymtable_Free(struct symtable *);
/* Flags for def-use information */
#define DEF_GLOBAL 1 /* global stmt */
#define DEF_LOCAL 2 /* assignment in code block */
#define DEF_PARAM 2<<1 /* formal parameter */
#define USE 2<<2 /* name is used */
#define DEF_FREE 2<<3 /* name used but not defined in nested block */
#define DEF_FREE_CLASS 2<<4 /* free variable from class's method */
#define DEF_IMPORT 2<<5 /* assignment occurred via import */
#define DEF_BOUND (DEF_LOCAL | DEF_PARAM | DEF_IMPORT)
/* GLOBAL_EXPLICIT and GLOBAL_IMPLICIT are used internally by the symbol
table. GLOBAL is returned from PyST_GetScope() for either of them.
It is stored in ste_symbols at bits 12-14.
*/
#define SCOPE_OFF 11
#define SCOPE_MASK 7
#define LOCAL 1
#define GLOBAL_EXPLICIT 2
#define GLOBAL_IMPLICIT 3
#define FREE 4
#define CELL 5
/* The following three names are used for the ste_unoptimized bit field */
#define OPT_IMPORT_STAR 1
#define OPT_EXEC 2
#define OPT_BARE_EXEC 4
#define OPT_TOPLEVEL 8 /* top-level names, including eval and exec */
#define GENERATOR 1
#define GENERATOR_EXPRESSION 2
#ifdef __cplusplus
}
#endif
#endif /* !Py_SYMTABLE_H */

View File

@ -0,0 +1,31 @@
/* System module interface */
#ifndef Py_SYSMODULE_H
#define Py_SYSMODULE_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(PyObject *) PySys_GetObject(char *);
PyAPI_FUNC(int) PySys_SetObject(char *, PyObject *);
PyAPI_FUNC(FILE *) PySys_GetFile(char *, FILE *);
PyAPI_FUNC(void) PySys_SetArgv(int, char **);
PyAPI_FUNC(void) PySys_SetArgvEx(int, char **, int);
PyAPI_FUNC(void) PySys_SetPath(char *);
PyAPI_FUNC(void) PySys_WriteStdout(const char *format, ...)
Py_GCC_ATTRIBUTE((format(printf, 1, 2)));
PyAPI_FUNC(void) PySys_WriteStderr(const char *format, ...)
Py_GCC_ATTRIBUTE((format(printf, 1, 2)));
PyAPI_FUNC(void) PySys_ResetWarnOptions(void);
PyAPI_FUNC(void) PySys_AddWarnOption(char *);
PyAPI_FUNC(int) PySys_HasWarnOptions(void);
PyAPI_FUNC(size_t) _PySys_GetSizeOf(PyObject *);
#ifdef __cplusplus
}
#endif
#endif /* !Py_SYSMODULE_H */

View File

@ -0,0 +1,26 @@
/* timefuncs.h
*/
/* Utility function related to timemodule.c. */
#ifndef TIMEFUNCS_H
#define TIMEFUNCS_H
#ifdef __cplusplus
extern "C" {
#endif
/* Cast double x to time_t, but raise ValueError if x is too large
* to fit in a time_t. ValueError is set on return iff the return
* value is (time_t)-1 and PyErr_Occurred().
*/
PyAPI_FUNC(time_t) _PyTime_DoubleToTimet(double x);
/* Get the current time since the epoch in seconds */
PyAPI_FUNC(double) _PyTime_FloatTime(void);
#ifdef __cplusplus
}
#endif
#endif /* TIMEFUNCS_H */

View File

@ -0,0 +1,85 @@
/* Token types */
#ifndef Py_TOKEN_H
#define Py_TOKEN_H
#ifdef __cplusplus
extern "C" {
#endif
#undef TILDE /* Prevent clash of our definition with system macro. Ex AIX, ioctl.h */
#define ENDMARKER 0
#define NAME 1
#define NUMBER 2
#define STRING 3
#define NEWLINE 4
#define INDENT 5
#define DEDENT 6
#define LPAR 7
#define RPAR 8
#define LSQB 9
#define RSQB 10
#define COLON 11
#define COMMA 12
#define SEMI 13
#define PLUS 14
#define MINUS 15
#define STAR 16
#define SLASH 17
#define VBAR 18
#define AMPER 19
#define LESS 20
#define GREATER 21
#define EQUAL 22
#define DOT 23
#define PERCENT 24
#define BACKQUOTE 25
#define LBRACE 26
#define RBRACE 27
#define EQEQUAL 28
#define NOTEQUAL 29
#define LESSEQUAL 30
#define GREATEREQUAL 31
#define TILDE 32
#define CIRCUMFLEX 33
#define LEFTSHIFT 34
#define RIGHTSHIFT 35
#define DOUBLESTAR 36
#define PLUSEQUAL 37
#define MINEQUAL 38
#define STAREQUAL 39
#define SLASHEQUAL 40
#define PERCENTEQUAL 41
#define AMPEREQUAL 42
#define VBAREQUAL 43
#define CIRCUMFLEXEQUAL 44
#define LEFTSHIFTEQUAL 45
#define RIGHTSHIFTEQUAL 46
#define DOUBLESTAREQUAL 47
#define DOUBLESLASH 48
#define DOUBLESLASHEQUAL 49
#define AT 50
/* Don't forget to update the table _PyParser_TokenNames in tokenizer.c! */
#define OP 51
#define ERRORTOKEN 52
#define N_TOKENS 53
/* Special definitions for cooperation with parser */
#define NT_OFFSET 256
#define ISTERMINAL(x) ((x) < NT_OFFSET)
#define ISNONTERMINAL(x) ((x) >= NT_OFFSET)
#define ISEOF(x) ((x) == ENDMARKER)
PyAPI_DATA(char *) _PyParser_TokenNames[]; /* Token names */
PyAPI_FUNC(int) PyToken_OneChar(int);
PyAPI_FUNC(int) PyToken_TwoChars(int, int);
PyAPI_FUNC(int) PyToken_ThreeChars(int, int, int);
#ifdef __cplusplus
}
#endif
#endif /* !Py_TOKEN_H */

View File

@ -0,0 +1,31 @@
#ifndef Py_TRACEBACK_H
#define Py_TRACEBACK_H
#ifdef __cplusplus
extern "C" {
#endif
struct _frame;
/* Traceback interface */
typedef struct _traceback {
PyObject_HEAD
struct _traceback *tb_next;
struct _frame *tb_frame;
int tb_lasti;
int tb_lineno;
} PyTracebackObject;
PyAPI_FUNC(int) PyTraceBack_Here(struct _frame *);
PyAPI_FUNC(int) PyTraceBack_Print(PyObject *, PyObject *);
PyAPI_FUNC(int) _Py_DisplaySourceLine(PyObject *, const char *, int, int);
/* Reveal traceback type so we can typecheck traceback objects */
PyAPI_DATA(PyTypeObject) PyTraceBack_Type;
#define PyTraceBack_Check(v) (Py_TYPE(v) == &PyTraceBack_Type)
#ifdef __cplusplus
}
#endif
#endif /* !Py_TRACEBACK_H */

View File

@ -0,0 +1,61 @@
/* Tuple object interface */
#ifndef Py_TUPLEOBJECT_H
#define Py_TUPLEOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
/*
Another generally useful object type is a tuple of object pointers.
For Python, this is an immutable type. C code can change the tuple items
(but not their number), and even use tuples are general-purpose arrays of
object references, but in general only brand new tuples should be mutated,
not ones that might already have been exposed to Python code.
*** WARNING *** PyTuple_SetItem does not increment the new item's reference
count, but does decrement the reference count of the item it replaces,
if not nil. It does *decrement* the reference count if it is *not*
inserted in the tuple. Similarly, PyTuple_GetItem does not increment the
returned item's reference count.
*/
typedef struct {
PyObject_VAR_HEAD
PyObject *ob_item[1];
/* ob_item contains space for 'ob_size' elements.
* Items must normally not be NULL, except during construction when
* the tuple is not yet visible outside the function that builds it.
*/
} PyTupleObject;
PyAPI_DATA(PyTypeObject) PyTuple_Type;
#define PyTuple_Check(op) \
PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TUPLE_SUBCLASS)
#define PyTuple_CheckExact(op) (Py_TYPE(op) == &PyTuple_Type)
PyAPI_FUNC(PyObject *) PyTuple_New(Py_ssize_t size);
PyAPI_FUNC(Py_ssize_t) PyTuple_Size(PyObject *);
PyAPI_FUNC(PyObject *) PyTuple_GetItem(PyObject *, Py_ssize_t);
PyAPI_FUNC(int) PyTuple_SetItem(PyObject *, Py_ssize_t, PyObject *);
PyAPI_FUNC(PyObject *) PyTuple_GetSlice(PyObject *, Py_ssize_t, Py_ssize_t);
PyAPI_FUNC(int) _PyTuple_Resize(PyObject **, Py_ssize_t);
PyAPI_FUNC(PyObject *) PyTuple_Pack(Py_ssize_t, ...);
PyAPI_FUNC(void) _PyTuple_MaybeUntrack(PyObject *);
/* Macro, trading safety for speed */
#define PyTuple_GET_ITEM(op, i) (((PyTupleObject *)(op))->ob_item[i])
#define PyTuple_GET_SIZE(op) Py_SIZE(op)
/* Macro, *only* to be used to fill in brand new tuples */
#define PyTuple_SET_ITEM(op, i, v) (((PyTupleObject *)(op))->ob_item[i] = v)
PyAPI_FUNC(int) PyTuple_ClearFreeList(void);
#ifdef __cplusplus
}
#endif
#endif /* !Py_TUPLEOBJECT_H */

View File

@ -0,0 +1,33 @@
/* Unicode name database interface */
#ifndef Py_UCNHASH_H
#define Py_UCNHASH_H
#ifdef __cplusplus
extern "C" {
#endif
/* revised ucnhash CAPI interface (exported through a "wrapper") */
#define PyUnicodeData_CAPSULE_NAME "unicodedata.ucnhash_CAPI"
typedef struct {
/* Size of this struct */
int size;
/* Get name for a given character code. Returns non-zero if
success, zero if not. Does not set Python exceptions.
If self is NULL, data come from the default version of the database.
If it is not NULL, it should be a unicodedata.ucd_X_Y_Z object */
int (*getname)(PyObject *self, Py_UCS4 code, char* buffer, int buflen);
/* Get character code for a given name. Same error handling
as for getname. */
int (*getcode)(PyObject *self, const char* name, int namelen, Py_UCS4* code);
} _PyUnicode_Name_CAPI;
#ifdef __cplusplus
}
#endif
#endif /* !Py_UCNHASH_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,23 @@
#ifndef Py_WARNINGS_H
#define Py_WARNINGS_H
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(void) _PyWarnings_Init(void);
PyAPI_FUNC(int) PyErr_WarnEx(PyObject *, const char *, Py_ssize_t);
PyAPI_FUNC(int) PyErr_WarnExplicit(PyObject *, const char *, const char *, int,
const char *, PyObject *);
#define PyErr_WarnPy3k(msg, stacklevel) \
(Py_Py3kWarningFlag ? PyErr_WarnEx(PyExc_DeprecationWarning, msg, stacklevel) : 0)
/* DEPRECATED: Use PyErr_WarnEx() instead. */
#define PyErr_Warn(category, msg) PyErr_WarnEx(category, msg, 1)
#ifdef __cplusplus
}
#endif
#endif /* !Py_WARNINGS_H */

View File

@ -0,0 +1,82 @@
/* Weak references objects for Python. */
#ifndef Py_WEAKREFOBJECT_H
#define Py_WEAKREFOBJECT_H
#ifdef __cplusplus
extern "C" {
#endif
typedef struct _PyWeakReference PyWeakReference;
/* PyWeakReference is the base struct for the Python ReferenceType, ProxyType,
* and CallableProxyType.
*/
struct _PyWeakReference {
PyObject_HEAD
/* The object to which this is a weak reference, or Py_None if none.
* Note that this is a stealth reference: wr_object's refcount is
* not incremented to reflect this pointer.
*/
PyObject *wr_object;
/* A callable to invoke when wr_object dies, or NULL if none. */
PyObject *wr_callback;
/* A cache for wr_object's hash code. As usual for hashes, this is -1
* if the hash code isn't known yet.
*/
long hash;
/* If wr_object is weakly referenced, wr_object has a doubly-linked NULL-
* terminated list of weak references to it. These are the list pointers.
* If wr_object goes away, wr_object is set to Py_None, and these pointers
* have no meaning then.
*/
PyWeakReference *wr_prev;
PyWeakReference *wr_next;
};
PyAPI_DATA(PyTypeObject) _PyWeakref_RefType;
PyAPI_DATA(PyTypeObject) _PyWeakref_ProxyType;
PyAPI_DATA(PyTypeObject) _PyWeakref_CallableProxyType;
#define PyWeakref_CheckRef(op) PyObject_TypeCheck(op, &_PyWeakref_RefType)
#define PyWeakref_CheckRefExact(op) \
(Py_TYPE(op) == &_PyWeakref_RefType)
#define PyWeakref_CheckProxy(op) \
((Py_TYPE(op) == &_PyWeakref_ProxyType) || \
(Py_TYPE(op) == &_PyWeakref_CallableProxyType))
#define PyWeakref_Check(op) \
(PyWeakref_CheckRef(op) || PyWeakref_CheckProxy(op))
PyAPI_FUNC(PyObject *) PyWeakref_NewRef(PyObject *ob,
PyObject *callback);
PyAPI_FUNC(PyObject *) PyWeakref_NewProxy(PyObject *ob,
PyObject *callback);
PyAPI_FUNC(PyObject *) PyWeakref_GetObject(PyObject *ref);
PyAPI_FUNC(Py_ssize_t) _PyWeakref_GetWeakrefCount(PyWeakReference *head);
PyAPI_FUNC(void) _PyWeakref_ClearRef(PyWeakReference *self);
/* Explanation for the Py_REFCNT() check: when a weakref's target is part
of a long chain of deallocations which triggers the trashcan mechanism,
clearing the weakrefs can be delayed long after the target's refcount
has dropped to zero. In the meantime, code accessing the weakref will
be able to "see" the target object even though it is supposed to be
unreachable. See issue #16602. */
#define PyWeakref_GET_OBJECT(ref) \
(Py_REFCNT(((PyWeakReference *)(ref))->wr_object) > 0 \
? ((PyWeakReference *)(ref))->wr_object \
: Py_None)
#ifdef __cplusplus
}
#endif
#endif /* !Py_WEAKREFOBJECT_H */

View File

@ -0,0 +1,254 @@
A. HISTORY OF THE SOFTWARE
==========================
Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands
as a successor of a language called ABC. Guido remains Python's
principal author, although it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for
National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)
in Reston, Virginia where he released several versions of the
software.
In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonLabs team. In October of the same
year, the PythonLabs team moved to Digital Creations (now Zope
Corporation, see http://www.zope.com). In 2001, the Python Software
Foundation (PSF, see http://www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related
Intellectual Property. Zope Corporation is a sponsoring member of
the PSF.
All Python releases are Open Source (see http://www.opensource.org for
the Open Source Definition). Historically, most, but not all, Python
releases have also been GPL-compatible; the table below summarizes
the various releases.
Release Derived Year Owner GPL-
from compatible? (1)
0.9.0 thru 1.2 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI yes (2)
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes
Footnotes:
(1) GPL-compatible doesn't mean that we're distributing Python under
the GPL. All Python licenses, unlike the GPL, let you distribute
a modified version without making your changes open source. The
GPL-compatible licenses make it possible to combine Python with
other software that is released under the GPL; the others don't.
(2) According to Richard Stallman, 1.6.1 is not GPL-compatible,
because its license has a choice of law clause. According to
CNRI, however, Stallman's lawyer has told CNRI's lawyer that 1.6.1
is "not incompatible" with the GPL.
Thanks to the many outside volunteers who have worked under Guido's
direction to make these releases possible.
B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON
===============================================================
PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
--------------------------------------------
1. This LICENSE AGREEMENT is between the Python Software Foundation
("PSF"), and the Individual or Organization ("Licensee") accessing and
otherwise using this software ("Python") in source or binary form and
its associated documentation.
2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python alone or in any derivative version,
provided, however, that PSF's License Agreement and PSF's notice of copyright,
i.e., "Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012, 2013, 2014, 2015 Python Software Foundation; All Rights Reserved"
are retained in Python alone or in any derivative version prepared by Licensee.
3. In the event Licensee prepares a derivative work that is based on
or incorporates Python or any part thereof, and wants to make
the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to Python.
4. PSF is making Python available to Licensee on an "AS IS"
basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
7. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.
8. By copying, installing or otherwise using Python, Licensee
agrees to be bound by the terms and conditions of this License
Agreement.
BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
-------------------------------------------
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1
1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an
office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the
Individual or Organization ("Licensee") accessing and otherwise using
this software in source or binary form and its associated
documentation ("the Software").
2. Subject to the terms and conditions of this BeOpen Python License
Agreement, BeOpen hereby grants Licensee a non-exclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform
and/or display publicly, prepare derivative works, distribute, and
otherwise use the Software alone or in any derivative version,
provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.
3. BeOpen is making the Software available to Licensee on an "AS IS"
basis. BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE
SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
5. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
6. This License Agreement shall be governed by and interpreted in all
respects by the law of the State of California, excluding conflict of
law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture
between BeOpen and Licensee. This License Agreement does not grant
permission to use BeOpen trademarks or trade names in a trademark
sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the
permissions granted on that web page.
7. By copying, installing or otherwise using the software, Licensee
agrees to be bound by the terms and conditions of this License
Agreement.
CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
---------------------------------------
1. This LICENSE AGREEMENT is between the Corporation for National
Research Initiatives, having an office at 1895 Preston White Drive,
Reston, VA 20191 ("CNRI"), and the Individual or Organization
("Licensee") accessing and otherwise using Python 1.6.1 software in
source or binary form and its associated documentation.
2. Subject to the terms and conditions of this License Agreement, CNRI
hereby grants Licensee a nonexclusive, royalty-free, world-wide
license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use Python 1.6.1
alone or in any derivative version, provided, however, that CNRI's
License Agreement and CNRI's notice of copyright, i.e., "Copyright (c)
1995-2001 Corporation for National Research Initiatives; All Rights
Reserved" are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI's License
Agreement, Licensee may substitute the following text (omitting the
quotes): "Python 1.6.1 is made available subject to the terms and
conditions in CNRI's License Agreement. This Agreement together with
Python 1.6.1 may be located on the Internet using the following
unique, persistent identifier (known as a handle): 1895.22/1013. This
Agreement may also be obtained from a proxy server on the Internet
using the following URL: http://hdl.handle.net/1895.22/1013".
3. In the event Licensee prepares a derivative work that is based on
or incorporates Python 1.6.1 or any part thereof, and wants to make
the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to Python 1.6.1.
4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS"
basis. CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
7. This License Agreement shall be governed by the federal
intellectual property law of the United States, including without
limitation the federal copyright law, and, to the extent such
U.S. federal law does not apply, by the law of the Commonwealth of
Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based
on Python 1.6.1 that incorporate non-separable material that was
previously distributed under the GNU General Public License (GPL), the
law of the Commonwealth of Virginia shall govern this License
Agreement only as to issues arising under or with respect to
Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this
License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between CNRI and Licensee. This
License Agreement does not grant permission to use CNRI trademarks or
trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.
8. By clicking on the "ACCEPT" button where indicated, or by copying,
installing or otherwise using Python 1.6.1, Licensee agrees to be
bound by the terms and conditions of this License Agreement.
ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
--------------------------------------------------
Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam,
The Netherlands. All rights reserved.
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.
STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

View File

@ -0,0 +1,603 @@
"""HTTP server base class.
Note: the class in this module doesn't implement any HTTP request; see
SimpleHTTPServer for simple implementations of GET, HEAD and POST
(including CGI scripts). It does, however, optionally implement HTTP/1.1
persistent connections, as of version 0.3.
Contents:
- BaseHTTPRequestHandler: HTTP request handler base class
- test: test function
XXX To do:
- log requests even later (to capture byte count)
- log user-agent header and other interesting goodies
- send error log to separate file
"""
# See also:
#
# HTTP Working Group T. Berners-Lee
# INTERNET-DRAFT R. T. Fielding
# <draft-ietf-http-v10-spec-00.txt> H. Frystyk Nielsen
# Expires September 8, 1995 March 8, 1995
#
# URL: http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-v10-spec-00.txt
#
# and
#
# Network Working Group R. Fielding
# Request for Comments: 2616 et al
# Obsoletes: 2068 June 1999
# Category: Standards Track
#
# URL: http://www.faqs.org/rfcs/rfc2616.html
# Log files
# ---------
#
# Here's a quote from the NCSA httpd docs about log file format.
#
# | The logfile format is as follows. Each line consists of:
# |
# | host rfc931 authuser [DD/Mon/YYYY:hh:mm:ss] "request" ddd bbbb
# |
# | host: Either the DNS name or the IP number of the remote client
# | rfc931: Any information returned by identd for this person,
# | - otherwise.
# | authuser: If user sent a userid for authentication, the user name,
# | - otherwise.
# | DD: Day
# | Mon: Month (calendar name)
# | YYYY: Year
# | hh: hour (24-hour format, the machine's timezone)
# | mm: minutes
# | ss: seconds
# | request: The first line of the HTTP request as sent by the client.
# | ddd: the status code returned by the server, - if not available.
# | bbbb: the total number of bytes sent,
# | *not including the HTTP/1.0 header*, - if not available
# |
# | You can determine the name of the file accessed through request.
#
# (Actually, the latter is only true if you know the server configuration
# at the time the request was made!)
__version__ = "0.3"
__all__ = ["HTTPServer", "BaseHTTPRequestHandler"]
import sys
import time
import socket # For gethostbyaddr()
from warnings import filterwarnings, catch_warnings
with catch_warnings():
if sys.py3kwarning:
filterwarnings("ignore", ".*mimetools has been removed",
DeprecationWarning)
import mimetools
import SocketServer
# Default error message template
DEFAULT_ERROR_MESSAGE = """\
<head>
<title>Error response</title>
</head>
<body>
<h1>Error response</h1>
<p>Error code %(code)d.
<p>Message: %(message)s.
<p>Error code explanation: %(code)s = %(explain)s.
</body>
"""
DEFAULT_ERROR_CONTENT_TYPE = "text/html"
def _quote_html(html):
return html.replace("&", "&amp;").replace("<", "&lt;").replace(">", "&gt;")
class HTTPServer(SocketServer.TCPServer):
allow_reuse_address = 1 # Seems to make sense in testing environment
def server_bind(self):
"""Override server_bind to store the server name."""
SocketServer.TCPServer.server_bind(self)
host, port = self.socket.getsockname()[:2]
self.server_name = socket.getfqdn(host)
self.server_port = port
class BaseHTTPRequestHandler(SocketServer.StreamRequestHandler):
"""HTTP request handler base class.
The following explanation of HTTP serves to guide you through the
code as well as to expose any misunderstandings I may have about
HTTP (so you don't need to read the code to figure out I'm wrong
:-).
HTTP (HyperText Transfer Protocol) is an extensible protocol on
top of a reliable stream transport (e.g. TCP/IP). The protocol
recognizes three parts to a request:
1. One line identifying the request type and path
2. An optional set of RFC-822-style headers
3. An optional data part
The headers and data are separated by a blank line.
The first line of the request has the form
<command> <path> <version>
where <command> is a (case-sensitive) keyword such as GET or POST,
<path> is a string containing path information for the request,
and <version> should be the string "HTTP/1.0" or "HTTP/1.1".
<path> is encoded using the URL encoding scheme (using %xx to signify
the ASCII character with hex code xx).
The specification specifies that lines are separated by CRLF but
for compatibility with the widest range of clients recommends
servers also handle LF. Similarly, whitespace in the request line
is treated sensibly (allowing multiple spaces between components
and allowing trailing whitespace).
Similarly, for output, lines ought to be separated by CRLF pairs
but most clients grok LF characters just fine.
If the first line of the request has the form
<command> <path>
(i.e. <version> is left out) then this is assumed to be an HTTP
0.9 request; this form has no optional headers and data part and
the reply consists of just the data.
The reply form of the HTTP 1.x protocol again has three parts:
1. One line giving the response code
2. An optional set of RFC-822-style headers
3. The data
Again, the headers and data are separated by a blank line.
The response code line has the form
<version> <responsecode> <responsestring>
where <version> is the protocol version ("HTTP/1.0" or "HTTP/1.1"),
<responsecode> is a 3-digit response code indicating success or
failure of the request, and <responsestring> is an optional
human-readable string explaining what the response code means.
This server parses the request and the headers, and then calls a
function specific to the request type (<command>). Specifically,
a request SPAM will be handled by a method do_SPAM(). If no
such method exists the server sends an error response to the
client. If it exists, it is called with no arguments:
do_SPAM()
Note that the request name is case sensitive (i.e. SPAM and spam
are different requests).
The various request details are stored in instance variables:
- client_address is the client IP address in the form (host,
port);
- command, path and version are the broken-down request line;
- headers is an instance of mimetools.Message (or a derived
class) containing the header information;
- rfile is a file object open for reading positioned at the
start of the optional input data part;
- wfile is a file object open for writing.
IT IS IMPORTANT TO ADHERE TO THE PROTOCOL FOR WRITING!
The first thing to be written must be the response line. Then
follow 0 or more header lines, then a blank line, and then the
actual data (if any). The meaning of the header lines depends on
the command executed by the server; in most cases, when data is
returned, there should be at least one header line of the form
Content-type: <type>/<subtype>
where <type> and <subtype> should be registered MIME types,
e.g. "text/html" or "text/plain".
"""
# The Python system version, truncated to its first component.
sys_version = "Python/" + sys.version.split()[0]
# The server software version. You may want to override this.
# The format is multiple whitespace-separated strings,
# where each string is of the form name[/version].
server_version = "BaseHTTP/" + __version__
# The default request version. This only affects responses up until
# the point where the request line is parsed, so it mainly decides what
# the client gets back when sending a malformed request line.
# Most web servers default to HTTP 0.9, i.e. don't send a status line.
default_request_version = "HTTP/0.9"
def parse_request(self):
"""Parse a request (internal).
The request should be stored in self.raw_requestline; the results
are in self.command, self.path, self.request_version and
self.headers.
Return True for success, False for failure; on failure, an
error is sent back.
"""
self.command = None # set in case of error on the first line
self.request_version = version = self.default_request_version
self.close_connection = 1
requestline = self.raw_requestline
requestline = requestline.rstrip('\r\n')
self.requestline = requestline
words = requestline.split()
if len(words) == 3:
command, path, version = words
if version[:5] != 'HTTP/':
self.send_error(400, "Bad request version (%r)" % version)
return False
try:
base_version_number = version.split('/', 1)[1]
version_number = base_version_number.split(".")
# RFC 2145 section 3.1 says there can be only one "." and
# - major and minor numbers MUST be treated as
# separate integers;
# - HTTP/2.4 is a lower version than HTTP/2.13, which in
# turn is lower than HTTP/12.3;
# - Leading zeros MUST be ignored by recipients.
if len(version_number) != 2:
raise ValueError
version_number = int(version_number[0]), int(version_number[1])
except (ValueError, IndexError):
self.send_error(400, "Bad request version (%r)" % version)
return False
if version_number >= (1, 1) and self.protocol_version >= "HTTP/1.1":
self.close_connection = 0
if version_number >= (2, 0):
self.send_error(505,
"Invalid HTTP Version (%s)" % base_version_number)
return False
elif len(words) == 2:
command, path = words
self.close_connection = 1
if command != 'GET':
self.send_error(400,
"Bad HTTP/0.9 request type (%r)" % command)
return False
elif not words:
return False
else:
self.send_error(400, "Bad request syntax (%r)" % requestline)
return False
self.command, self.path, self.request_version = command, path, version
# Examine the headers and look for a Connection directive
self.headers = self.MessageClass(self.rfile, 0)
conntype = self.headers.get('Connection', "")
if conntype.lower() == 'close':
self.close_connection = 1
elif (conntype.lower() == 'keep-alive' and
self.protocol_version >= "HTTP/1.1"):
self.close_connection = 0
return True
def handle_one_request(self):
"""Handle a single HTTP request.
You normally don't need to override this method; see the class
__doc__ string for information on how to handle specific HTTP
commands such as GET and POST.
"""
try:
self.raw_requestline = self.rfile.readline(65537)
if len(self.raw_requestline) > 65536:
self.requestline = ''
self.request_version = ''
self.command = ''
self.send_error(414)
return
if not self.raw_requestline:
self.close_connection = 1
return
if not self.parse_request():
# An error code has been sent, just exit
return
mname = 'do_' + self.command
if not hasattr(self, mname):
self.send_error(501, "Unsupported method (%r)" % self.command)
return
method = getattr(self, mname)
method()
self.wfile.flush() #actually send the response if not already done.
except socket.timeout, e:
#a read or a write timed out. Discard this connection
self.log_error("Request timed out: %r", e)
self.close_connection = 1
return
def handle(self):
"""Handle multiple requests if necessary."""
self.close_connection = 1
self.handle_one_request()
while not self.close_connection:
self.handle_one_request()
def send_error(self, code, message=None):
"""Send and log an error reply.
Arguments are the error code, and a detailed message.
The detailed message defaults to the short entry matching the
response code.
This sends an error response (so it must be called before any
output has been generated), logs the error, and finally sends
a piece of HTML explaining the error to the user.
"""
try:
short, long = self.responses[code]
except KeyError:
short, long = '???', '???'
if message is None:
message = short
explain = long
self.log_error("code %d, message %s", code, message)
# using _quote_html to prevent Cross Site Scripting attacks (see bug #1100201)
content = (self.error_message_format %
{'code': code, 'message': _quote_html(message), 'explain': explain})
self.send_response(code, message)
self.send_header("Content-Type", self.error_content_type)
self.send_header('Connection', 'close')
self.end_headers()
if self.command != 'HEAD' and code >= 200 and code not in (204, 304):
self.wfile.write(content)
error_message_format = DEFAULT_ERROR_MESSAGE
error_content_type = DEFAULT_ERROR_CONTENT_TYPE
def send_response(self, code, message=None):
"""Send the response header and log the response code.
Also send two standard headers with the server software
version and the current date.
"""
self.log_request(code)
if message is None:
if code in self.responses:
message = self.responses[code][0]
else:
message = ''
if self.request_version != 'HTTP/0.9':
self.wfile.write("%s %d %s\r\n" %
(self.protocol_version, code, message))
# print (self.protocol_version, code, message)
self.send_header('Server', self.version_string())
self.send_header('Date', self.date_time_string())
def send_header(self, keyword, value):
"""Send a MIME header."""
if self.request_version != 'HTTP/0.9':
self.wfile.write("%s: %s\r\n" % (keyword, value))
if keyword.lower() == 'connection':
if value.lower() == 'close':
self.close_connection = 1
elif value.lower() == 'keep-alive':
self.close_connection = 0
def end_headers(self):
"""Send the blank line ending the MIME headers."""
if self.request_version != 'HTTP/0.9':
self.wfile.write("\r\n")
def log_request(self, code='-', size='-'):
"""Log an accepted request.
This is called by send_response().
"""
self.log_message('"%s" %s %s',
self.requestline, str(code), str(size))
def log_error(self, format, *args):
"""Log an error.
This is called when a request cannot be fulfilled. By
default it passes the message on to log_message().
Arguments are the same as for log_message().
XXX This should go to the separate error log.
"""
self.log_message(format, *args)
def log_message(self, format, *args):
"""Log an arbitrary message.
This is used by all other logging functions. Override
it if you have specific logging wishes.
The first argument, FORMAT, is a format string for the
message to be logged. If the format string contains
any % escapes requiring parameters, they should be
specified as subsequent arguments (it's just like
printf!).
The client ip address and current date/time are prefixed to every
message.
"""
sys.stderr.write("%s - - [%s] %s\n" %
(self.client_address[0],
self.log_date_time_string(),
format%args))
def version_string(self):
"""Return the server software version string."""
return self.server_version + ' ' + self.sys_version
def date_time_string(self, timestamp=None):
"""Return the current date and time formatted for a message header."""
if timestamp is None:
timestamp = time.time()
year, month, day, hh, mm, ss, wd, y, z = time.gmtime(timestamp)
s = "%s, %02d %3s %4d %02d:%02d:%02d GMT" % (
self.weekdayname[wd],
day, self.monthname[month], year,
hh, mm, ss)
return s
def log_date_time_string(self):
"""Return the current time formatted for logging."""
now = time.time()
year, month, day, hh, mm, ss, x, y, z = time.localtime(now)
s = "%02d/%3s/%04d %02d:%02d:%02d" % (
day, self.monthname[month], year, hh, mm, ss)
return s
weekdayname = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
monthname = [None,
'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
def address_string(self):
"""Return the client address formatted for logging.
This version looks up the full hostname using gethostbyaddr(),
and tries to find a name that contains at least one dot.
"""
host, port = self.client_address[:2]
return socket.getfqdn(host)
# Essentially static class variables
# The version of the HTTP protocol we support.
# Set this to HTTP/1.1 to enable automatic keepalive
protocol_version = "HTTP/1.0"
# The Message-like class used to parse headers
MessageClass = mimetools.Message
# Table mapping response codes to messages; entries have the
# form {code: (shortmessage, longmessage)}.
# See RFC 2616.
responses = {
100: ('Continue', 'Request received, please continue'),
101: ('Switching Protocols',
'Switching to new protocol; obey Upgrade header'),
200: ('OK', 'Request fulfilled, document follows'),
201: ('Created', 'Document created, URL follows'),
202: ('Accepted',
'Request accepted, processing continues off-line'),
203: ('Non-Authoritative Information', 'Request fulfilled from cache'),
204: ('No Content', 'Request fulfilled, nothing follows'),
205: ('Reset Content', 'Clear input form for further input.'),
206: ('Partial Content', 'Partial content follows.'),
300: ('Multiple Choices',
'Object has several resources -- see URI list'),
301: ('Moved Permanently', 'Object moved permanently -- see URI list'),
302: ('Found', 'Object moved temporarily -- see URI list'),
303: ('See Other', 'Object moved -- see Method and URL list'),
304: ('Not Modified',
'Document has not changed since given time'),
305: ('Use Proxy',
'You must use proxy specified in Location to access this '
'resource.'),
307: ('Temporary Redirect',
'Object moved temporarily -- see URI list'),
400: ('Bad Request',
'Bad request syntax or unsupported method'),
401: ('Unauthorized',
'No permission -- see authorization schemes'),
402: ('Payment Required',
'No payment -- see charging schemes'),
403: ('Forbidden',
'Request forbidden -- authorization will not help'),
404: ('Not Found', 'Nothing matches the given URI'),
405: ('Method Not Allowed',
'Specified method is invalid for this resource.'),
406: ('Not Acceptable', 'URI not available in preferred format.'),
407: ('Proxy Authentication Required', 'You must authenticate with '
'this proxy before proceeding.'),
408: ('Request Timeout', 'Request timed out; try again later.'),
409: ('Conflict', 'Request conflict.'),
410: ('Gone',
'URI no longer exists and has been permanently removed.'),
411: ('Length Required', 'Client must specify Content-Length.'),
412: ('Precondition Failed', 'Precondition in headers is false.'),
413: ('Request Entity Too Large', 'Entity is too large.'),
414: ('Request-URI Too Long', 'URI is too long.'),
415: ('Unsupported Media Type', 'Entity body in unsupported format.'),
416: ('Requested Range Not Satisfiable',
'Cannot satisfy request range.'),
417: ('Expectation Failed',
'Expect condition could not be satisfied.'),
500: ('Internal Server Error', 'Server got itself in trouble'),
501: ('Not Implemented',
'Server does not support this operation'),
502: ('Bad Gateway', 'Invalid responses from another server/proxy.'),
503: ('Service Unavailable',
'The server cannot process the request due to a high load'),
504: ('Gateway Timeout',
'The gateway server did not receive a timely response'),
505: ('HTTP Version Not Supported', 'Cannot fulfill request.'),
}
def test(HandlerClass = BaseHTTPRequestHandler,
ServerClass = HTTPServer, protocol="HTTP/1.0"):
"""Test the HTTP request handler class.
This runs an HTTP server on port 8000 (or the first command line
argument).
"""
if sys.argv[1:]:
port = int(sys.argv[1])
else:
port = 8000
server_address = ('', port)
HandlerClass.protocol_version = protocol
httpd = ServerClass(server_address, HandlerClass)
sa = httpd.socket.getsockname()
print "Serving HTTP on", sa[0], "port", sa[1], "..."
httpd.serve_forever()
if __name__ == '__main__':
test()

View File

@ -0,0 +1,180 @@
"""Bastionification utility.
A bastion (for another object -- the 'original') is an object that has
the same methods as the original but does not give access to its
instance variables. Bastions have a number of uses, but the most
obvious one is to provide code executing in restricted mode with a
safe interface to an object implemented in unrestricted mode.
The bastionification routine has an optional second argument which is
a filter function. Only those methods for which the filter method
(called with the method name as argument) returns true are accessible.
The default filter method returns true unless the method name begins
with an underscore.
There are a number of possible implementations of bastions. We use a
'lazy' approach where the bastion's __getattr__() discipline does all
the work for a particular method the first time it is used. This is
usually fastest, especially if the user doesn't call all available
methods. The retrieved methods are stored as instance variables of
the bastion, so the overhead is only occurred on the first use of each
method.
Detail: the bastion class has a __repr__() discipline which includes
the repr() of the original object. This is precomputed when the
bastion is created.
"""
from warnings import warnpy3k
warnpy3k("the Bastion module has been removed in Python 3.0", stacklevel=2)
del warnpy3k
__all__ = ["BastionClass", "Bastion"]
from types import MethodType
class BastionClass:
"""Helper class used by the Bastion() function.
You could subclass this and pass the subclass as the bastionclass
argument to the Bastion() function, as long as the constructor has
the same signature (a get() function and a name for the object).
"""
def __init__(self, get, name):
"""Constructor.
Arguments:
get - a function that gets the attribute value (by name)
name - a human-readable name for the original object
(suggestion: use repr(object))
"""
self._get_ = get
self._name_ = name
def __repr__(self):
"""Return a representation string.
This includes the name passed in to the constructor, so that
if you print the bastion during debugging, at least you have
some idea of what it is.
"""
return "<Bastion for %s>" % self._name_
def __getattr__(self, name):
"""Get an as-yet undefined attribute value.
This calls the get() function that was passed to the
constructor. The result is stored as an instance variable so
that the next time the same attribute is requested,
__getattr__() won't be invoked.
If the get() function raises an exception, this is simply
passed on -- exceptions are not cached.
"""
attribute = self._get_(name)
self.__dict__[name] = attribute
return attribute
def Bastion(object, filter = lambda name: name[:1] != '_',
name=None, bastionclass=BastionClass):
"""Create a bastion for an object, using an optional filter.
See the Bastion module's documentation for background.
Arguments:
object - the original object
filter - a predicate that decides whether a function name is OK;
by default all names are OK that don't start with '_'
name - the name of the object; default repr(object)
bastionclass - class used to create the bastion; default BastionClass
"""
raise RuntimeError, "This code is not secure in Python 2.2 and later"
# Note: we define *two* ad-hoc functions here, get1 and get2.
# Both are intended to be called in the same way: get(name).
# It is clear that the real work (getting the attribute
# from the object and calling the filter) is done in get1.
# Why can't we pass get1 to the bastion? Because the user
# would be able to override the filter argument! With get2,
# overriding the default argument is no security loophole:
# all it does is call it.
# Also notice that we can't place the object and filter as
# instance variables on the bastion object itself, since
# the user has full access to all instance variables!
def get1(name, object=object, filter=filter):
"""Internal function for Bastion(). See source comments."""
if filter(name):
attribute = getattr(object, name)
if type(attribute) == MethodType:
return attribute
raise AttributeError, name
def get2(name, get1=get1):
"""Internal function for Bastion(). See source comments."""
return get1(name)
if name is None:
name = repr(object)
return bastionclass(get2, name)
def _test():
"""Test the Bastion() function."""
class Original:
def __init__(self):
self.sum = 0
def add(self, n):
self._add(n)
def _add(self, n):
self.sum = self.sum + n
def total(self):
return self.sum
o = Original()
b = Bastion(o)
testcode = """if 1:
b.add(81)
b.add(18)
print "b.total() =", b.total()
try:
print "b.sum =", b.sum,
except:
print "inaccessible"
else:
print "accessible"
try:
print "b._add =", b._add,
except:
print "inaccessible"
else:
print "accessible"
try:
print "b._get_.func_defaults =", map(type, b._get_.func_defaults),
except:
print "inaccessible"
else:
print "accessible"
\n"""
exec testcode
print '='*20, "Using rexec:", '='*20
import rexec
r = rexec.RExec()
m = r.add_module('__main__')
m.b = b
r.r_exec(testcode)
if __name__ == '__main__':
_test()

View File

@ -0,0 +1,378 @@
"""CGI-savvy HTTP Server.
This module builds on SimpleHTTPServer by implementing GET and POST
requests to cgi-bin scripts.
If the os.fork() function is not present (e.g. on Windows),
os.popen2() is used as a fallback, with slightly altered semantics; if
that function is not present either (e.g. on Macintosh), only Python
scripts are supported, and they are executed by the current process.
In all cases, the implementation is intentionally naive -- all
requests are executed sychronously.
SECURITY WARNING: DON'T USE THIS CODE UNLESS YOU ARE INSIDE A FIREWALL
-- it may execute arbitrary Python code or external programs.
Note that status code 200 is sent prior to execution of a CGI script, so
scripts cannot send other status codes such as 302 (redirect).
"""
__version__ = "0.4"
__all__ = ["CGIHTTPRequestHandler"]
import os
import sys
import urllib
import BaseHTTPServer
import SimpleHTTPServer
import select
import copy
class CGIHTTPRequestHandler(SimpleHTTPServer.SimpleHTTPRequestHandler):
"""Complete HTTP server with GET, HEAD and POST commands.
GET and HEAD also support running CGI scripts.
The POST command is *only* implemented for CGI scripts.
"""
# Determine platform specifics
have_fork = hasattr(os, 'fork')
have_popen2 = hasattr(os, 'popen2')
have_popen3 = hasattr(os, 'popen3')
# Make rfile unbuffered -- we need to read one line and then pass
# the rest to a subprocess, so we can't use buffered input.
rbufsize = 0
def do_POST(self):
"""Serve a POST request.
This is only implemented for CGI scripts.
"""
if self.is_cgi():
self.run_cgi()
else:
self.send_error(501, "Can only POST to CGI scripts")
def send_head(self):
"""Version of send_head that support CGI scripts"""
if self.is_cgi():
return self.run_cgi()
else:
return SimpleHTTPServer.SimpleHTTPRequestHandler.send_head(self)
def is_cgi(self):
"""Test whether self.path corresponds to a CGI script.
Returns True and updates the cgi_info attribute to the tuple
(dir, rest) if self.path requires running a CGI script.
Returns False otherwise.
If any exception is raised, the caller should assume that
self.path was rejected as invalid and act accordingly.
The default implementation tests whether the normalized url
path begins with one of the strings in self.cgi_directories
(and the next character is a '/' or the end of the string).
"""
collapsed_path = _url_collapse_path(self.path)
dir_sep = collapsed_path.find('/', 1)
head, tail = collapsed_path[:dir_sep], collapsed_path[dir_sep+1:]
if head in self.cgi_directories:
self.cgi_info = head, tail
return True
return False
cgi_directories = ['/cgi-bin', '/htbin']
def is_executable(self, path):
"""Test whether argument path is an executable file."""
return executable(path)
def is_python(self, path):
"""Test whether argument path is a Python script."""
head, tail = os.path.splitext(path)
return tail.lower() in (".py", ".pyw")
def run_cgi(self):
"""Execute a CGI script."""
dir, rest = self.cgi_info
path = dir + '/' + rest
i = path.find('/', len(dir)+1)
while i >= 0:
nextdir = path[:i]
nextrest = path[i+1:]
scriptdir = self.translate_path(nextdir)
if os.path.isdir(scriptdir):
dir, rest = nextdir, nextrest
i = path.find('/', len(dir)+1)
else:
break
# find an explicit query string, if present.
rest, _, query = rest.partition('?')
# dissect the part after the directory name into a script name &
# a possible additional path, to be stored in PATH_INFO.
i = rest.find('/')
if i >= 0:
script, rest = rest[:i], rest[i:]
else:
script, rest = rest, ''
scriptname = dir + '/' + script
scriptfile = self.translate_path(scriptname)
if not os.path.exists(scriptfile):
self.send_error(404, "No such CGI script (%r)" % scriptname)
return
if not os.path.isfile(scriptfile):
self.send_error(403, "CGI script is not a plain file (%r)" %
scriptname)
return
ispy = self.is_python(scriptname)
if not ispy:
if not (self.have_fork or self.have_popen2 or self.have_popen3):
self.send_error(403, "CGI script is not a Python script (%r)" %
scriptname)
return
if not self.is_executable(scriptfile):
self.send_error(403, "CGI script is not executable (%r)" %
scriptname)
return
# Reference: http://hoohoo.ncsa.uiuc.edu/cgi/env.html
# XXX Much of the following could be prepared ahead of time!
env = copy.deepcopy(os.environ)
env['SERVER_SOFTWARE'] = self.version_string()
env['SERVER_NAME'] = self.server.server_name
env['GATEWAY_INTERFACE'] = 'CGI/1.1'
env['SERVER_PROTOCOL'] = self.protocol_version
env['SERVER_PORT'] = str(self.server.server_port)
env['REQUEST_METHOD'] = self.command
uqrest = urllib.unquote(rest)
env['PATH_INFO'] = uqrest
env['PATH_TRANSLATED'] = self.translate_path(uqrest)
env['SCRIPT_NAME'] = scriptname
if query:
env['QUERY_STRING'] = query
host = self.address_string()
if host != self.client_address[0]:
env['REMOTE_HOST'] = host
env['REMOTE_ADDR'] = self.client_address[0]
authorization = self.headers.getheader("authorization")
if authorization:
authorization = authorization.split()
if len(authorization) == 2:
import base64, binascii
env['AUTH_TYPE'] = authorization[0]
if authorization[0].lower() == "basic":
try:
authorization = base64.decodestring(authorization[1])
except binascii.Error:
pass
else:
authorization = authorization.split(':')
if len(authorization) == 2:
env['REMOTE_USER'] = authorization[0]
# XXX REMOTE_IDENT
if self.headers.typeheader is None:
env['CONTENT_TYPE'] = self.headers.type
else:
env['CONTENT_TYPE'] = self.headers.typeheader
length = self.headers.getheader('content-length')
if length:
env['CONTENT_LENGTH'] = length
referer = self.headers.getheader('referer')
if referer:
env['HTTP_REFERER'] = referer
accept = []
for line in self.headers.getallmatchingheaders('accept'):
if line[:1] in "\t\n\r ":
accept.append(line.strip())
else:
accept = accept + line[7:].split(',')
env['HTTP_ACCEPT'] = ','.join(accept)
ua = self.headers.getheader('user-agent')
if ua:
env['HTTP_USER_AGENT'] = ua
co = filter(None, self.headers.getheaders('cookie'))
if co:
env['HTTP_COOKIE'] = ', '.join(co)
# XXX Other HTTP_* headers
# Since we're setting the env in the parent, provide empty
# values to override previously set values
for k in ('QUERY_STRING', 'REMOTE_HOST', 'CONTENT_LENGTH',
'HTTP_USER_AGENT', 'HTTP_COOKIE', 'HTTP_REFERER'):
env.setdefault(k, "")
self.send_response(200, "Script output follows")
decoded_query = query.replace('+', ' ')
if self.have_fork:
# Unix -- fork as we should
args = [script]
if '=' not in decoded_query:
args.append(decoded_query)
nobody = nobody_uid()
self.wfile.flush() # Always flush before forking
pid = os.fork()
if pid != 0:
# Parent
pid, sts = os.waitpid(pid, 0)
# throw away additional data [see bug #427345]
while select.select([self.rfile], [], [], 0)[0]:
if not self.rfile.read(1):
break
if sts:
self.log_error("CGI script exit status %#x", sts)
return
# Child
try:
try:
os.setuid(nobody)
except os.error:
pass
os.dup2(self.rfile.fileno(), 0)
os.dup2(self.wfile.fileno(), 1)
os.execve(scriptfile, args, env)
except:
self.server.handle_error(self.request, self.client_address)
os._exit(127)
else:
# Non Unix - use subprocess
import subprocess
cmdline = [scriptfile]
if self.is_python(scriptfile):
interp = sys.executable
if interp.lower().endswith("w.exe"):
# On Windows, use python.exe, not pythonw.exe
interp = interp[:-5] + interp[-4:]
cmdline = [interp, '-u'] + cmdline
if '=' not in query:
cmdline.append(query)
self.log_message("command: %s", subprocess.list2cmdline(cmdline))
try:
nbytes = int(length)
except (TypeError, ValueError):
nbytes = 0
p = subprocess.Popen(cmdline,
stdin = subprocess.PIPE,
stdout = subprocess.PIPE,
stderr = subprocess.PIPE,
env = env
)
if self.command.lower() == "post" and nbytes > 0:
data = self.rfile.read(nbytes)
else:
data = None
# throw away additional data [see bug #427345]
while select.select([self.rfile._sock], [], [], 0)[0]:
if not self.rfile._sock.recv(1):
break
stdout, stderr = p.communicate(data)
self.wfile.write(stdout)
if stderr:
self.log_error('%s', stderr)
p.stderr.close()
p.stdout.close()
status = p.returncode
if status:
self.log_error("CGI script exit status %#x", status)
else:
self.log_message("CGI script exited OK")
def _url_collapse_path(path):
"""
Given a URL path, remove extra '/'s and '.' path elements and collapse
any '..' references and returns a colllapsed path.
Implements something akin to RFC-2396 5.2 step 6 to parse relative paths.
The utility of this function is limited to is_cgi method and helps
preventing some security attacks.
Returns: The reconstituted URL, which will always start with a '/'.
Raises: IndexError if too many '..' occur within the path.
"""
# Query component should not be involved.
path, _, query = path.partition('?')
path = urllib.unquote(path)
# Similar to os.path.split(os.path.normpath(path)) but specific to URL
# path semantics rather than local operating system semantics.
path_parts = path.split('/')
head_parts = []
for part in path_parts[:-1]:
if part == '..':
head_parts.pop() # IndexError if more '..' than prior parts
elif part and part != '.':
head_parts.append( part )
if path_parts:
tail_part = path_parts.pop()
if tail_part:
if tail_part == '..':
head_parts.pop()
tail_part = ''
elif tail_part == '.':
tail_part = ''
else:
tail_part = ''
if query:
tail_part = '?'.join((tail_part, query))
splitpath = ('/' + '/'.join(head_parts), tail_part)
collapsed_path = "/".join(splitpath)
return collapsed_path
nobody = None
def nobody_uid():
"""Internal routine to get nobody's uid"""
global nobody
if nobody:
return nobody
try:
import pwd
except ImportError:
return -1
try:
nobody = pwd.getpwnam('nobody')[2]
except KeyError:
nobody = 1 + max(map(lambda x: x[2], pwd.getpwall()))
return nobody
def executable(path):
"""Test for executable file."""
try:
st = os.stat(path)
except os.error:
return False
return st.st_mode & 0111 != 0
def test(HandlerClass = CGIHTTPRequestHandler,
ServerClass = BaseHTTPServer.HTTPServer):
SimpleHTTPServer.test(HandlerClass, ServerClass)
if __name__ == '__main__':
test()

View File

@ -0,0 +1,753 @@
"""Configuration file parser.
A setup file consists of sections, lead by a "[section]" header,
and followed by "name: value" entries, with continuations and such in
the style of RFC 822.
The option values can contain format strings which refer to other values in
the same section, or values in a special [DEFAULT] section.
For example:
something: %(dir)s/whatever
would resolve the "%(dir)s" to the value of dir. All reference
expansions are done late, on demand.
Intrinsic defaults can be specified by passing them into the
ConfigParser constructor as a dictionary.
class:
ConfigParser -- responsible for parsing a list of
configuration files, and managing the parsed database.
methods:
__init__(defaults=None)
create the parser and specify a dictionary of intrinsic defaults. The
keys must be strings, the values must be appropriate for %()s string
interpolation. Note that `__name__' is always an intrinsic default;
its value is the section's name.
sections()
return all the configuration section names, sans DEFAULT
has_section(section)
return whether the given section exists
has_option(section, option)
return whether the given option exists in the given section
options(section)
return list of configuration options for the named section
read(filenames)
read and parse the list of named configuration files, given by
name. A single filename is also allowed. Non-existing files
are ignored. Return list of successfully read files.
readfp(fp, filename=None)
read and parse one configuration file, given as a file object.
The filename defaults to fp.name; it is only used in error
messages (if fp has no `name' attribute, the string `<???>' is used).
get(section, option, raw=False, vars=None)
return a string value for the named option. All % interpolations are
expanded in the return values, based on the defaults passed into the
constructor and the DEFAULT section. Additional substitutions may be
provided using the `vars' argument, which must be a dictionary whose
contents override any pre-existing defaults.
getint(section, options)
like get(), but convert value to an integer
getfloat(section, options)
like get(), but convert value to a float
getboolean(section, options)
like get(), but convert value to a boolean (currently case
insensitively defined as 0, false, no, off for False, and 1, true,
yes, on for True). Returns False or True.
items(section, raw=False, vars=None)
return a list of tuples with (name, value) for each option
in the section.
remove_section(section)
remove the given file section and all its options
remove_option(section, option)
remove the given option from the given section
set(section, option, value)
set the given option
write(fp)
write the configuration state in .ini format
"""
try:
from collections import OrderedDict as _default_dict
except ImportError:
# fallback for setup.py which hasn't yet built _collections
_default_dict = dict
import re
__all__ = ["NoSectionError", "DuplicateSectionError", "NoOptionError",
"InterpolationError", "InterpolationDepthError",
"InterpolationSyntaxError", "ParsingError",
"MissingSectionHeaderError",
"ConfigParser", "SafeConfigParser", "RawConfigParser",
"DEFAULTSECT", "MAX_INTERPOLATION_DEPTH"]
DEFAULTSECT = "DEFAULT"
MAX_INTERPOLATION_DEPTH = 10
# exception classes
class Error(Exception):
"""Base class for ConfigParser exceptions."""
def _get_message(self):
"""Getter for 'message'; needed only to override deprecation in
BaseException."""
return self.__message
def _set_message(self, value):
"""Setter for 'message'; needed only to override deprecation in
BaseException."""
self.__message = value
# BaseException.message has been deprecated since Python 2.6. To prevent
# DeprecationWarning from popping up over this pre-existing attribute, use
# a new property that takes lookup precedence.
message = property(_get_message, _set_message)
def __init__(self, msg=''):
self.message = msg
Exception.__init__(self, msg)
def __repr__(self):
return self.message
__str__ = __repr__
class NoSectionError(Error):
"""Raised when no section matches a requested option."""
def __init__(self, section):
Error.__init__(self, 'No section: %r' % (section,))
self.section = section
self.args = (section, )
class DuplicateSectionError(Error):
"""Raised when a section is multiply-created."""
def __init__(self, section):
Error.__init__(self, "Section %r already exists" % section)
self.section = section
self.args = (section, )
class NoOptionError(Error):
"""A requested option was not found."""
def __init__(self, option, section):
Error.__init__(self, "No option %r in section: %r" %
(option, section))
self.option = option
self.section = section
self.args = (option, section)
class InterpolationError(Error):
"""Base class for interpolation-related exceptions."""
def __init__(self, option, section, msg):
Error.__init__(self, msg)
self.option = option
self.section = section
self.args = (option, section, msg)
class InterpolationMissingOptionError(InterpolationError):
"""A string substitution required a setting which was not available."""
def __init__(self, option, section, rawval, reference):
msg = ("Bad value substitution:\n"
"\tsection: [%s]\n"
"\toption : %s\n"
"\tkey : %s\n"
"\trawval : %s\n"
% (section, option, reference, rawval))
InterpolationError.__init__(self, option, section, msg)
self.reference = reference
self.args = (option, section, rawval, reference)
class InterpolationSyntaxError(InterpolationError):
"""Raised when the source text into which substitutions are made
does not conform to the required syntax."""
class InterpolationDepthError(InterpolationError):
"""Raised when substitutions are nested too deeply."""
def __init__(self, option, section, rawval):
msg = ("Value interpolation too deeply recursive:\n"
"\tsection: [%s]\n"
"\toption : %s\n"
"\trawval : %s\n"
% (section, option, rawval))
InterpolationError.__init__(self, option, section, msg)
self.args = (option, section, rawval)
class ParsingError(Error):
"""Raised when a configuration file does not follow legal syntax."""
def __init__(self, filename):
Error.__init__(self, 'File contains parsing errors: %s' % filename)
self.filename = filename
self.errors = []
self.args = (filename, )
def append(self, lineno, line):
self.errors.append((lineno, line))
self.message += '\n\t[line %2d]: %s' % (lineno, line)
class MissingSectionHeaderError(ParsingError):
"""Raised when a key-value pair is found before any section header."""
def __init__(self, filename, lineno, line):
Error.__init__(
self,
'File contains no section headers.\nfile: %s, line: %d\n%r' %
(filename, lineno, line))
self.filename = filename
self.lineno = lineno
self.line = line
self.args = (filename, lineno, line)
class RawConfigParser:
def __init__(self, defaults=None, dict_type=_default_dict,
allow_no_value=False):
self._dict = dict_type
self._sections = self._dict()
self._defaults = self._dict()
if allow_no_value:
self._optcre = self.OPTCRE_NV
else:
self._optcre = self.OPTCRE
if defaults:
for key, value in defaults.items():
self._defaults[self.optionxform(key)] = value
def defaults(self):
return self._defaults
def sections(self):
"""Return a list of section names, excluding [DEFAULT]"""
# self._sections will never have [DEFAULT] in it
return self._sections.keys()
def add_section(self, section):
"""Create a new section in the configuration.
Raise DuplicateSectionError if a section by the specified name
already exists. Raise ValueError if name is DEFAULT or any of it's
case-insensitive variants.
"""
if section.lower() == "default":
raise ValueError, 'Invalid section name: %s' % section
if section in self._sections:
raise DuplicateSectionError(section)
self._sections[section] = self._dict()
def has_section(self, section):
"""Indicate whether the named section is present in the configuration.
The DEFAULT section is not acknowledged.
"""
return section in self._sections
def options(self, section):
"""Return a list of option names for the given section name."""
try:
opts = self._sections[section].copy()
except KeyError:
raise NoSectionError(section)
opts.update(self._defaults)
if '__name__' in opts:
del opts['__name__']
return opts.keys()
def read(self, filenames):
"""Read and parse a filename or a list of filenames.
Files that cannot be opened are silently ignored; this is
designed so that you can specify a list of potential
configuration file locations (e.g. current directory, user's
home directory, systemwide directory), and all existing
configuration files in the list will be read. A single
filename may also be given.
Return list of successfully read files.
"""
if isinstance(filenames, basestring):
filenames = [filenames]
read_ok = []
for filename in filenames:
try:
fp = open(filename)
except IOError:
continue
self._read(fp, filename)
fp.close()
read_ok.append(filename)
return read_ok
def readfp(self, fp, filename=None):
"""Like read() but the argument must be a file-like object.
The `fp' argument must have a `readline' method. Optional
second argument is the `filename', which if not given, is
taken from fp.name. If fp has no `name' attribute, `<???>' is
used.
"""
if filename is None:
try:
filename = fp.name
except AttributeError:
filename = '<???>'
self._read(fp, filename)
def get(self, section, option):
opt = self.optionxform(option)
if section not in self._sections:
if section != DEFAULTSECT:
raise NoSectionError(section)
if opt in self._defaults:
return self._defaults[opt]
else:
raise NoOptionError(option, section)
elif opt in self._sections[section]:
return self._sections[section][opt]
elif opt in self._defaults:
return self._defaults[opt]
else:
raise NoOptionError(option, section)
def items(self, section):
try:
d2 = self._sections[section]
except KeyError:
if section != DEFAULTSECT:
raise NoSectionError(section)
d2 = self._dict()
d = self._defaults.copy()
d.update(d2)
if "__name__" in d:
del d["__name__"]
return d.items()
def _get(self, section, conv, option):
return conv(self.get(section, option))
def getint(self, section, option):
return self._get(section, int, option)
def getfloat(self, section, option):
return self._get(section, float, option)
_boolean_states = {'1': True, 'yes': True, 'true': True, 'on': True,
'0': False, 'no': False, 'false': False, 'off': False}
def getboolean(self, section, option):
v = self.get(section, option)
if v.lower() not in self._boolean_states:
raise ValueError, 'Not a boolean: %s' % v
return self._boolean_states[v.lower()]
def optionxform(self, optionstr):
return optionstr.lower()
def has_option(self, section, option):
"""Check for the existence of a given option in a given section."""
if not section or section == DEFAULTSECT:
option = self.optionxform(option)
return option in self._defaults
elif section not in self._sections:
return False
else:
option = self.optionxform(option)
return (option in self._sections[section]
or option in self._defaults)
def set(self, section, option, value=None):
"""Set an option."""
if not section or section == DEFAULTSECT:
sectdict = self._defaults
else:
try:
sectdict = self._sections[section]
except KeyError:
raise NoSectionError(section)
sectdict[self.optionxform(option)] = value
def write(self, fp):
"""Write an .ini-format representation of the configuration state."""
if self._defaults:
fp.write("[%s]\n" % DEFAULTSECT)
for (key, value) in self._defaults.items():
fp.write("%s = %s\n" % (key, str(value).replace('\n', '\n\t')))
fp.write("\n")
for section in self._sections:
fp.write("[%s]\n" % section)
for (key, value) in self._sections[section].items():
if key == "__name__":
continue
if (value is not None) or (self._optcre == self.OPTCRE):
key = " = ".join((key, str(value).replace('\n', '\n\t')))
fp.write("%s\n" % (key))
fp.write("\n")
def remove_option(self, section, option):
"""Remove an option."""
if not section or section == DEFAULTSECT:
sectdict = self._defaults
else:
try:
sectdict = self._sections[section]
except KeyError:
raise NoSectionError(section)
option = self.optionxform(option)
existed = option in sectdict
if existed:
del sectdict[option]
return existed
def remove_section(self, section):
"""Remove a file section."""
existed = section in self._sections
if existed:
del self._sections[section]
return existed
#
# Regular expressions for parsing section headers and options.
#
SECTCRE = re.compile(
r'\[' # [
r'(?P<header>[^]]+)' # very permissive!
r'\]' # ]
)
OPTCRE = re.compile(
r'(?P<option>[^:=\s][^:=]*)' # very permissive!
r'\s*(?P<vi>[:=])\s*' # any number of space/tab,
# followed by separator
# (either : or =), followed
# by any # space/tab
r'(?P<value>.*)$' # everything up to eol
)
OPTCRE_NV = re.compile(
r'(?P<option>[^:=\s][^:=]*)' # very permissive!
r'\s*(?:' # any number of space/tab,
r'(?P<vi>[:=])\s*' # optionally followed by
# separator (either : or
# =), followed by any #
# space/tab
r'(?P<value>.*))?$' # everything up to eol
)
def _read(self, fp, fpname):
"""Parse a sectioned setup file.
The sections in setup file contains a title line at the top,
indicated by a name in square brackets (`[]'), plus key/value
options lines, indicated by `name: value' format lines.
Continuations are represented by an embedded newline then
leading whitespace. Blank lines, lines beginning with a '#',
and just about everything else are ignored.
"""
cursect = None # None, or a dictionary
optname = None
lineno = 0
e = None # None, or an exception
while True:
line = fp.readline()
if not line:
break
lineno = lineno + 1
# comment or blank line?
if line.strip() == '' or line[0] in '#;':
continue
if line.split(None, 1)[0].lower() == 'rem' and line[0] in "rR":
# no leading whitespace
continue
# continuation line?
if line[0].isspace() and cursect is not None and optname:
value = line.strip()
if value:
cursect[optname].append(value)
# a section header or option header?
else:
# is it a section header?
mo = self.SECTCRE.match(line)
if mo:
sectname = mo.group('header')
if sectname in self._sections:
cursect = self._sections[sectname]
elif sectname == DEFAULTSECT:
cursect = self._defaults
else:
cursect = self._dict()
cursect['__name__'] = sectname
self._sections[sectname] = cursect
# So sections can't start with a continuation line
optname = None
# no section header in the file?
elif cursect is None:
raise MissingSectionHeaderError(fpname, lineno, line)
# an option line?
else:
mo = self._optcre.match(line)
if mo:
optname, vi, optval = mo.group('option', 'vi', 'value')
optname = self.optionxform(optname.rstrip())
# This check is fine because the OPTCRE cannot
# match if it would set optval to None
if optval is not None:
if vi in ('=', ':') and ';' in optval:
# ';' is a comment delimiter only if it follows
# a spacing character
pos = optval.find(';')
if pos != -1 and optval[pos-1].isspace():
optval = optval[:pos]
optval = optval.strip()
# allow empty values
if optval == '""':
optval = ''
cursect[optname] = [optval]
else:
# valueless option handling
cursect[optname] = optval
else:
# a non-fatal parsing error occurred. set up the
# exception but keep going. the exception will be
# raised at the end of the file and will contain a
# list of all bogus lines
if not e:
e = ParsingError(fpname)
e.append(lineno, repr(line))
# if any parsing errors occurred, raise an exception
if e:
raise e
# join the multi-line values collected while reading
all_sections = [self._defaults]
all_sections.extend(self._sections.values())
for options in all_sections:
for name, val in options.items():
if isinstance(val, list):
options[name] = '\n'.join(val)
import UserDict as _UserDict
class _Chainmap(_UserDict.DictMixin):
"""Combine multiple mappings for successive lookups.
For example, to emulate Python's normal lookup sequence:
import __builtin__
pylookup = _Chainmap(locals(), globals(), vars(__builtin__))
"""
def __init__(self, *maps):
self._maps = maps
def __getitem__(self, key):
for mapping in self._maps:
try:
return mapping[key]
except KeyError:
pass
raise KeyError(key)
def keys(self):
result = []
seen = set()
for mapping in self._maps:
for key in mapping:
if key not in seen:
result.append(key)
seen.add(key)
return result
class ConfigParser(RawConfigParser):
def get(self, section, option, raw=False, vars=None):
"""Get an option value for a given section.
If `vars' is provided, it must be a dictionary. The option is looked up
in `vars' (if provided), `section', and in `defaults' in that order.
All % interpolations are expanded in the return values, unless the
optional argument `raw' is true. Values for interpolation keys are
looked up in the same manner as the option.
The section DEFAULT is special.
"""
sectiondict = {}
try:
sectiondict = self._sections[section]
except KeyError:
if section != DEFAULTSECT:
raise NoSectionError(section)
# Update with the entry specific variables
vardict = {}
if vars:
for key, value in vars.items():
vardict[self.optionxform(key)] = value
d = _Chainmap(vardict, sectiondict, self._defaults)
option = self.optionxform(option)
try:
value = d[option]
except KeyError:
raise NoOptionError(option, section)
if raw or value is None:
return value
else:
return self._interpolate(section, option, value, d)
def items(self, section, raw=False, vars=None):
"""Return a list of tuples with (name, value) for each option
in the section.
All % interpolations are expanded in the return values, based on the
defaults passed into the constructor, unless the optional argument
`raw' is true. Additional substitutions may be provided using the
`vars' argument, which must be a dictionary whose contents overrides
any pre-existing defaults.
The section DEFAULT is special.
"""
d = self._defaults.copy()
try:
d.update(self._sections[section])
except KeyError:
if section != DEFAULTSECT:
raise NoSectionError(section)
# Update with the entry specific variables
if vars:
for key, value in vars.items():
d[self.optionxform(key)] = value
options = d.keys()
if "__name__" in options:
options.remove("__name__")
if raw:
return [(option, d[option])
for option in options]
else:
return [(option, self._interpolate(section, option, d[option], d))
for option in options]
def _interpolate(self, section, option, rawval, vars):
# do the string interpolation
value = rawval
depth = MAX_INTERPOLATION_DEPTH
while depth: # Loop through this until it's done
depth -= 1
if value and "%(" in value:
value = self._KEYCRE.sub(self._interpolation_replace, value)
try:
value = value % vars
except KeyError, e:
raise InterpolationMissingOptionError(
option, section, rawval, e.args[0])
else:
break
if value and "%(" in value:
raise InterpolationDepthError(option, section, rawval)
return value
_KEYCRE = re.compile(r"%\(([^)]*)\)s|.")
def _interpolation_replace(self, match):
s = match.group(1)
if s is None:
return match.group()
else:
return "%%(%s)s" % self.optionxform(s)
class SafeConfigParser(ConfigParser):
def _interpolate(self, section, option, rawval, vars):
# do the string interpolation
L = []
self._interpolate_some(option, L, rawval, section, vars, 1)
return ''.join(L)
_interpvar_re = re.compile(r"%\(([^)]+)\)s")
def _interpolate_some(self, option, accum, rest, section, map, depth):
if depth > MAX_INTERPOLATION_DEPTH:
raise InterpolationDepthError(option, section, rest)
while rest:
p = rest.find("%")
if p < 0:
accum.append(rest)
return
if p > 0:
accum.append(rest[:p])
rest = rest[p:]
# p is no longer used
c = rest[1:2]
if c == "%":
accum.append("%")
rest = rest[2:]
elif c == "(":
m = self._interpvar_re.match(rest)
if m is None:
raise InterpolationSyntaxError(option, section,
"bad interpolation variable reference %r" % rest)
var = self.optionxform(m.group(1))
rest = rest[m.end():]
try:
v = map[var]
except KeyError:
raise InterpolationMissingOptionError(
option, section, rest, var)
if "%" in v:
self._interpolate_some(option, accum, v,
section, map, depth + 1)
else:
accum.append(v)
else:
raise InterpolationSyntaxError(
option, section,
"'%%' must be followed by '%%' or '(', found: %r" % (rest,))
def set(self, section, option, value=None):
"""Set an option. Extend ConfigParser.set: check for string values."""
# The only legal non-string value if we allow valueless
# options is None, so we need to check if the value is a
# string if:
# - we do not allow valueless options, or
# - we allow valueless options but the value is not None
if self._optcre is self.OPTCRE or value:
if not isinstance(value, basestring):
raise TypeError("option values must be strings")
if value is not None:
# check for bad percent signs:
# first, replace all "good" interpolations
tmp_value = value.replace('%%', '')
tmp_value = self._interpvar_re.sub('', tmp_value)
# then, check if there's a lone percent sign left
if '%' in tmp_value:
raise ValueError("invalid interpolation syntax in %r at "
"position %d" % (value, tmp_value.find('%')))
ConfigParser.set(self, section, option, value)

View File

@ -0,0 +1,773 @@
####
# Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
#
# All Rights Reserved
#
# Permission to use, copy, modify, and distribute this software
# and its documentation for any purpose and without fee is hereby
# granted, provided that the above copyright notice appear in all
# copies and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of
# Timothy O'Malley not be used in advertising or publicity
# pertaining to distribution of the software without specific, written
# prior permission.
#
# Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
# SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
# AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
# ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
# PERFORMANCE OF THIS SOFTWARE.
#
####
#
# Id: Cookie.py,v 2.29 2000/08/23 05:28:49 timo Exp
# by Timothy O'Malley <timo@alum.mit.edu>
#
# Cookie.py is a Python module for the handling of HTTP
# cookies as a Python dictionary. See RFC 2109 for more
# information on cookies.
#
# The original idea to treat Cookies as a dictionary came from
# Dave Mitchell (davem@magnet.com) in 1995, when he released the
# first version of nscookie.py.
#
####
r"""
Here's a sample session to show how to use this module.
At the moment, this is the only documentation.
The Basics
----------
Importing is easy..
>>> import Cookie
Most of the time you start by creating a cookie. Cookies come in
three flavors, each with slightly different encoding semantics, but
more on that later.
>>> C = Cookie.SimpleCookie()
>>> C = Cookie.SerialCookie()
>>> C = Cookie.SmartCookie()
[Note: Long-time users of Cookie.py will remember using
Cookie.Cookie() to create a Cookie object. Although deprecated, it
is still supported by the code. See the Backward Compatibility notes
for more information.]
Once you've created your Cookie, you can add values just as if it were
a dictionary.
>>> C = Cookie.SmartCookie()
>>> C["fig"] = "newton"
>>> C["sugar"] = "wafer"
>>> C.output()
'Set-Cookie: fig=newton\r\nSet-Cookie: sugar=wafer'
Notice that the printable representation of a Cookie is the
appropriate format for a Set-Cookie: header. This is the
default behavior. You can change the header and printed
attributes by using the .output() function
>>> C = Cookie.SmartCookie()
>>> C["rocky"] = "road"
>>> C["rocky"]["path"] = "/cookie"
>>> print C.output(header="Cookie:")
Cookie: rocky=road; Path=/cookie
>>> print C.output(attrs=[], header="Cookie:")
Cookie: rocky=road
The load() method of a Cookie extracts cookies from a string. In a
CGI script, you would use this method to extract the cookies from the
HTTP_COOKIE environment variable.
>>> C = Cookie.SmartCookie()
>>> C.load("chips=ahoy; vienna=finger")
>>> C.output()
'Set-Cookie: chips=ahoy\r\nSet-Cookie: vienna=finger'
The load() method is darn-tootin smart about identifying cookies
within a string. Escaped quotation marks, nested semicolons, and other
such trickeries do not confuse it.
>>> C = Cookie.SmartCookie()
>>> C.load('keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";')
>>> print C
Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;"
Each element of the Cookie also supports all of the RFC 2109
Cookie attributes. Here's an example which sets the Path
attribute.
>>> C = Cookie.SmartCookie()
>>> C["oreo"] = "doublestuff"
>>> C["oreo"]["path"] = "/"
>>> print C
Set-Cookie: oreo=doublestuff; Path=/
Each dictionary element has a 'value' attribute, which gives you
back the value associated with the key.
>>> C = Cookie.SmartCookie()
>>> C["twix"] = "none for you"
>>> C["twix"].value
'none for you'
A Bit More Advanced
-------------------
As mentioned before, there are three different flavors of Cookie
objects, each with different encoding/decoding semantics. This
section briefly discusses the differences.
SimpleCookie
The SimpleCookie expects that all values should be standard strings.
Just to be sure, SimpleCookie invokes the str() builtin to convert
the value to a string, when the values are set dictionary-style.
>>> C = Cookie.SimpleCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
'7'
>>> C["string"].value
'seven'
>>> C.output()
'Set-Cookie: number=7\r\nSet-Cookie: string=seven'
SerialCookie
The SerialCookie expects that all values should be serialized using
cPickle (or pickle, if cPickle isn't available). As a result of
serializing, SerialCookie can save almost any Python object to a
value, and recover the exact same object when the cookie has been
returned. (SerialCookie can yield some strange-looking cookie
values, however.)
>>> C = Cookie.SerialCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
'seven'
>>> C.output()
'Set-Cookie: number="I7\\012."\r\nSet-Cookie: string="S\'seven\'\\012p1\\012."'
Be warned, however, if SerialCookie cannot de-serialize a value (because
it isn't a valid pickle'd object), IT WILL RAISE AN EXCEPTION.
SmartCookie
The SmartCookie combines aspects of each of the other two flavors.
When setting a value in a dictionary-fashion, the SmartCookie will
serialize (ala cPickle) the value *if and only if* it isn't a
Python string. String objects are *not* serialized. Similarly,
when the load() method parses out values, it attempts to de-serialize
the value. If it fails, then it fallsback to treating the value
as a string.
>>> C = Cookie.SmartCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
'seven'
>>> C.output()
'Set-Cookie: number="I7\\012."\r\nSet-Cookie: string=seven'
Backwards Compatibility
-----------------------
In order to keep compatibilty with earlier versions of Cookie.py,
it is still possible to use Cookie.Cookie() to create a Cookie. In
fact, this simply returns a SmartCookie.
>>> C = Cookie.Cookie()
>>> print C.__class__.__name__
SmartCookie
Finis.
""" #"
# ^
# |----helps out font-lock
#
# Import our required modules
#
import string
try:
from cPickle import dumps, loads
except ImportError:
from pickle import dumps, loads
import re, warnings
__all__ = ["CookieError","BaseCookie","SimpleCookie","SerialCookie",
"SmartCookie","Cookie"]
_nulljoin = ''.join
_semispacejoin = '; '.join
_spacejoin = ' '.join
#
# Define an exception visible to External modules
#
class CookieError(Exception):
pass
# These quoting routines conform to the RFC2109 specification, which in
# turn references the character definitions from RFC2068. They provide
# a two-way quoting algorithm. Any non-text character is translated
# into a 4 character sequence: a forward-slash followed by the
# three-digit octal equivalent of the character. Any '\' or '"' is
# quoted with a preceding '\' slash.
#
# These are taken from RFC2068 and RFC2109.
# _LegalChars is the list of chars which don't require "'s
# _Translator hash-table for fast quoting
#
_LegalChars = string.ascii_letters + string.digits + "!#$%&'*+-.^_`|~"
_Translator = {
'\000' : '\\000', '\001' : '\\001', '\002' : '\\002',
'\003' : '\\003', '\004' : '\\004', '\005' : '\\005',
'\006' : '\\006', '\007' : '\\007', '\010' : '\\010',
'\011' : '\\011', '\012' : '\\012', '\013' : '\\013',
'\014' : '\\014', '\015' : '\\015', '\016' : '\\016',
'\017' : '\\017', '\020' : '\\020', '\021' : '\\021',
'\022' : '\\022', '\023' : '\\023', '\024' : '\\024',
'\025' : '\\025', '\026' : '\\026', '\027' : '\\027',
'\030' : '\\030', '\031' : '\\031', '\032' : '\\032',
'\033' : '\\033', '\034' : '\\034', '\035' : '\\035',
'\036' : '\\036', '\037' : '\\037',
# Because of the way browsers really handle cookies (as opposed
# to what the RFC says) we also encode , and ;
',' : '\\054', ';' : '\\073',
'"' : '\\"', '\\' : '\\\\',
'\177' : '\\177', '\200' : '\\200', '\201' : '\\201',
'\202' : '\\202', '\203' : '\\203', '\204' : '\\204',
'\205' : '\\205', '\206' : '\\206', '\207' : '\\207',
'\210' : '\\210', '\211' : '\\211', '\212' : '\\212',
'\213' : '\\213', '\214' : '\\214', '\215' : '\\215',
'\216' : '\\216', '\217' : '\\217', '\220' : '\\220',
'\221' : '\\221', '\222' : '\\222', '\223' : '\\223',
'\224' : '\\224', '\225' : '\\225', '\226' : '\\226',
'\227' : '\\227', '\230' : '\\230', '\231' : '\\231',
'\232' : '\\232', '\233' : '\\233', '\234' : '\\234',
'\235' : '\\235', '\236' : '\\236', '\237' : '\\237',
'\240' : '\\240', '\241' : '\\241', '\242' : '\\242',
'\243' : '\\243', '\244' : '\\244', '\245' : '\\245',
'\246' : '\\246', '\247' : '\\247', '\250' : '\\250',
'\251' : '\\251', '\252' : '\\252', '\253' : '\\253',
'\254' : '\\254', '\255' : '\\255', '\256' : '\\256',
'\257' : '\\257', '\260' : '\\260', '\261' : '\\261',
'\262' : '\\262', '\263' : '\\263', '\264' : '\\264',
'\265' : '\\265', '\266' : '\\266', '\267' : '\\267',
'\270' : '\\270', '\271' : '\\271', '\272' : '\\272',
'\273' : '\\273', '\274' : '\\274', '\275' : '\\275',
'\276' : '\\276', '\277' : '\\277', '\300' : '\\300',
'\301' : '\\301', '\302' : '\\302', '\303' : '\\303',
'\304' : '\\304', '\305' : '\\305', '\306' : '\\306',
'\307' : '\\307', '\310' : '\\310', '\311' : '\\311',
'\312' : '\\312', '\313' : '\\313', '\314' : '\\314',
'\315' : '\\315', '\316' : '\\316', '\317' : '\\317',
'\320' : '\\320', '\321' : '\\321', '\322' : '\\322',
'\323' : '\\323', '\324' : '\\324', '\325' : '\\325',
'\326' : '\\326', '\327' : '\\327', '\330' : '\\330',
'\331' : '\\331', '\332' : '\\332', '\333' : '\\333',
'\334' : '\\334', '\335' : '\\335', '\336' : '\\336',
'\337' : '\\337', '\340' : '\\340', '\341' : '\\341',
'\342' : '\\342', '\343' : '\\343', '\344' : '\\344',
'\345' : '\\345', '\346' : '\\346', '\347' : '\\347',
'\350' : '\\350', '\351' : '\\351', '\352' : '\\352',
'\353' : '\\353', '\354' : '\\354', '\355' : '\\355',
'\356' : '\\356', '\357' : '\\357', '\360' : '\\360',
'\361' : '\\361', '\362' : '\\362', '\363' : '\\363',
'\364' : '\\364', '\365' : '\\365', '\366' : '\\366',
'\367' : '\\367', '\370' : '\\370', '\371' : '\\371',
'\372' : '\\372', '\373' : '\\373', '\374' : '\\374',
'\375' : '\\375', '\376' : '\\376', '\377' : '\\377'
}
_idmap = ''.join(chr(x) for x in xrange(256))
def _quote(str, LegalChars=_LegalChars,
idmap=_idmap, translate=string.translate):
#
# If the string does not need to be double-quoted,
# then just return the string. Otherwise, surround
# the string in doublequotes and precede quote (with a \)
# special characters.
#
if "" == translate(str, idmap, LegalChars):
return str
else:
return '"' + _nulljoin( map(_Translator.get, str, str) ) + '"'
# end _quote
_OctalPatt = re.compile(r"\\[0-3][0-7][0-7]")
_QuotePatt = re.compile(r"[\\].")
def _unquote(str):
# If there aren't any doublequotes,
# then there can't be any special characters. See RFC 2109.
if len(str) < 2:
return str
if str[0] != '"' or str[-1] != '"':
return str
# We have to assume that we must decode this string.
# Down to work.
# Remove the "s
str = str[1:-1]
# Check for special sequences. Examples:
# \012 --> \n
# \" --> "
#
i = 0
n = len(str)
res = []
while 0 <= i < n:
Omatch = _OctalPatt.search(str, i)
Qmatch = _QuotePatt.search(str, i)
if not Omatch and not Qmatch: # Neither matched
res.append(str[i:])
break
# else:
j = k = -1
if Omatch: j = Omatch.start(0)
if Qmatch: k = Qmatch.start(0)
if Qmatch and ( not Omatch or k < j ): # QuotePatt matched
res.append(str[i:k])
res.append(str[k+1])
i = k+2
else: # OctalPatt matched
res.append(str[i:j])
res.append( chr( int(str[j+1:j+4], 8) ) )
i = j+4
return _nulljoin(res)
# end _unquote
# The _getdate() routine is used to set the expiration time in
# the cookie's HTTP header. By default, _getdate() returns the
# current time in the appropriate "expires" format for a
# Set-Cookie header. The one optional argument is an offset from
# now, in seconds. For example, an offset of -3600 means "one hour ago".
# The offset may be a floating point number.
#
_weekdayname = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
_monthname = [None,
'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
def _getdate(future=0, weekdayname=_weekdayname, monthname=_monthname):
from time import gmtime, time
now = time()
year, month, day, hh, mm, ss, wd, y, z = gmtime(now + future)
return "%s, %02d %3s %4d %02d:%02d:%02d GMT" % \
(weekdayname[wd], day, monthname[month], year, hh, mm, ss)
#
# A class to hold ONE key,value pair.
# In a cookie, each such pair may have several attributes.
# so this class is used to keep the attributes associated
# with the appropriate key,value pair.
# This class also includes a coded_value attribute, which
# is used to hold the network representation of the
# value. This is most useful when Python objects are
# pickled for network transit.
#
class Morsel(dict):
# RFC 2109 lists these attributes as reserved:
# path comment domain
# max-age secure version
#
# For historical reasons, these attributes are also reserved:
# expires
#
# This is an extension from Microsoft:
# httponly
#
# This dictionary provides a mapping from the lowercase
# variant on the left to the appropriate traditional
# formatting on the right.
_reserved = { "expires" : "expires",
"path" : "Path",
"comment" : "Comment",
"domain" : "Domain",
"max-age" : "Max-Age",
"secure" : "secure",
"httponly" : "httponly",
"version" : "Version",
}
_flags = {'secure', 'httponly'}
def __init__(self):
# Set defaults
self.key = self.value = self.coded_value = None
# Set default attributes
for K in self._reserved:
dict.__setitem__(self, K, "")
# end __init__
def __setitem__(self, K, V):
K = K.lower()
if not K in self._reserved:
raise CookieError("Invalid Attribute %s" % K)
dict.__setitem__(self, K, V)
# end __setitem__
def isReservedKey(self, K):
return K.lower() in self._reserved
# end isReservedKey
def set(self, key, val, coded_val,
LegalChars=_LegalChars,
idmap=_idmap, translate=string.translate):
# First we verify that the key isn't a reserved word
# Second we make sure it only contains legal characters
if key.lower() in self._reserved:
raise CookieError("Attempt to set a reserved key: %s" % key)
if "" != translate(key, idmap, LegalChars):
raise CookieError("Illegal key value: %s" % key)
# It's a good key, so save it.
self.key = key
self.value = val
self.coded_value = coded_val
# end set
def output(self, attrs=None, header = "Set-Cookie:"):
return "%s %s" % ( header, self.OutputString(attrs) )
__str__ = output
def __repr__(self):
return '<%s: %s=%s>' % (self.__class__.__name__,
self.key, repr(self.value) )
def js_output(self, attrs=None):
# Print javascript
return """
<script type="text/javascript">
<!-- begin hiding
document.cookie = \"%s\";
// end hiding -->
</script>
""" % ( self.OutputString(attrs).replace('"',r'\"'), )
# end js_output()
def OutputString(self, attrs=None):
# Build up our result
#
result = []
RA = result.append
# First, the key=value pair
RA("%s=%s" % (self.key, self.coded_value))
# Now add any defined attributes
if attrs is None:
attrs = self._reserved
items = self.items()
items.sort()
for K,V in items:
if V == "": continue
if K not in attrs: continue
if K == "expires" and type(V) == type(1):
RA("%s=%s" % (self._reserved[K], _getdate(V)))
elif K == "max-age" and type(V) == type(1):
RA("%s=%d" % (self._reserved[K], V))
elif K == "secure":
RA(str(self._reserved[K]))
elif K == "httponly":
RA(str(self._reserved[K]))
else:
RA("%s=%s" % (self._reserved[K], V))
# Return the result
return _semispacejoin(result)
# end OutputString
# end Morsel class
#
# Pattern for finding cookie
#
# This used to be strict parsing based on the RFC2109 and RFC2068
# specifications. I have since discovered that MSIE 3.0x doesn't
# follow the character rules outlined in those specs. As a
# result, the parsing rules here are less strict.
#
_LegalKeyChars = r"\w\d!#%&'~_`><@,:/\$\*\+\-\.\^\|\)\(\?\}\{\="
_LegalValueChars = _LegalKeyChars + r"\[\]"
_CookiePattern = re.compile(
r"(?x)" # This is a Verbose pattern
r"\s*" # Optional whitespace at start of cookie
r"(?P<key>" # Start of group 'key'
"["+ _LegalKeyChars +"]+?" # Any word of at least one letter, nongreedy
r")" # End of group 'key'
r"(" # Optional group: there may not be a value.
r"\s*=\s*" # Equal Sign
r"(?P<val>" # Start of group 'val'
r'"(?:[^\\"]|\\.)*"' # Any doublequoted string
r"|" # or
r"\w{3},\s[\s\w\d-]{9,11}\s[\d:]{8}\sGMT" # Special case for "expires" attr
r"|" # or
"["+ _LegalValueChars +"]*" # Any word or empty string
r")" # End of group 'val'
r")?" # End of optional value group
r"\s*" # Any number of spaces.
r"(\s+|;|$)" # Ending either at space, semicolon, or EOS.
)
# At long last, here is the cookie class.
# Using this class is almost just like using a dictionary.
# See this module's docstring for example usage.
#
class BaseCookie(dict):
# A container class for a set of Morsels
#
def value_decode(self, val):
"""real_value, coded_value = value_decode(STRING)
Called prior to setting a cookie's value from the network
representation. The VALUE is the value read from HTTP
header.
Override this function to modify the behavior of cookies.
"""
return val, val
# end value_encode
def value_encode(self, val):
"""real_value, coded_value = value_encode(VALUE)
Called prior to setting a cookie's value from the dictionary
representation. The VALUE is the value being assigned.
Override this function to modify the behavior of cookies.
"""
strval = str(val)
return strval, strval
# end value_encode
def __init__(self, input=None):
if input: self.load(input)
# end __init__
def __set(self, key, real_value, coded_value):
"""Private method for setting a cookie's value"""
M = self.get(key, Morsel())
M.set(key, real_value, coded_value)
dict.__setitem__(self, key, M)
# end __set
def __setitem__(self, key, value):
"""Dictionary style assignment."""
if isinstance(value, Morsel):
# allow assignment of constructed Morsels (e.g. for pickling)
dict.__setitem__(self, key, value)
else:
rval, cval = self.value_encode(value)
self.__set(key, rval, cval)
# end __setitem__
def output(self, attrs=None, header="Set-Cookie:", sep="\015\012"):
"""Return a string suitable for HTTP."""
result = []
items = self.items()
items.sort()
for K,V in items:
result.append( V.output(attrs, header) )
return sep.join(result)
# end output
__str__ = output
def __repr__(self):
L = []
items = self.items()
items.sort()
for K,V in items:
L.append( '%s=%s' % (K,repr(V.value) ) )
return '<%s: %s>' % (self.__class__.__name__, _spacejoin(L))
def js_output(self, attrs=None):
"""Return a string suitable for JavaScript."""
result = []
items = self.items()
items.sort()
for K,V in items:
result.append( V.js_output(attrs) )
return _nulljoin(result)
# end js_output
def load(self, rawdata):
"""Load cookies from a string (presumably HTTP_COOKIE) or
from a dictionary. Loading cookies from a dictionary 'd'
is equivalent to calling:
map(Cookie.__setitem__, d.keys(), d.values())
"""
if type(rawdata) == type(""):
self.__ParseString(rawdata)
else:
# self.update() wouldn't call our custom __setitem__
for k, v in rawdata.items():
self[k] = v
return
# end load()
def __ParseString(self, str, patt=_CookiePattern):
i = 0 # Our starting point
n = len(str) # Length of string
M = None # current morsel
while 0 <= i < n:
# Start looking for a cookie
match = patt.match(str, i)
if not match: break # No more cookies
K,V = match.group("key"), match.group("val")
i = match.end(0)
# Parse the key, value in case it's metainfo
if K[0] == "$":
# We ignore attributes which pertain to the cookie
# mechanism as a whole. See RFC 2109.
# (Does anyone care?)
if M:
M[ K[1:] ] = V
elif K.lower() in Morsel._reserved:
if M:
if V is None:
if K.lower() in Morsel._flags:
M[K] = True
else:
M[K] = _unquote(V)
elif V is not None:
rval, cval = self.value_decode(V)
self.__set(K, rval, cval)
M = self[K]
# end __ParseString
# end BaseCookie class
class SimpleCookie(BaseCookie):
"""SimpleCookie
SimpleCookie supports strings as cookie values. When setting
the value using the dictionary assignment notation, SimpleCookie
calls the builtin str() to convert the value to a string. Values
received from HTTP are kept as strings.
"""
def value_decode(self, val):
return _unquote( val ), val
def value_encode(self, val):
strval = str(val)
return strval, _quote( strval )
# end SimpleCookie
class SerialCookie(BaseCookie):
"""SerialCookie
SerialCookie supports arbitrary objects as cookie values. All
values are serialized (using cPickle) before being sent to the
client. All incoming values are assumed to be valid Pickle
representations. IF AN INCOMING VALUE IS NOT IN A VALID PICKLE
FORMAT, THEN AN EXCEPTION WILL BE RAISED.
Note: Large cookie values add overhead because they must be
retransmitted on every HTTP transaction.
Note: HTTP has a 2k limit on the size of a cookie. This class
does not check for this limit, so be careful!!!
"""
def __init__(self, input=None):
warnings.warn("SerialCookie class is insecure; do not use it",
DeprecationWarning)
BaseCookie.__init__(self, input)
# end __init__
def value_decode(self, val):
# This could raise an exception!
return loads( _unquote(val) ), val
def value_encode(self, val):
return val, _quote( dumps(val) )
# end SerialCookie
class SmartCookie(BaseCookie):
"""SmartCookie
SmartCookie supports arbitrary objects as cookie values. If the
object is a string, then it is quoted. If the object is not a
string, however, then SmartCookie will use cPickle to serialize
the object into a string representation.
Note: Large cookie values add overhead because they must be
retransmitted on every HTTP transaction.
Note: HTTP has a 2k limit on the size of a cookie. This class
does not check for this limit, so be careful!!!
"""
def __init__(self, input=None):
warnings.warn("Cookie/SmartCookie class is insecure; do not use it",
DeprecationWarning)
BaseCookie.__init__(self, input)
# end __init__
def value_decode(self, val):
strval = _unquote(val)
try:
return loads(strval), val
except:
return strval, val
def value_encode(self, val):
if type(val) == type(""):
return val, _quote(val)
else:
return val, _quote( dumps(val) )
# end SmartCookie
###########################################################
# Backwards Compatibility: Don't break any existing code!
# We provide Cookie() as an alias for SmartCookie()
Cookie = SmartCookie
#
###########################################################
def _test():
import doctest, Cookie
return doctest.testmod(Cookie)
if __name__ == "__main__":
_test()
#Local Variables:
#tab-width: 4
#end:

View File

@ -0,0 +1,279 @@
"""Self documenting XML-RPC Server.
This module can be used to create XML-RPC servers that
serve pydoc-style documentation in response to HTTP
GET requests. This documentation is dynamically generated
based on the functions and methods registered with the
server.
This module is built upon the pydoc and SimpleXMLRPCServer
modules.
"""
import pydoc
import inspect
import re
import sys
from SimpleXMLRPCServer import (SimpleXMLRPCServer,
SimpleXMLRPCRequestHandler,
CGIXMLRPCRequestHandler,
resolve_dotted_attribute)
class ServerHTMLDoc(pydoc.HTMLDoc):
"""Class used to generate pydoc HTML document for a server"""
def markup(self, text, escape=None, funcs={}, classes={}, methods={}):
"""Mark up some plain text, given a context of symbols to look for.
Each context dictionary maps object names to anchor names."""
escape = escape or self.escape
results = []
here = 0
# XXX Note that this regular expression does not allow for the
# hyperlinking of arbitrary strings being used as method
# names. Only methods with names consisting of word characters
# and '.'s are hyperlinked.
pattern = re.compile(r'\b((http|ftp)://\S+[\w/]|'
r'RFC[- ]?(\d+)|'
r'PEP[- ]?(\d+)|'
r'(self\.)?((?:\w|\.)+))\b')
while 1:
match = pattern.search(text, here)
if not match: break
start, end = match.span()
results.append(escape(text[here:start]))
all, scheme, rfc, pep, selfdot, name = match.groups()
if scheme:
url = escape(all).replace('"', '&quot;')
results.append('<a href="%s">%s</a>' % (url, url))
elif rfc:
url = 'http://www.rfc-editor.org/rfc/rfc%d.txt' % int(rfc)
results.append('<a href="%s">%s</a>' % (url, escape(all)))
elif pep:
url = 'http://www.python.org/dev/peps/pep-%04d/' % int(pep)
results.append('<a href="%s">%s</a>' % (url, escape(all)))
elif text[end:end+1] == '(':
results.append(self.namelink(name, methods, funcs, classes))
elif selfdot:
results.append('self.<strong>%s</strong>' % name)
else:
results.append(self.namelink(name, classes))
here = end
results.append(escape(text[here:]))
return ''.join(results)
def docroutine(self, object, name, mod=None,
funcs={}, classes={}, methods={}, cl=None):
"""Produce HTML documentation for a function or method object."""
anchor = (cl and cl.__name__ or '') + '-' + name
note = ''
title = '<a name="%s"><strong>%s</strong></a>' % (
self.escape(anchor), self.escape(name))
if inspect.ismethod(object):
args, varargs, varkw, defaults = inspect.getargspec(object.im_func)
# exclude the argument bound to the instance, it will be
# confusing to the non-Python user
argspec = inspect.formatargspec (
args[1:],
varargs,
varkw,
defaults,
formatvalue=self.formatvalue
)
elif inspect.isfunction(object):
args, varargs, varkw, defaults = inspect.getargspec(object)
argspec = inspect.formatargspec(
args, varargs, varkw, defaults, formatvalue=self.formatvalue)
else:
argspec = '(...)'
if isinstance(object, tuple):
argspec = object[0] or argspec
docstring = object[1] or ""
else:
docstring = pydoc.getdoc(object)
decl = title + argspec + (note and self.grey(
'<font face="helvetica, arial">%s</font>' % note))
doc = self.markup(
docstring, self.preformat, funcs, classes, methods)
doc = doc and '<dd><tt>%s</tt></dd>' % doc
return '<dl><dt>%s</dt>%s</dl>\n' % (decl, doc)
def docserver(self, server_name, package_documentation, methods):
"""Produce HTML documentation for an XML-RPC server."""
fdict = {}
for key, value in methods.items():
fdict[key] = '#-' + key
fdict[value] = fdict[key]
server_name = self.escape(server_name)
head = '<big><big><strong>%s</strong></big></big>' % server_name
result = self.heading(head, '#ffffff', '#7799ee')
doc = self.markup(package_documentation, self.preformat, fdict)
doc = doc and '<tt>%s</tt>' % doc
result = result + '<p>%s</p>\n' % doc
contents = []
method_items = sorted(methods.items())
for key, value in method_items:
contents.append(self.docroutine(value, key, funcs=fdict))
result = result + self.bigsection(
'Methods', '#ffffff', '#eeaa77', pydoc.join(contents))
return result
class XMLRPCDocGenerator:
"""Generates documentation for an XML-RPC server.
This class is designed as mix-in and should not
be constructed directly.
"""
def __init__(self):
# setup variables used for HTML documentation
self.server_name = 'XML-RPC Server Documentation'
self.server_documentation = \
"This server exports the following methods through the XML-RPC "\
"protocol."
self.server_title = 'XML-RPC Server Documentation'
def set_server_title(self, server_title):
"""Set the HTML title of the generated server documentation"""
self.server_title = server_title
def set_server_name(self, server_name):
"""Set the name of the generated HTML server documentation"""
self.server_name = server_name
def set_server_documentation(self, server_documentation):
"""Set the documentation string for the entire server."""
self.server_documentation = server_documentation
def generate_html_documentation(self):
"""generate_html_documentation() => html documentation for the server
Generates HTML documentation for the server using introspection for
installed functions and instances that do not implement the
_dispatch method. Alternatively, instances can choose to implement
the _get_method_argstring(method_name) method to provide the
argument string used in the documentation and the
_methodHelp(method_name) method to provide the help text used
in the documentation."""
methods = {}
for method_name in self.system_listMethods():
if method_name in self.funcs:
method = self.funcs[method_name]
elif self.instance is not None:
method_info = [None, None] # argspec, documentation
if hasattr(self.instance, '_get_method_argstring'):
method_info[0] = self.instance._get_method_argstring(method_name)
if hasattr(self.instance, '_methodHelp'):
method_info[1] = self.instance._methodHelp(method_name)
method_info = tuple(method_info)
if method_info != (None, None):
method = method_info
elif not hasattr(self.instance, '_dispatch'):
try:
method = resolve_dotted_attribute(
self.instance,
method_name
)
except AttributeError:
method = method_info
else:
method = method_info
else:
assert 0, "Could not find method in self.functions and no "\
"instance installed"
methods[method_name] = method
documenter = ServerHTMLDoc()
documentation = documenter.docserver(
self.server_name,
self.server_documentation,
methods
)
return documenter.page(self.server_title, documentation)
class DocXMLRPCRequestHandler(SimpleXMLRPCRequestHandler):
"""XML-RPC and documentation request handler class.
Handles all HTTP POST requests and attempts to decode them as
XML-RPC requests.
Handles all HTTP GET requests and interprets them as requests
for documentation.
"""
def do_GET(self):
"""Handles the HTTP GET request.
Interpret all HTTP GET requests as requests for server
documentation.
"""
# Check that the path is legal
if not self.is_rpc_path_valid():
self.report_404()
return
response = self.server.generate_html_documentation()
self.send_response(200)
self.send_header("Content-type", "text/html")
self.send_header("Content-length", str(len(response)))
self.end_headers()
self.wfile.write(response)
class DocXMLRPCServer( SimpleXMLRPCServer,
XMLRPCDocGenerator):
"""XML-RPC and HTML documentation server.
Adds the ability to serve server documentation to the capabilities
of SimpleXMLRPCServer.
"""
def __init__(self, addr, requestHandler=DocXMLRPCRequestHandler,
logRequests=1, allow_none=False, encoding=None,
bind_and_activate=True):
SimpleXMLRPCServer.__init__(self, addr, requestHandler, logRequests,
allow_none, encoding, bind_and_activate)
XMLRPCDocGenerator.__init__(self)
class DocCGIXMLRPCRequestHandler( CGIXMLRPCRequestHandler,
XMLRPCDocGenerator):
"""Handler for XML-RPC data and documentation requests passed through
CGI"""
def handle_get(self):
"""Handles the HTTP GET request.
Interpret all HTTP GET requests as requests for server
documentation.
"""
response = self.generate_html_documentation()
print 'Content-Type: text/html'
print 'Content-Length: %d' % len(response)
print
sys.stdout.write(response)
def __init__(self):
CGIXMLRPCRequestHandler.__init__(self)
XMLRPCDocGenerator.__init__(self)

View File

@ -0,0 +1,475 @@
"""A parser for HTML and XHTML."""
# This file is based on sgmllib.py, but the API is slightly different.
# XXX There should be a way to distinguish between PCDATA (parsed
# character data -- the normal case), RCDATA (replaceable character
# data -- only char and entity references and end tags are special)
# and CDATA (character data -- only end tags are special).
import markupbase
import re
# Regular expressions used for parsing
interesting_normal = re.compile('[&<]')
incomplete = re.compile('&[a-zA-Z#]')
entityref = re.compile('&([a-zA-Z][-.a-zA-Z0-9]*)[^a-zA-Z0-9]')
charref = re.compile('&#(?:[0-9]+|[xX][0-9a-fA-F]+)[^0-9a-fA-F]')
starttagopen = re.compile('<[a-zA-Z]')
piclose = re.compile('>')
commentclose = re.compile(r'--\s*>')
# see http://www.w3.org/TR/html5/tokenization.html#tag-open-state
# and http://www.w3.org/TR/html5/tokenization.html#tag-name-state
# note: if you change tagfind/attrfind remember to update locatestarttagend too
tagfind = re.compile('([a-zA-Z][^\t\n\r\f />\x00]*)(?:\s|/(?!>))*')
# this regex is currently unused, but left for backward compatibility
tagfind_tolerant = re.compile('[a-zA-Z][^\t\n\r\f />\x00]*')
attrfind = re.compile(
r'((?<=[\'"\s/])[^\s/>][^\s/=>]*)(\s*=+\s*'
r'(\'[^\']*\'|"[^"]*"|(?![\'"])[^>\s]*))?(?:\s|/(?!>))*')
locatestarttagend = re.compile(r"""
<[a-zA-Z][^\t\n\r\f />\x00]* # tag name
(?:[\s/]* # optional whitespace before attribute name
(?:(?<=['"\s/])[^\s/>][^\s/=>]* # attribute name
(?:\s*=+\s* # value indicator
(?:'[^']*' # LITA-enclosed value
|"[^"]*" # LIT-enclosed value
|(?!['"])[^>\s]* # bare value
)
)?(?:\s|/(?!>))*
)*
)?
\s* # trailing whitespace
""", re.VERBOSE)
endendtag = re.compile('>')
# the HTML 5 spec, section 8.1.2.2, doesn't allow spaces between
# </ and the tag name, so maybe this should be fixed
endtagfind = re.compile('</\s*([a-zA-Z][-.a-zA-Z0-9:_]*)\s*>')
class HTMLParseError(Exception):
"""Exception raised for all parse errors."""
def __init__(self, msg, position=(None, None)):
assert msg
self.msg = msg
self.lineno = position[0]
self.offset = position[1]
def __str__(self):
result = self.msg
if self.lineno is not None:
result = result + ", at line %d" % self.lineno
if self.offset is not None:
result = result + ", column %d" % (self.offset + 1)
return result
class HTMLParser(markupbase.ParserBase):
"""Find tags and other markup and call handler functions.
Usage:
p = HTMLParser()
p.feed(data)
...
p.close()
Start tags are handled by calling self.handle_starttag() or
self.handle_startendtag(); end tags by self.handle_endtag(). The
data between tags is passed from the parser to the derived class
by calling self.handle_data() with the data as argument (the data
may be split up in arbitrary chunks). Entity references are
passed by calling self.handle_entityref() with the entity
reference as the argument. Numeric character references are
passed to self.handle_charref() with the string containing the
reference as the argument.
"""
CDATA_CONTENT_ELEMENTS = ("script", "style")
def __init__(self):
"""Initialize and reset this instance."""
self.reset()
def reset(self):
"""Reset this instance. Loses all unprocessed data."""
self.rawdata = ''
self.lasttag = '???'
self.interesting = interesting_normal
self.cdata_elem = None
markupbase.ParserBase.reset(self)
def feed(self, data):
r"""Feed data to the parser.
Call this as often as you want, with as little or as much text
as you want (may include '\n').
"""
self.rawdata = self.rawdata + data
self.goahead(0)
def close(self):
"""Handle any buffered data."""
self.goahead(1)
def error(self, message):
raise HTMLParseError(message, self.getpos())
__starttag_text = None
def get_starttag_text(self):
"""Return full source of start tag: '<...>'."""
return self.__starttag_text
def set_cdata_mode(self, elem):
self.cdata_elem = elem.lower()
self.interesting = re.compile(r'</\s*%s\s*>' % self.cdata_elem, re.I)
def clear_cdata_mode(self):
self.interesting = interesting_normal
self.cdata_elem = None
# Internal -- handle data as far as reasonable. May leave state
# and data to be processed by a subsequent call. If 'end' is
# true, force handling all data as if followed by EOF marker.
def goahead(self, end):
rawdata = self.rawdata
i = 0
n = len(rawdata)
while i < n:
match = self.interesting.search(rawdata, i) # < or &
if match:
j = match.start()
else:
if self.cdata_elem:
break
j = n
if i < j: self.handle_data(rawdata[i:j])
i = self.updatepos(i, j)
if i == n: break
startswith = rawdata.startswith
if startswith('<', i):
if starttagopen.match(rawdata, i): # < + letter
k = self.parse_starttag(i)
elif startswith("</", i):
k = self.parse_endtag(i)
elif startswith("<!--", i):
k = self.parse_comment(i)
elif startswith("<?", i):
k = self.parse_pi(i)
elif startswith("<!", i):
k = self.parse_html_declaration(i)
elif (i + 1) < n:
self.handle_data("<")
k = i + 1
else:
break
if k < 0:
if not end:
break
k = rawdata.find('>', i + 1)
if k < 0:
k = rawdata.find('<', i + 1)
if k < 0:
k = i + 1
else:
k += 1
self.handle_data(rawdata[i:k])
i = self.updatepos(i, k)
elif startswith("&#", i):
match = charref.match(rawdata, i)
if match:
name = match.group()[2:-1]
self.handle_charref(name)
k = match.end()
if not startswith(';', k-1):
k = k - 1
i = self.updatepos(i, k)
continue
else:
if ";" in rawdata[i:]: # bail by consuming '&#'
self.handle_data(rawdata[i:i+2])
i = self.updatepos(i, i+2)
break
elif startswith('&', i):
match = entityref.match(rawdata, i)
if match:
name = match.group(1)
self.handle_entityref(name)
k = match.end()
if not startswith(';', k-1):
k = k - 1
i = self.updatepos(i, k)
continue
match = incomplete.match(rawdata, i)
if match:
# match.group() will contain at least 2 chars
if end and match.group() == rawdata[i:]:
self.error("EOF in middle of entity or char ref")
# incomplete
break
elif (i + 1) < n:
# not the end of the buffer, and can't be confused
# with some other construct
self.handle_data("&")
i = self.updatepos(i, i + 1)
else:
break
else:
assert 0, "interesting.search() lied"
# end while
if end and i < n and not self.cdata_elem:
self.handle_data(rawdata[i:n])
i = self.updatepos(i, n)
self.rawdata = rawdata[i:]
# Internal -- parse html declarations, return length or -1 if not terminated
# See w3.org/TR/html5/tokenization.html#markup-declaration-open-state
# See also parse_declaration in _markupbase
def parse_html_declaration(self, i):
rawdata = self.rawdata
if rawdata[i:i+2] != '<!':
self.error('unexpected call to parse_html_declaration()')
if rawdata[i:i+4] == '<!--':
# this case is actually already handled in goahead()
return self.parse_comment(i)
elif rawdata[i:i+3] == '<![':
return self.parse_marked_section(i)
elif rawdata[i:i+9].lower() == '<!doctype':
# find the closing >
gtpos = rawdata.find('>', i+9)
if gtpos == -1:
return -1
self.handle_decl(rawdata[i+2:gtpos])
return gtpos+1
else:
return self.parse_bogus_comment(i)
# Internal -- parse bogus comment, return length or -1 if not terminated
# see http://www.w3.org/TR/html5/tokenization.html#bogus-comment-state
def parse_bogus_comment(self, i, report=1):
rawdata = self.rawdata
if rawdata[i:i+2] not in ('<!', '</'):
self.error('unexpected call to parse_comment()')
pos = rawdata.find('>', i+2)
if pos == -1:
return -1
if report:
self.handle_comment(rawdata[i+2:pos])
return pos + 1
# Internal -- parse processing instr, return end or -1 if not terminated
def parse_pi(self, i):
rawdata = self.rawdata
assert rawdata[i:i+2] == '<?', 'unexpected call to parse_pi()'
match = piclose.search(rawdata, i+2) # >
if not match:
return -1
j = match.start()
self.handle_pi(rawdata[i+2: j])
j = match.end()
return j
# Internal -- handle starttag, return end or -1 if not terminated
def parse_starttag(self, i):
self.__starttag_text = None
endpos = self.check_for_whole_start_tag(i)
if endpos < 0:
return endpos
rawdata = self.rawdata
self.__starttag_text = rawdata[i:endpos]
# Now parse the data between i+1 and j into a tag and attrs
attrs = []
match = tagfind.match(rawdata, i+1)
assert match, 'unexpected call to parse_starttag()'
k = match.end()
self.lasttag = tag = match.group(1).lower()
while k < endpos:
m = attrfind.match(rawdata, k)
if not m:
break
attrname, rest, attrvalue = m.group(1, 2, 3)
if not rest:
attrvalue = None
elif attrvalue[:1] == '\'' == attrvalue[-1:] or \
attrvalue[:1] == '"' == attrvalue[-1:]:
attrvalue = attrvalue[1:-1]
if attrvalue:
attrvalue = self.unescape(attrvalue)
attrs.append((attrname.lower(), attrvalue))
k = m.end()
end = rawdata[k:endpos].strip()
if end not in (">", "/>"):
lineno, offset = self.getpos()
if "\n" in self.__starttag_text:
lineno = lineno + self.__starttag_text.count("\n")
offset = len(self.__starttag_text) \
- self.__starttag_text.rfind("\n")
else:
offset = offset + len(self.__starttag_text)
self.handle_data(rawdata[i:endpos])
return endpos
if end.endswith('/>'):
# XHTML-style empty tag: <span attr="value" />
self.handle_startendtag(tag, attrs)
else:
self.handle_starttag(tag, attrs)
if tag in self.CDATA_CONTENT_ELEMENTS:
self.set_cdata_mode(tag)
return endpos
# Internal -- check to see if we have a complete starttag; return end
# or -1 if incomplete.
def check_for_whole_start_tag(self, i):
rawdata = self.rawdata
m = locatestarttagend.match(rawdata, i)
if m:
j = m.end()
next = rawdata[j:j+1]
if next == ">":
return j + 1
if next == "/":
if rawdata.startswith("/>", j):
return j + 2
if rawdata.startswith("/", j):
# buffer boundary
return -1
# else bogus input
self.updatepos(i, j + 1)
self.error("malformed empty start tag")
if next == "":
# end of input
return -1
if next in ("abcdefghijklmnopqrstuvwxyz=/"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"):
# end of input in or before attribute value, or we have the
# '/' from a '/>' ending
return -1
if j > i:
return j
else:
return i + 1
raise AssertionError("we should not get here!")
# Internal -- parse endtag, return end or -1 if incomplete
def parse_endtag(self, i):
rawdata = self.rawdata
assert rawdata[i:i+2] == "</", "unexpected call to parse_endtag"
match = endendtag.search(rawdata, i+1) # >
if not match:
return -1
gtpos = match.end()
match = endtagfind.match(rawdata, i) # </ + tag + >
if not match:
if self.cdata_elem is not None:
self.handle_data(rawdata[i:gtpos])
return gtpos
# find the name: w3.org/TR/html5/tokenization.html#tag-name-state
namematch = tagfind.match(rawdata, i+2)
if not namematch:
# w3.org/TR/html5/tokenization.html#end-tag-open-state
if rawdata[i:i+3] == '</>':
return i+3
else:
return self.parse_bogus_comment(i)
tagname = namematch.group(1).lower()
# consume and ignore other stuff between the name and the >
# Note: this is not 100% correct, since we might have things like
# </tag attr=">">, but looking for > after tha name should cover
# most of the cases and is much simpler
gtpos = rawdata.find('>', namematch.end())
self.handle_endtag(tagname)
return gtpos+1
elem = match.group(1).lower() # script or style
if self.cdata_elem is not None:
if elem != self.cdata_elem:
self.handle_data(rawdata[i:gtpos])
return gtpos
self.handle_endtag(elem)
self.clear_cdata_mode()
return gtpos
# Overridable -- finish processing of start+end tag: <tag.../>
def handle_startendtag(self, tag, attrs):
self.handle_starttag(tag, attrs)
self.handle_endtag(tag)
# Overridable -- handle start tag
def handle_starttag(self, tag, attrs):
pass
# Overridable -- handle end tag
def handle_endtag(self, tag):
pass
# Overridable -- handle character reference
def handle_charref(self, name):
pass
# Overridable -- handle entity reference
def handle_entityref(self, name):
pass
# Overridable -- handle data
def handle_data(self, data):
pass
# Overridable -- handle comment
def handle_comment(self, data):
pass
# Overridable -- handle declaration
def handle_decl(self, decl):
pass
# Overridable -- handle processing instruction
def handle_pi(self, data):
pass
def unknown_decl(self, data):
pass
# Internal -- helper to remove special character quoting
entitydefs = None
def unescape(self, s):
if '&' not in s:
return s
def replaceEntities(s):
s = s.groups()[0]
try:
if s[0] == "#":
s = s[1:]
if s[0] in ['x','X']:
c = int(s[1:], 16)
else:
c = int(s)
return unichr(c)
except ValueError:
return '&#'+s+';'
else:
# Cannot use name2codepoint directly, because HTMLParser supports apos,
# which is not part of HTML 4
import htmlentitydefs
if HTMLParser.entitydefs is None:
entitydefs = HTMLParser.entitydefs = {'apos':u"'"}
for k, v in htmlentitydefs.name2codepoint.iteritems():
entitydefs[k] = unichr(v)
try:
return self.entitydefs[s]
except KeyError:
return '&'+s+';'
return re.sub(r"&(#?[xX]?(?:[0-9a-fA-F]+|\w{1,8}));", replaceEntities, s)

View File

@ -0,0 +1,186 @@
"""Generic MIME writer.
This module defines the class MimeWriter. The MimeWriter class implements
a basic formatter for creating MIME multi-part files. It doesn't seek around
the output file nor does it use large amounts of buffer space. You must write
the parts out in the order that they should occur in the final file.
MimeWriter does buffer the headers you add, allowing you to rearrange their
order.
"""
import mimetools
__all__ = ["MimeWriter"]
import warnings
warnings.warn("the MimeWriter module is deprecated; use the email package instead",
DeprecationWarning, 2)
class MimeWriter:
"""Generic MIME writer.
Methods:
__init__()
addheader()
flushheaders()
startbody()
startmultipartbody()
nextpart()
lastpart()
A MIME writer is much more primitive than a MIME parser. It
doesn't seek around on the output file, and it doesn't use large
amounts of buffer space, so you have to write the parts in the
order they should occur on the output file. It does buffer the
headers you add, allowing you to rearrange their order.
General usage is:
f = <open the output file>
w = MimeWriter(f)
...call w.addheader(key, value) 0 or more times...
followed by either:
f = w.startbody(content_type)
...call f.write(data) for body data...
or:
w.startmultipartbody(subtype)
for each part:
subwriter = w.nextpart()
...use the subwriter's methods to create the subpart...
w.lastpart()
The subwriter is another MimeWriter instance, and should be
treated in the same way as the toplevel MimeWriter. This way,
writing recursive body parts is easy.
Warning: don't forget to call lastpart()!
XXX There should be more state so calls made in the wrong order
are detected.
Some special cases:
- startbody() just returns the file passed to the constructor;
but don't use this knowledge, as it may be changed.
- startmultipartbody() actually returns a file as well;
this can be used to write the initial 'if you can read this your
mailer is not MIME-aware' message.
- If you call flushheaders(), the headers accumulated so far are
written out (and forgotten); this is useful if you don't need a
body part at all, e.g. for a subpart of type message/rfc822
that's (mis)used to store some header-like information.
- Passing a keyword argument 'prefix=<flag>' to addheader(),
start*body() affects where the header is inserted; 0 means
append at the end, 1 means insert at the start; default is
append for addheader(), but insert for start*body(), which use
it to determine where the Content-Type header goes.
"""
def __init__(self, fp):
self._fp = fp
self._headers = []
def addheader(self, key, value, prefix=0):
"""Add a header line to the MIME message.
The key is the name of the header, where the value obviously provides
the value of the header. The optional argument prefix determines
where the header is inserted; 0 means append at the end, 1 means
insert at the start. The default is to append.
"""
lines = value.split("\n")
while lines and not lines[-1]: del lines[-1]
while lines and not lines[0]: del lines[0]
for i in range(1, len(lines)):
lines[i] = " " + lines[i].strip()
value = "\n".join(lines) + "\n"
line = key + ": " + value
if prefix:
self._headers.insert(0, line)
else:
self._headers.append(line)
def flushheaders(self):
"""Writes out and forgets all headers accumulated so far.
This is useful if you don't need a body part at all; for example,
for a subpart of type message/rfc822 that's (mis)used to store some
header-like information.
"""
self._fp.writelines(self._headers)
self._headers = []
def startbody(self, ctype, plist=[], prefix=1):
"""Returns a file-like object for writing the body of the message.
The content-type is set to the provided ctype, and the optional
parameter, plist, provides additional parameters for the
content-type declaration. The optional argument prefix determines
where the header is inserted; 0 means append at the end, 1 means
insert at the start. The default is to insert at the start.
"""
for name, value in plist:
ctype = ctype + ';\n %s=\"%s\"' % (name, value)
self.addheader("Content-Type", ctype, prefix=prefix)
self.flushheaders()
self._fp.write("\n")
return self._fp
def startmultipartbody(self, subtype, boundary=None, plist=[], prefix=1):
"""Returns a file-like object for writing the body of the message.
Additionally, this method initializes the multi-part code, where the
subtype parameter provides the multipart subtype, the boundary
parameter may provide a user-defined boundary specification, and the
plist parameter provides optional parameters for the subtype. The
optional argument, prefix, determines where the header is inserted;
0 means append at the end, 1 means insert at the start. The default
is to insert at the start. Subparts should be created using the
nextpart() method.
"""
self._boundary = boundary or mimetools.choose_boundary()
return self.startbody("multipart/" + subtype,
[("boundary", self._boundary)] + plist,
prefix=prefix)
def nextpart(self):
"""Returns a new instance of MimeWriter which represents an
individual part in a multipart message.
This may be used to write the part as well as used for creating
recursively complex multipart messages. The message must first be
initialized with the startmultipartbody() method before using the
nextpart() method.
"""
self._fp.write("\n--" + self._boundary + "\n")
return self.__class__(self._fp)
def lastpart(self):
"""This is used to designate the last part of a multipart message.
It should always be used when writing multipart messages.
"""
self._fp.write("\n--" + self._boundary + "--\n")
if __name__ == '__main__':
import test.test_MimeWriter

Some files were not shown because too many files have changed in this diff Show More