llama.cpp/common/common.cpp

2860 lines
107 KiB
C++

#include "common.h"
#include "llama.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iterator>
#include <iostream>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <cinttypes>
#include <codecvt>
#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <locale>
#include <windows.h>
#include <fcntl.h>
#include <io.h>
#else
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <thread>
#include <future>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
#define GGML_USE_CUDA_SYCL
#endif
#if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
#define GGML_USE_CUDA_SYCL_VULKAN
#endif
#if defined(LLAMA_USE_CURL)
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
#define PATH_MAX MAX_PATH
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
#define LLAMA_CURL_MAX_HEADER_LENGTH 256
#endif // LLAMA_USE_CURL
int32_t get_num_physical_cores() {
#ifdef __linux__
// enumerate the set of thread siblings, num entries is num cores
std::unordered_set<std::string> siblings;
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
std::ifstream thread_siblings("/sys/devices/system/cpu"
+ std::to_string(cpu) + "/topology/thread_siblings");
if (!thread_siblings.is_open()) {
break; // no more cpus
}
std::string line;
if (std::getline(thread_siblings, line)) {
siblings.insert(line);
}
}
if (!siblings.empty()) {
return static_cast<int32_t>(siblings.size());
}
#elif defined(__APPLE__) && defined(__MACH__)
int32_t num_physical_cores;
size_t len = sizeof(num_physical_cores);
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
if (result == 0) {
return num_physical_cores;
}
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
if (result == 0) {
return num_physical_cores;
}
#elif defined(_WIN32)
//TODO: Implement
#endif
unsigned int n_threads = std::thread::hardware_concurrency();
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}
void process_escapes(std::string & input) {
std::size_t input_len = input.length();
std::size_t output_idx = 0;
for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
switch (input[++input_idx]) {
case 'n': input[output_idx++] = '\n'; break;
case 'r': input[output_idx++] = '\r'; break;
case 't': input[output_idx++] = '\t'; break;
case '\'': input[output_idx++] = '\''; break;
case '\"': input[output_idx++] = '\"'; break;
case '\\': input[output_idx++] = '\\'; break;
case 'x':
// Handle \x12, etc
if (input_idx + 2 < input_len) {
const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
char *err_p = nullptr;
const long val = std::strtol(x, &err_p, 16);
if (err_p == x + 2) {
input_idx += 2;
input[output_idx++] = char(val);
break;
}
}
// fall through
default: input[output_idx++] = '\\';
input[output_idx++] = input[input_idx]; break;
}
} else {
input[output_idx++] = input[input_idx];
}
}
input.resize(output_idx);
}
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
bool result = true;
try {
if (!gpt_params_parse_ex(argc, argv, params)) {
gpt_print_usage(argc, argv, gpt_params());
exit(0);
}
}
catch (const std::invalid_argument & ex) {
fprintf(stderr, "%s\n", ex.what());
gpt_print_usage(argc, argv, gpt_params());
exit(1);
}
return result;
}
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
llama_sampling_params& sparams = params.sparams;
if (arg == "-s" || arg == "--seed") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.seed = std::stoul(argv[i]);
return true;
}
if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_threads = std::stoi(argv[i]);
if (params.n_threads <= 0) {
params.n_threads = std::thread::hardware_concurrency();
}
return true;
}
if (arg == "-tb" || arg == "--threads-batch") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_threads_batch = std::stoi(argv[i]);
if (params.n_threads_batch <= 0) {
params.n_threads_batch = std::thread::hardware_concurrency();
}
return true;
}
if (arg == "-td" || arg == "--threads-draft") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_threads_draft = std::stoi(argv[i]);
if (params.n_threads_draft <= 0) {
params.n_threads_draft = std::thread::hardware_concurrency();
}
return true;
}
if (arg == "-tbd" || arg == "--threads-batch-draft") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_threads_batch_draft = std::stoi(argv[i]);
if (params.n_threads_batch_draft <= 0) {
params.n_threads_batch_draft = std::thread::hardware_concurrency();
}
return true;
}
if (arg == "-p" || arg == "--prompt") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.prompt = argv[i];
return true;
}
if (arg == "-e" || arg == "--escape") {
params.escape = true;
return true;
}
if (arg == "--prompt-cache") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.path_prompt_cache = argv[i];
return true;
}
if (arg == "--prompt-cache-all") {
params.prompt_cache_all = true;
return true;
}
if (arg == "--prompt-cache-ro") {
params.prompt_cache_ro = true;
return true;
}
if (arg == "-bf" || arg == "--binary-file") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::ifstream file(argv[i], std::ios::binary);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
return true;
}
// store the external file name in params
params.prompt_file = argv[i];
std::ostringstream ss;
ss << file.rdbuf();
params.prompt = ss.str();
fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
return true;
}
if (arg == "-f" || arg == "--file") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
return true;
}
// store the external file name in params
params.prompt_file = argv[i];
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (!params.prompt.empty() && params.prompt.back() == '\n') {
params.prompt.pop_back();
}
return true;
}
if (arg == "-n" || arg == "--n-predict") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_predict = std::stoi(argv[i]);
return true;
}
if (arg == "--top-k") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.top_k = std::stoi(argv[i]);
return true;
}
if (arg == "-c" || arg == "--ctx-size") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_ctx = std::stoi(argv[i]);
return true;
}
if (arg == "--grp-attn-n" || arg == "-gan") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.grp_attn_n = std::stoi(argv[i]);
return true;
}
if (arg == "--grp-attn-w" || arg == "-gaw") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.grp_attn_w = std::stoi(argv[i]);
return true;
}
if (arg == "--rope-freq-base") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.rope_freq_base = std::stof(argv[i]);
return true;
}
if (arg == "--rope-freq-scale") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.rope_freq_scale = std::stof(argv[i]);
return true;
}
if (arg == "--rope-scaling") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
else { invalid_param = true; }
return true;
}
if (arg == "--rope-scale") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.rope_freq_scale = 1.0f / std::stof(argv[i]);
return true;
}
if (arg == "--yarn-orig-ctx") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.yarn_orig_ctx = std::stoi(argv[i]);
return true;
}
if (arg == "--yarn-ext-factor") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.yarn_ext_factor = std::stof(argv[i]);
return true;
}
if (arg == "--yarn-attn-factor") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.yarn_attn_factor = std::stof(argv[i]);
return true;
}
if (arg == "--yarn-beta-fast") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.yarn_beta_fast = std::stof(argv[i]);
return true;
}
if (arg == "--yarn-beta-slow") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.yarn_beta_slow = std::stof(argv[i]);
return true;
}
if (arg == "--pooling") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
else { invalid_param = true; }
return true;
}
if (arg == "--defrag-thold" || arg == "-dt") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.defrag_thold = std::stof(argv[i]);
return true;
}
if (arg == "--samplers") {
if (++i >= argc) {
invalid_param = true;
return true;
}
const auto sampler_names = string_split(argv[i], ';');
sparams.samplers_sequence = sampler_types_from_names(sampler_names, true);
return true;
}
if (arg == "--sampling-seq") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.samplers_sequence = sampler_types_from_chars(argv[i]);
return true;
}
if (arg == "--top-p") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.top_p = std::stof(argv[i]);
return true;
}
if (arg == "--min-p") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.min_p = std::stof(argv[i]);
return true;
}
if (arg == "--temp") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.temp = std::stof(argv[i]);
sparams.temp = std::max(sparams.temp, 0.0f);
return true;
}
if (arg == "--tfs") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.tfs_z = std::stof(argv[i]);
return true;
}
if (arg == "--typical") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.typical_p = std::stof(argv[i]);
return true;
}
if (arg == "--repeat-last-n") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.penalty_last_n = std::stoi(argv[i]);
sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
return true;
}
if (arg == "--repeat-penalty") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.penalty_repeat = std::stof(argv[i]);
return true;
}
if (arg == "--frequency-penalty") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.penalty_freq = std::stof(argv[i]);
return true;
}
if (arg == "--presence-penalty") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.penalty_present = std::stof(argv[i]);
return true;
}
if (arg == "--dynatemp-range") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.dynatemp_range = std::stof(argv[i]);
return true;
}
if (arg == "--dynatemp-exp") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.dynatemp_exponent = std::stof(argv[i]);
return true;
}
if (arg == "--mirostat") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.mirostat = std::stoi(argv[i]);
return true;
}
if (arg == "--mirostat-lr") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.mirostat_eta = std::stof(argv[i]);
return true;
}
if (arg == "--mirostat-ent") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.mirostat_tau = std::stof(argv[i]);
return true;
}
if (arg == "--cfg-negative-prompt") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.cfg_negative_prompt = argv[i];
return true;
}
if (arg == "--cfg-negative-prompt-file") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
return true;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
sparams.cfg_negative_prompt.pop_back();
}
return true;
}
if (arg == "--cfg-scale") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.cfg_scale = std::stof(argv[i]);
return true;
}
if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_batch = std::stoi(argv[i]);
return true;
}
if (arg == "-ub" || arg == "--ubatch-size") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_ubatch = std::stoi(argv[i]);
return true;
}
if (arg == "--keep") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_keep = std::stoi(argv[i]);
return true;
}
if (arg == "--draft") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_draft = std::stoi(argv[i]);
return true;
}
if (arg == "--chunks") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_chunks = std::stoi(argv[i]);
return true;
}
if (arg == "-np" || arg == "--parallel") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_parallel = std::stoi(argv[i]);
return true;
}
if (arg == "-ns" || arg == "--sequences") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_sequences = std::stoi(argv[i]);
return true;
}
if (arg == "--p-split" || arg == "-ps") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.p_split = std::stof(argv[i]);
return true;
}
if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.model = argv[i];
return true;
}
if (arg == "-md" || arg == "--model-draft") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.model_draft = argv[i];
return true;
}
if (arg == "-a" || arg == "--alias") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.model_alias = argv[i];
return true;
}
if (arg == "-mu" || arg == "--model-url") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.model_url = argv[i];
return true;
}
if (arg == "-hfr" || arg == "--hf-repo") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.hf_repo = argv[i];
return true;
}
if (arg == "-hff" || arg == "--hf-file") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.hf_file = argv[i];
return true;
}
if (arg == "--lora") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.lora_adapter.emplace_back(argv[i], 1.0f);
params.use_mmap = false;
return true;
}
if (arg == "--lora-scaled") {
if (++i >= argc) {
invalid_param = true;
return true;
}
const char* lora_adapter = argv[i];
if (++i >= argc) {
invalid_param = true;
return true;
}
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
params.use_mmap = false;
return true;
}
if (arg == "--lora-base") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.lora_base = argv[i];
return true;
}
if (arg == "--control-vector") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.control_vectors.push_back({ 1.0f, argv[i], });
return true;
}
if (arg == "--control-vector-scaled") {
if (++i >= argc) {
invalid_param = true;
return true;
}
const char* fname = argv[i];
if (++i >= argc) {
invalid_param = true;
return true;
}
params.control_vectors.push_back({ std::stof(argv[i]), fname, });
return true;
}
if (arg == "--control-vector-layer-range") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.control_vector_layer_start = std::stoi(argv[i]);
if (++i >= argc) {
invalid_param = true;
return true;
}
params.control_vector_layer_end = std::stoi(argv[i]);
return true;
}
if (arg == "--mmproj") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.mmproj = argv[i];
return true;
}
if (arg == "--image") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.image = argv[i];
return true;
}
if (arg == "-i" || arg == "--interactive") {
params.interactive = true;
return true;
}
if (arg == "--embedding") {
params.embedding = true;
return true;
}
if (arg == "--interactive-first") {
params.interactive_first = true;
return true;
}
if (arg == "-ins" || arg == "--instruct") {
params.instruct = true;
return true;
}
if (arg == "-cml" || arg == "--chatml") {
params.chatml = true;
return true;
}
if (arg == "--infill") {
params.infill = true;
return true;
}
if (arg == "-dkvc" || arg == "--dump-kv-cache") {
params.dump_kv_cache = true;
return true;
}
if (arg == "-nkvo" || arg == "--no-kv-offload") {
params.no_kv_offload = true;
return true;
}
if (arg == "-ctk" || arg == "--cache-type-k") {
params.cache_type_k = argv[++i];
return true;
}
if (arg == "-ctv" || arg == "--cache-type-v") {
params.cache_type_v = argv[++i];
return true;
}
if (arg == "--multiline-input") {
params.multiline_input = true;
return true;
}
if (arg == "--simple-io") {
params.simple_io = true;
return true;
}
if (arg == "-cb" || arg == "--cont-batching") {
params.cont_batching = true;
return true;
}
if (arg == "--color") {
params.use_color = true;
return true;
}
if (arg == "--mlock") {
params.use_mlock = true;
return true;
}
if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_gpu_layers = std::stoi(argv[i]);
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
return true;
}
if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_gpu_layers_draft = std::stoi(argv[i]);
if (!llama_supports_gpu_offload()) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
return true;
}
if (arg == "--main-gpu" || arg == "-mg") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.main_gpu = std::stoi(argv[i]);
#ifndef GGML_USE_CUDA_SYCL
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the main GPU has no effect.\n");
#endif // GGML_USE_CUDA_SYCL
return true;
}
if (arg == "--split-mode" || arg == "-sm") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::string arg_next = argv[i];
if (arg_next == "none") {
params.split_mode = LLAMA_SPLIT_MODE_NONE;
}
else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
}
else if (arg_next == "row") {
#ifdef GGML_USE_SYCL
fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
exit(1);
#endif // GGML_USE_SYCL
params.split_mode = LLAMA_SPLIT_MODE_ROW;
}
else {
invalid_param = true;
return true;
}
#ifndef GGML_USE_CUDA_SYCL
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUDA_SYCL
return true;
}
if (arg == "--tensor-split" || arg == "-ts") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{ R"([,/]+)" };
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
std::vector<std::string> split_arg{ it, {} };
if (split_arg.size() >= llama_max_devices()) {
invalid_param = true;
return true;
}
for (size_t i = 0; i < llama_max_devices(); ++i) {
if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]);
}
else {
params.tensor_split[i] = 0.0f;
}
}
#ifndef GGML_USE_CUDA_SYCL_VULKAN
fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
#endif // GGML_USE_CUDA_SYCL_VULKAN
return true;
}
if (arg == "--no-mmap") {
params.use_mmap = false;
return true;
}
if (arg == "--numa") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::string value(argv[i]);
/**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
else { invalid_param = true; }
return true;
}
if (arg == "--verbose-prompt") {
params.verbose_prompt = true;
return true;
}
if (arg == "--no-display-prompt") {
params.display_prompt = false;
return true;
}
if (arg == "-r" || arg == "--reverse-prompt") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.antiprompt.emplace_back(argv[i]);
return true;
}
if (arg == "-ld" || arg == "--logdir") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.logdir = argv[i];
if (params.logdir.back() != DIRECTORY_SEPARATOR) {
params.logdir += DIRECTORY_SEPARATOR;
}
return true;
}
if (arg == "-lcs" || arg == "--lookup-cache-static") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.lookup_cache_static = argv[i];
return true;
}
if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.lookup_cache_dynamic = argv[i];
return true;
}
if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.logits_file = argv[i];
return true;
}
if (arg == "--perplexity" || arg == "--all-logits") {
params.logits_all = true;
return true;
}
if (arg == "--ppl-stride") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.ppl_stride = std::stoi(argv[i]);
return true;
}
if (arg == "-ptc" || arg == "--print-token-count") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.n_print = std::stoi(argv[i]);
return true;
}
if (arg == "--ppl-output-type") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.ppl_output_type = std::stoi(argv[i]);
return true;
}
if (arg == "--hellaswag") {
params.hellaswag = true;
return true;
}
if (arg == "--hellaswag-tasks") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.hellaswag_tasks = std::stoi(argv[i]);
return true;
}
if (arg == "--winogrande") {
params.winogrande = true;
return true;
}
if (arg == "--winogrande-tasks") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.winogrande_tasks = std::stoi(argv[i]);
return true;
}
if (arg == "--multiple-choice") {
params.multiple_choice = true;
return true;
}
if (arg == "--multiple-choice-tasks") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.multiple_choice_tasks = std::stoi(argv[i]);
return true;
}
if (arg == "--kl-divergence") {
params.kl_divergence = true;
return true;
}
if (arg == "--ignore-eos") {
params.ignore_eos = true;
return true;
}
if (arg == "--penalize-nl") {
sparams.penalize_nl = true;
return true;
}
if (arg == "-l" || arg == "--logit-bias") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::stringstream ss(argv[i]);
llama_token key;
char sign;
std::string value_str;
try {
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
}
else {
throw std::exception();
}
}
catch (const std::exception&) {
invalid_param = true;
return true;
}
return true;
}
if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, gpt_params());
exit(0);
}
if (arg == "--version") {
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
exit(0);
}
if (arg == "--random-prompt") {
params.random_prompt = true;
return true;
}
if (arg == "--in-prefix-bos") {
params.input_prefix_bos = true;
return true;
}
if (arg == "--in-prefix") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.input_prefix = argv[i];
return true;
}
if (arg == "--in-suffix") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.input_suffix = argv[i];
return true;
}
if (arg == "--grammar") {
if (++i >= argc) {
invalid_param = true;
return true;
}
sparams.grammar = argv[i];
return true;
}
if (arg == "--grammar-file") {
if (++i >= argc) {
invalid_param = true;
return true;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
return true;
}
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(sparams.grammar)
);
return true;
}
if (arg == "--override-kv") {
if (++i >= argc) {
invalid_param = true;
return true;
}
char* sep = strchr(argv[i], '=');
if (sep == nullptr || sep - argv[i] >= 128) {
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
invalid_param = true;
return true;
}
struct llama_model_kv_override kvo;
std::strncpy(kvo.key, argv[i], sep - argv[i]);
kvo.key[sep - argv[i]] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
}
else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
}
else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
}
else if (std::strcmp(sep, "false") == 0) {
kvo.bool_value = false;
}
else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
return true;
}
}
else {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
return true;
}
params.kv_overrides.push_back(kvo);
return true;
}
#ifndef LOG_DISABLE_LOGS
// Parse args for logging parameters
if (log_param_single_parse(argv[i])) {
// Do nothing, log_param_single_parse automatically does it's thing
// and returns if a match was found and parsed.
return true;
}
if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
// We have a matching known parameter requiring an argument,
// now we need to check if there is anything after this argv
// and flag invalid_param or parse it.
if (++i >= argc) {
invalid_param = true;
return true;
}
if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
invalid_param = true;
return true;
}
return true;
}
// End of Parse args for logging parameters
#endif // LOG_DISABLE_LOGS
return false;
}
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
bool invalid_param = false;
std::string arg;
const std::string arg_prefix = "--";
llama_sampling_params & sparams = params.sparams;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
throw std::invalid_argument("error: unknown argument: " + arg);
}
}
if (invalid_param) {
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
}
if (params.prompt_cache_all &&
(params.interactive || params.interactive_first ||
params.instruct)) {
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
}
// short-hand to avoid specifying --hf-file -> default it to --model
if (!params.hf_repo.empty() && params.hf_file.empty()) {
params.hf_file = params.model;
}
if (params.escape) {
process_escapes(params.prompt);
process_escapes(params.input_prefix);
process_escapes(params.input_suffix);
process_escapes(sparams.cfg_negative_prompt);
for (auto & antiprompt : params.antiprompt) {
process_escapes(antiprompt);
}
}
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back();
params.kv_overrides.back().key[0] = 0;
}
return true;
}
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
const llama_sampling_params & sparams = params.sparams;
std::string sampler_type_chars;
std::string sampler_type_names;
for (const auto sampler_type : sparams.samplers_sequence) {
sampler_type_chars += static_cast<char>(sampler_type);
sampler_type_names += sampler_type_to_name_string(sampler_type) + ";";
}
sampler_type_names.pop_back();
printf("\n");
printf("usage: %s [options]\n", argv[0]);
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" --version show version and build info\n");
printf(" -i, --interactive run in interactive mode\n");
printf(" --interactive-first run in interactive mode and wait for input right away\n");
printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
printf(" -r PROMPT, --reverse-prompt PROMPT\n");
printf(" halt generation at PROMPT, return control in interactive mode\n");
printf(" (can be specified more than once for multiple prompts).\n");
printf(" --color colorise output to distinguish prompt and user input from generations\n");
printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
printf(" -tb N, --threads-batch N\n");
printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" -td N, --threads-draft N");
printf(" number of threads to use during generation (default: same as --threads)\n");
printf(" -tbd N, --threads-batch-draft N\n");
printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n");
printf(" -p PROMPT, --prompt PROMPT\n");
printf(" prompt to start generation with (default: empty)\n");
printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
printf(" not supported with --interactive or other interactive options\n");
printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
printf(" --random-prompt start with a randomized prompt.\n");
printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n");
printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
printf(" -f FNAME, --file FNAME\n");
printf(" prompt file to start generation.\n");
printf(" -bf FNAME, --binary-file FNAME\n");
printf(" binary file containing multiple choice tasks.\n");
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
printf(" -ub N, --ubatch-size N\n");
printf(" physical maximum batch size (default: %d)\n", params.n_ubatch);
printf(" --samplers samplers that will be used for generation in the order, separated by \';\'\n");
printf(" (default: %s)\n", sampler_type_names.c_str());
printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sampler_type_chars.c_str());
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
printf(" --dynatemp-range N dynamic temperature range (default: %.1f, 0.0 = disabled)\n", (double)sparams.dynatemp_range);
printf(" --dynatemp-exp N dynamic temperature exponent (default: %.1f)\n", (double)sparams.dynatemp_exponent);
printf(" --mirostat N use Mirostat sampling.\n");
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
printf(" modifies the likelihood of token appearing in the completion,\n");
printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
printf(" --grammar-file FNAME file to read grammar from\n");
printf(" --cfg-negative-prompt PROMPT\n");
printf(" negative prompt to use for guidance. (default: empty)\n");
printf(" --cfg-negative-prompt-file FNAME\n");
printf(" negative prompt file to use for guidance. (default: empty)\n");
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
printf(" --rope-scaling {none,linear,yarn}\n");
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n");
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n");
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" --pooling {none,mean,cls}\n");
printf(" pooling type for embeddings, use model default if unspecified\n");
printf(" -dt N, --defrag-thold N\n");
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
printf(" --penalize-nl penalize newline tokens\n");
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
printf(" --all-logits return logits for all tokens in the batch (default: disabled)\n");
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n");
printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks);
printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n");
printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks);
printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base\n");
printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
if (llama_supports_mlock()) {
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_supports_mmap()) {
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
printf(" - distribute: spread execution evenly over all nodes\n");
printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
printf(" - numactl: use the CPU map provided by numactl\n");
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
if (llama_supports_gpu_offload()) {
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -ngld N, --n-gpu-layers-draft N\n");
printf(" number of layers to store in VRAM for the draft model\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT, --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
}
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
printf(" -gan N, --grp-attn-n N\n");
printf(" group-attention factor (default: %d)\n", params.grp_attn_n);
printf(" -gaw N, --grp-attn-w N\n");
printf(" group-attention width (default: %.1f)\n", (double)params.grp_attn_w);
printf(" -dkvc, --dump-kv-cache\n");
printf(" verbose print of the KV cache\n");
printf(" -nkvo, --no-kv-offload\n");
printf(" disable KV offload\n");
printf(" -ctk TYPE, --cache-type-k TYPE\n");
printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
printf(" -ctv TYPE, --cache-type-v TYPE\n");
printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
printf(" --control-vector FNAME\n");
printf(" add a control vector\n");
printf(" --control-vector-scaled FNAME S\n");
printf(" add a control vector with user defined scaling S\n");
printf(" --control-vector-layer-range START END\n");
printf(" layer range to apply the control vector(s) to, start and end inclusive\n");
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -md FNAME, --model-draft FNAME\n");
printf(" draft model for speculative decoding (default: unused)\n");
printf(" -mu MODEL_URL, --model-url MODEL_URL\n");
printf(" model download url (default: unused)\n");
printf(" -hfr REPO, --hf-repo REPO\n");
printf(" Hugging Face model repository (default: unused)\n");
printf(" -hff FILE, --hf-file FILE\n");
printf(" Hugging Face model file (default: unused)\n");
printf(" -ld LOGDIR, --logdir LOGDIR\n");
printf(" path under which to save YAML logs (no logging if unset)\n");
printf(" -lcs FNAME, --lookup-cache-static FNAME\n");
printf(" path to static lookup cache to use for lookup decoding (not updated by generation)\n");
printf(" -lcd FNAME, --lookup-cache-dynamic FNAME\n");
printf(" path to dynamic lookup cache to use for lookup decoding (updated by generation)\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -ptc N, --print-token-count N\n");
printf(" print token count every N tokens (default: %d)\n", params.n_print);
printf("\n");
#ifndef LOG_DISABLE_LOGS
log_print_usage();
#endif // LOG_DISABLE_LOGS
}
std::string get_system_info(const gpt_params & params) {
std::ostringstream os;
os << "system_info: n_threads = " << params.n_threads;
if (params.n_threads_batch != -1) {
os << " (n_threads_batch = " << params.n_threads_batch << ")";
}
os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
return os.str();
}
std::string gpt_random_prompt(std::mt19937 & rng) {
const int r = rng() % 10;
switch (r) {
case 0: return "So";
case 1: return "Once upon a time";
case 2: return "When";
case 3: return "The";
case 4: return "After";
case 5: return "If";
case 6: return "import";
case 7: return "He";
case 8: return "She";
case 9: return "They";
}
GGML_UNREACHABLE();
}
// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool validate_file_name(const std::string & filename) {
if (!filename.length()) {
// Empty filename invalid
return false;
}
if (filename.length() > 255) {
// Limit at common largest possible filename on Linux filesystems
// to avoid unnecessary further validation
// (On systems with smaller limits it will be caught by the OS)
return false;
}
std::u32string filename_utf32;
try {
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
filename_utf32 = converter.from_bytes(filename);
// If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
// or invalid encodings were encountered. Reject such attempts
std::string filename_reencoded = converter.to_bytes(filename_utf32);
if (filename_reencoded != filename) {
return false;
}
} catch (const std::exception &) {
return false;
}
// Check for forbidden codepoints:
// - Control characters
// - Unicode equivalents of illegal characters
// - UTF-16 surrogate pairs
// - UTF-8 replacement character
// - Byte order mark (BOM)
// - Illegal characters: / \ : * ? " < > |
for (char32_t c : filename_utf32) {
if (c <= 0x1F // Control characters (C0)
|| c == 0x7F // Control characters (DEL)
|| (c >= 0x80 && c <= 0x9F) // Control characters (C1)
|| c == 0xFF0E // Fullwidth Full Stop (period equivalent)
|| c == 0x2215 // Division Slash (forward slash equivalent)
|| c == 0x2216 // Set Minus (backslash equivalent)
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
return false;
}
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
// Unicode and other whitespace is not affected, only 0x20 space
if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
return false;
}
// Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
if (filename.find("..") != std::string::npos) {
return false;
}
// Reject "."
if (filename == ".") {
return false;
}
return true;
}
//
// String utils
//
std::vector<std::string> string_split(std::string input, char separator) {
std::vector<std::string> parts;
size_t separator_pos = input.find(separator);
while (separator_pos != std::string::npos) {
std::string part = input.substr(0, separator_pos);
parts.emplace_back(part);
input = input.substr(separator_pos + 1);
separator_pos = input.find(separator);
}
parts.emplace_back(input);
return parts;
}
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
{"top_k", llama_sampler_type::TOP_K},
{"top_p", llama_sampler_type::TOP_P},
{"typical_p", llama_sampler_type::TYPICAL_P},
{"min_p", llama_sampler_type::MIN_P},
{"tfs_z", llama_sampler_type::TFS_Z},
{"temperature", llama_sampler_type::TEMPERATURE}
};
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
{"top-k", llama_sampler_type::TOP_K},
{"top-p", llama_sampler_type::TOP_P},
{"nucleus", llama_sampler_type::TOP_P},
{"typical-p", llama_sampler_type::TYPICAL_P},
{"typical", llama_sampler_type::TYPICAL_P},
{"min-p", llama_sampler_type::MIN_P},
{"tfs-z", llama_sampler_type::TFS_Z},
{"tfs", llama_sampler_type::TFS_Z},
{"temp", llama_sampler_type::TEMPERATURE}
};
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names.size());
for (const auto & name : names)
{
auto sampler_item = sampler_canonical_name_map.find(name);
if (sampler_item != sampler_canonical_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
else
{
if (allow_alt_names)
{
sampler_item = sampler_alt_name_map.find(name);
if (sampler_item != sampler_alt_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
}
}
}
return sampler_types;
}
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string) {
std::unordered_map<char, llama_sampler_type> sampler_name_map {
{'k', llama_sampler_type::TOP_K},
{'p', llama_sampler_type::TOP_P},
{'y', llama_sampler_type::TYPICAL_P},
{'m', llama_sampler_type::MIN_P},
{'f', llama_sampler_type::TFS_Z},
{'t', llama_sampler_type::TEMPERATURE}
};
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names_string.size());
for (const auto & c : names_string) {
const auto sampler_item = sampler_name_map.find(c);
if (sampler_item != sampler_name_map.end()) {
sampler_types.push_back(sampler_item->second);
}
}
return sampler_types;
}
std::string sampler_type_to_name_string(llama_sampler_type sampler_type) {
switch (sampler_type) {
case llama_sampler_type::TOP_K: return "top_k";
case llama_sampler_type::TFS_Z: return "tfs_z";
case llama_sampler_type::TYPICAL_P: return "typical_p";
case llama_sampler_type::TOP_P: return "top_p";
case llama_sampler_type::MIN_P: return "min_p";
case llama_sampler_type::TEMPERATURE: return "temperature";
default : return "";
}
}
//
// Model utils
//
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
auto mparams = llama_model_default_params();
if (params.n_gpu_layers != -1) {
mparams.n_gpu_layers = params.n_gpu_layers;
}
mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
mparams.kv_overrides = params.kv_overrides.data();
}
return mparams;
}
static ggml_type kv_cache_type_from_str(const std::string & s) {
if (s == "f32") {
return GGML_TYPE_F32;
}
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
if (s == "q4_0") {
return GGML_TYPE_Q4_0;
}
if (s == "q4_1") {
return GGML_TYPE_Q4_1;
}
if (s == "iq4_nl") {
return GGML_TYPE_IQ4_NL;
}
if (s == "q5_0") {
return GGML_TYPE_Q5_0;
}
if (s == "q5_1") {
return GGML_TYPE_Q5_1;
}
throw std::runtime_error("Invalid cache type: " + s);
}
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
auto cparams = llama_context_default_params();
cparams.n_ctx = params.n_ctx;
cparams.n_seq_max = params.n_parallel;
cparams.n_batch = params.n_batch;
cparams.n_ubatch = params.n_ubatch;
cparams.n_threads = params.n_threads;
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
cparams.seed = params.seed;
cparams.logits_all = params.logits_all;
cparams.embeddings = params.embedding;
cparams.rope_scaling_type = params.rope_scaling_type;
cparams.rope_freq_base = params.rope_freq_base;
cparams.rope_freq_scale = params.rope_freq_scale;
cparams.yarn_ext_factor = params.yarn_ext_factor;
cparams.yarn_attn_factor = params.yarn_attn_factor;
cparams.yarn_beta_fast = params.yarn_beta_fast;
cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.pooling_type = params.pooling_type;
cparams.defrag_thold = params.defrag_thold;
cparams.offload_kqv = !params.no_kv_offload;
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
return cparams;
}
void llama_batch_clear(struct llama_batch & batch) {
batch.n_tokens = 0;
}
void llama_batch_add(
struct llama_batch & batch,
llama_token id,
llama_pos pos,
const std::vector<llama_seq_id> & seq_ids,
bool logits) {
batch.token [batch.n_tokens] = id;
batch.pos [batch.n_tokens] = pos;
batch.n_seq_id[batch.n_tokens] = seq_ids.size();
for (size_t i = 0; i < seq_ids.size(); ++i) {
batch.seq_id[batch.n_tokens][i] = seq_ids[i];
}
batch.logits [batch.n_tokens] = logits;
batch.n_tokens++;
}
#ifdef LLAMA_USE_CURL
static bool llama_download_file(CURL * curl, const char * url, const char * path) {
bool force_download = false;
// Set the URL, allow to follow http redirection
curl_easy_setopt(curl, CURLOPT_URL, url);
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
#if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
// operating system. Currently implemented under MS-Windows.
curl_easy_setopt(curl, CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// Check if the file already exists locally
struct stat model_file_info;
auto file_exists = (stat(path, &model_file_info) == 0);
// If the file exists, check for ${path_model}.etag or ${path_model}.lastModified files
char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
char etag_path[PATH_MAX] = {0};
snprintf(etag_path, sizeof(etag_path), "%s.etag", path);
char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
char last_modified_path[PATH_MAX] = {0};
snprintf(last_modified_path, sizeof(last_modified_path), "%s.lastModified", path);
if (file_exists) {
auto * f_etag = fopen(etag_path, "r");
if (f_etag) {
if (!fgets(etag, sizeof(etag), f_etag)) {
fprintf(stderr, "%s: unable to read file %s\n", __func__, etag_path);
} else {
fprintf(stderr, "%s: previous file found %s: %s\n", __func__, etag_path, etag);
}
fclose(f_etag);
}
auto * f_last_modified = fopen(last_modified_path, "r");
if (f_last_modified) {
if (!fgets(last_modified, sizeof(last_modified), f_last_modified)) {
fprintf(stderr, "%s: unable to read file %s\n", __func__, last_modified_path);
} else {
fprintf(stderr, "%s: previous file found %s: %s\n", __func__, last_modified_path,
last_modified);
}
fclose(f_last_modified);
}
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct llama_load_model_from_url_headers {
char etag[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
char last_modified[LLAMA_CURL_MAX_HEADER_LENGTH] = {0};
};
llama_load_model_from_url_headers headers;
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
// Convert header field name to lowercase
for (size_t i = 0; i < n_items && buffer[i] != ':'; ++i) {
buffer[i] = tolower(buffer[i]);
}
const char * etag_prefix = "etag: ";
if (strncmp(buffer, etag_prefix, strlen(etag_prefix)) == 0) {
strncpy(headers->etag, buffer + strlen(etag_prefix), n_items - strlen(etag_prefix) - 2); // Remove CRLF
}
const char * last_modified_prefix = "last-modified: ";
if (strncmp(buffer, last_modified_prefix, strlen(last_modified_prefix)) == 0) {
strncpy(headers->last_modified, buffer + strlen(last_modified_prefix),
n_items - strlen(last_modified_prefix) - 2); // Remove CRLF
}
return n_items;
};
curl_easy_setopt(curl, CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl, CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl, CURLOPT_HEADERDATA, &headers);
CURLcode res = curl_easy_perform(curl);
if (res != CURLE_OK) {
curl_easy_cleanup(curl);
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
return false;
}
long http_code = 0;
curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &http_code);
if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed
// force trigger downloading
force_download = true;
fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
}
}
// If the ETag or the Last-Modified headers are different: trigger a new download
bool should_download = !file_exists
|| force_download
|| (strlen(headers.etag) > 0 && strcmp(etag, headers.etag) != 0)
|| (strlen(headers.last_modified) > 0 && strcmp(last_modified, headers.last_modified) != 0);
if (should_download) {
char path_temporary[PATH_MAX] = {0};
snprintf(path_temporary, sizeof(path_temporary), "%s.downloadInProgress", path);
if (file_exists) {
fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path);
if (remove(path) != 0) {
curl_easy_cleanup(curl);
fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path);
return false;
}
}
// Set the output file
auto * outfile = fopen(path_temporary, "wb");
if (!outfile) {
curl_easy_cleanup(curl);
fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path);
return false;
}
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
return fwrite(data, size, nmemb, (FILE *)fd);
};
curl_easy_setopt(curl, CURLOPT_NOBODY, 0L);
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl, CURLOPT_WRITEDATA, outfile);
// display download progress
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
// helper function to hide password in URL
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
std::size_t protocol_pos = url.find("://");
if (protocol_pos == std::string::npos) {
return url; // Malformed URL
}
std::size_t at_pos = url.find('@', protocol_pos + 3);
if (at_pos == std::string::npos) {
return url; // No password in URL
}
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
};
// start the download
fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path, headers.etag, headers.last_modified);
auto res = curl_easy_perform(curl);
if (res != CURLE_OK) {
fclose(outfile);
curl_easy_cleanup(curl);
fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
return false;
}
long http_code = 0;
curl_easy_getinfo (curl, CURLINFO_RESPONSE_CODE, &http_code);
if (http_code < 200 || http_code >= 400) {
fclose(outfile);
curl_easy_cleanup(curl);
fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
return false;
}
// Clean up
fclose(outfile);
// Write the new ETag to the .etag file
if (strlen(headers.etag) > 0) {
auto * etag_file = fopen(etag_path, "w");
if (etag_file) {
fputs(headers.etag, etag_file);
fclose(etag_file);
fprintf(stderr, "%s: file etag saved %s: %s\n", __func__, etag_path, headers.etag);
}
}
// Write the new lastModified to the .etag file
if (strlen(headers.last_modified) > 0) {
auto * last_modified_file = fopen(last_modified_path, "w");
if (last_modified_file) {
fputs(headers.last_modified, last_modified_file);
fclose(last_modified_file);
fprintf(stderr, "%s: file last modified saved %s: %s\n", __func__, last_modified_path,
headers.last_modified);
}
}
if (rename(path_temporary, path) != 0) {
curl_easy_cleanup(curl);
fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary, path);
return false;
}
}
return true;
}
struct llama_model * llama_load_model_from_url(
const char * model_url,
const char * path_model,
const struct llama_model_params & params) {
// Basic validation of the model_url
if (!model_url || strlen(model_url) == 0) {
fprintf(stderr, "%s: invalid model_url\n", __func__);
return NULL;
}
// Initialize libcurl
auto * curl = curl_easy_init();
if (!curl) {
fprintf(stderr, "%s: error initializing libcurl\n", __func__);
return NULL;
}
if (!llama_download_file(curl, model_url, path_model)) {
return NULL;
}
// check for additional GGUFs split to download
int n_split = 0;
{
struct gguf_init_params gguf_params = {
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
if (!ctx_gguf) {
fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
curl_easy_cleanup(curl);
return NULL;
}
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split >= 0) {
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
}
gguf_free(ctx_gguf);
}
curl_easy_cleanup(curl);
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
fprintf(stderr, "\n%s: unexpected model file name: %s"
" n_split=%d\n", __func__, path_model, n_split);
return NULL;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
fprintf(stderr, "\n%s: unexpected model url: %s"
" n_split=%d\n", __func__, model_url, n_split);
return NULL;
}
}
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (int idx = 1; idx < n_split; idx++) {
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split](int download_idx) -> bool {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
auto * curl = curl_easy_init();
bool res = llama_download_file(curl, split_url, split_path);
curl_easy_cleanup(curl);
return res;
}, idx));
}
// Wait for all downloads to complete
for (auto & f : futures_download) {
if (!f.get()) {
return NULL;
}
}
}
return llama_load_model_from_file(path_model, params);
}
struct llama_model * llama_load_model_from_hf(
const char * repo,
const char * model,
const char * path_model,
const struct llama_model_params & params) {
// construct hugging face model url:
//
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
//
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
//
std::string model_url = "https://huggingface.co/";
model_url += repo;
model_url += "/resolve/main/";
model_url += model;
return llama_load_model_from_url(model_url.c_str(), path_model, params);
}
#else
struct llama_model * llama_load_model_from_url(
const char * /*model_url*/,
const char * /*path_model*/,
const struct llama_model_params & /*params*/) {
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return nullptr;
}
struct llama_model * llama_load_model_from_hf(
const char * /*repo*/,
const char * /*model*/,
const char * /*path_model*/,
const struct llama_model_params & /*params*/) {
fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return nullptr;
}
#endif // LLAMA_USE_CURL
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
auto mparams = llama_model_params_from_gpt_params(params);
llama_model * model = nullptr;
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams);
} else if (!params.model_url.empty()) {
model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
} else {
model = llama_load_model_from_file(params.model.c_str(), mparams);
}
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return std::make_tuple(nullptr, nullptr);
}
auto cparams = llama_context_params_from_gpt_params(params);
llama_context * lctx = llama_new_context_with_model(model, cparams);
if (lctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
if (!params.control_vectors.empty()) {
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
const auto cvec = llama_control_vector_load(params.control_vectors);
if (cvec.n_embd == -1) {
llama_free(lctx);
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
int err = llama_control_vector_apply(lctx,
cvec.data.data(),
cvec.data.size(),
cvec.n_embd,
params.control_vector_layer_start,
params.control_vector_layer_end);
if (err) {
llama_free(lctx);
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
}
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
float lora_scale = std::get<1>(params.lora_adapter[i]);
int err = llama_model_apply_lora_from_file(model,
lora_adapter.c_str(),
lora_scale,
((i > 0) || params.lora_base.empty())
? NULL
: params.lora_base.c_str(),
params.n_threads);
if (err != 0) {
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
llama_free(lctx);
llama_free_model(model);
return std::make_tuple(nullptr, nullptr);
}
}
if (params.ignore_eos) {
params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
}
{
LOG("warming up the model with an empty run\n");
std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
llama_kv_cache_clear(lctx);
llama_synchronize(lctx);
llama_reset_timings(lctx);
}
return std::make_tuple(model, lctx);
}
//
// Vocab utils
//
std::vector<llama_token> llama_tokenize(
const struct llama_context * ctx,
const std::string & text,
bool add_special,
bool parse_special) {
return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
}
std::vector<llama_token> llama_tokenize(
const struct llama_model * model,
const std::string & text,
bool add_special,
bool parse_special) {
// upper limit for the number of tokens
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return std::string(result.data(), result.size());
}
std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
std::string piece;
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
piece = llama_token_to_piece(ctx, tokens[i]);
// remove the leading space of the first non-BOS token
if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
piece = piece.substr(1);
}
result += piece;
}
return result;
}
std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
std::string piece;
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
piece = llama_token_to_piece(ctx, tokens[i]);
result += piece;
}
// NOTE: the original tokenizer decodes bytes after collecting the pieces.
return result;
}
bool llama_should_add_bos_token(const llama_model * model) {
const int add_bos = llama_add_bos_token(model);
return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
}
//
// YAML utils
//
// returns true if successful, false otherwise
bool create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return true;
}
size_t pos_slash = 0;
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
const std::wstring subpath = wpath.substr(0, pos_slash);
const wchar_t * test = subpath.c_str();
const bool success = CreateDirectoryW(test, NULL);
if (!success) {
const DWORD error = GetLastError();
// if the path already exists, ensure that it's a directory
if (error == ERROR_ALREADY_EXISTS) {
const DWORD attributes = GetFileAttributesW(subpath.c_str());
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return false;
}
} else {
return false;
}
}
pos_slash += 1;
}
return true;
#else
// if the path already exists, check whether it's a directory
struct stat info;
if (stat(path.c_str(), &info) == 0) {
return S_ISDIR(info.st_mode);
}
size_t pos_slash = 1; // skip leading slashes for directory creation
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
const std::string subpath = path.substr(0, pos_slash);
struct stat info;
// if the path already exists, ensure that it's a directory
if (stat(subpath.c_str(), &info) == 0) {
if (!S_ISDIR(info.st_mode)) {
return false;
}
} else {
// create parent directories
const int ret = mkdir(subpath.c_str(), 0755);
if (ret != 0) {
return false;
}
}
pos_slash += 1;
}
return true;
#endif // _WIN32
}
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
if (data.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
fprintf(stream, "%s: [", prop_name);
for (size_t i = 0; i < data.size() - 1; ++i) {
fprintf(stream, "%e, ", data[i]);
}
fprintf(stream, "%e]\n", data.back());
}
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
if (data.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
fprintf(stream, "%s: [", prop_name);
for (size_t i = 0; i < data.size() - 1; ++i) {
fprintf(stream, "%d, ", data[i]);
}
fprintf(stream, "%d]\n", data.back());
}
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
std::string data_str(data == NULL ? "" : data);
if (data_str.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
size_t pos_start = 0;
size_t pos_found = 0;
if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
data_str = "\"" + data_str + "\"";
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
}
if (data_str.find('\n') == std::string::npos) {
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
}
fprintf(stream, "%s: |\n", prop_name);
while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
pos_start = pos_found + 1;
}
}
std::string get_sortable_timestamp() {
using clock = std::chrono::system_clock;
const clock::time_point current_time = clock::now();
const time_t as_time_t = clock::to_time_t(current_time);
char timestamp_no_ns[100];
std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
current_time.time_since_epoch() % 1000000000).count();
char timestamp_ns[11];
snprintf(timestamp_ns, 11, "%09" PRId64, ns);
return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
}
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
const llama_sampling_params & sparams = params.sparams;
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
#ifdef NDEBUG
fprintf(stream, "debug: false\n");
#else
fprintf(stream, "debug: true\n");
#endif // NDEBUG
fprintf(stream, "model_desc: %s\n", model_desc);
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
#ifdef __OPTIMIZE__
fprintf(stream, "optimize: true\n");
#else
fprintf(stream, "optimize: false\n");
#endif // __OPTIMIZE__
fprintf(stream, "time: %s\n", timestamp.c_str());
fprintf(stream, "\n");
fprintf(stream, "###############\n");
fprintf(stream, "# User Inputs #\n");
fprintf(stream, "###############\n");
fprintf(stream, "\n");
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
fprintf(stream, "logit_bias:\n");
for (std::pair<llama_token, float> lb : sparams.logit_bias) {
if (ignore_eos && lb.first == logit_bias_eos->first) {
continue;
}
fprintf(stream, " %d: %f", lb.first, lb.second);
}
fprintf(stream, "lora:\n");
for (std::tuple<std::string, float> la : params.lora_adapter) {
if (std::get<1>(la) != 1.0f) {
continue;
}
fprintf(stream, " - %s\n", std::get<0>(la).c_str());
}
fprintf(stream, "lora_scaled:\n");
for (std::tuple<std::string, float> la : params.lora_adapter) {
if (std::get<1>(la) == 1.0f) {
continue;
}
fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
}
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
fprintf(stream, "reverse_prompt:\n");
for (std::string ap : params.antiprompt) {
size_t pos = 0;
while ((pos = ap.find('\n', pos)) != std::string::npos) {
ap.replace(pos, 1, "\\n");
pos += 1;
}
fprintf(stream, " - %s\n", ap.c_str());
}
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
}
//
// KV cache utils
//
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
int seq_count = 0;
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] >= 0) { seq_count++; }
}
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
}
printf("\n=== Done dumping\n");
}
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
std::unordered_map<llama_seq_id, size_t> seqs;
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] < 0) { continue; }
if (seqs.find(cs_curr[j]) == seqs.end()) {
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
const size_t sz = seqs.size();
seqs[cs_curr[j]] = sz;
}
}
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
}
printf("=== Sequence legend: ");
for (const auto & it : seqs) {
printf("%zu=%d, ", it.second, it.first);
}
printf("'+'=other sequence ids");
c_curr = view.cells;
cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] >= 0) {
const auto & it = seqs.find(cs_curr[j]);
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
} else {
putchar('.');
}
}
putchar(' ');
}
printf("\n=== Done dumping\n");
}
void llama_embd_normalize(const float * inp, float * out, int n) {
double sum = 0.0;
for (int i = 0; i < n; i++) {
sum += inp[i] * inp[i];
}
sum = sqrt(sum);
const float norm = sum > 0.0 ? 1.0f / sum : 0.0f;
for (int i = 0; i < n; i++) {
out[i] = inp[i] * norm;
}
}
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
double sum = 0.0;
double sum1 = 0.0;
double sum2 = 0.0;
for (int i = 0; i < n; i++) {
sum += embd1[i] * embd2[i];
sum1 += embd1[i] * embd1[i];
sum2 += embd2[i] * embd2[i];
}
return sum / (sqrt(sum1) * sqrt(sum2));
}
//
// Control vector utils
//
static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
int32_t n_tensors;
size_t n_bytes = 0;
uint32_t max_direction_layer = 0;
llama_control_vector_data result = { -1, {} };
// calculate size of ctx needed for tensors, ensure tensors are f32, and find max layer
{
struct ggml_init_params meta_params = {
/* .mem_size = */ ggml_tensor_overhead() * 128 + ggml_graph_overhead(),
/* .mem_buffer = */ nullptr,
/* .no_alloc = */ true,
};
ggml_context * meta_ctx = ggml_init(meta_params);
struct gguf_init_params meta_gguf_params = {
/* .no_alloc = */ true,
/* .ctx = */ &meta_ctx,
};
struct gguf_context * meta_ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
if (!meta_ctx_gguf) {
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
ggml_free(meta_ctx);
return result;
}
n_tensors = gguf_get_n_tensors(meta_ctx_gguf);
for (int i = 0; i < n_tensors; i++) {
std::string name = gguf_get_tensor_name(meta_ctx_gguf, i);
// split on '.'
size_t dotpos = name.find('.');
if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
try {
uint32_t layer = std::stoi(name.substr(dotpos + 1));
if (layer == 0) {
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return result;
}
if (layer > max_direction_layer) {
max_direction_layer = layer;
}
} catch (...) {
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return result;
}
}
struct ggml_tensor * tensor_meta = ggml_get_tensor(meta_ctx, name.c_str());
if (tensor_meta->type != GGML_TYPE_F32 || ggml_n_dims(tensor_meta) != 1) {
fprintf(stderr, "%s: direction tensor invalid in %s\n", __func__, load_info.fname.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return result;
}
if (result.n_embd == -1) {
result.n_embd = ggml_nelements(tensor_meta);
} else if (ggml_nelements(tensor_meta) != result.n_embd) {
fprintf(stderr, "%s: direction tensor sizes mismatched in %s\n", __func__, load_info.fname.c_str());
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
return result;
}
n_bytes += ggml_nbytes(tensor_meta);
}
ggml_free(meta_ctx);
gguf_free(meta_ctx_gguf);
}
if (n_tensors == 0) {
fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
return result;
}
// load and scale tensors into final control vector context
struct ggml_init_params ggml_params = {
/* .mem_size = */ ggml_tensor_overhead() * n_tensors + n_bytes,
/* .mem_buffer = */ nullptr,
/* .no_alloc = */ false,
};
struct ggml_context * ctx = ggml_init(ggml_params);
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &ctx,
};
struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), params);
if (!ctx_gguf) {
fprintf(stderr, "%s: failed to load control vector from %s\n", __func__, load_info.fname.c_str());
ggml_free(ctx);
return result;
}
// do not store data for layer 0 (it's not used)
result.data.resize(result.n_embd * max_direction_layer);
for (uint32_t il = 1; il <= max_direction_layer; il++) {
const std::string name = "direction." + std::to_string(il);
const ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
float * dst = result.data.data() + result.n_embd * (il - 1);
if (tensor) {
const float * src = (const float *) tensor->data;
for (int j = 0; j < result.n_embd; j++) {
dst[j] = src[j] * load_info.strength;
}
} else {
for (int j = 0; j < result.n_embd; j++) {
dst[j] = 0.0f;
}
}
}
return result;
}
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
llama_control_vector_data result = { -1, {} };
for (const auto & info : load_infos) {
auto cur = llama_control_vector_load_one(info);
if (cur.n_embd == -1) {
return result;
}
if (result.n_embd != -1 && (result.n_embd != cur.n_embd || result.data.size() != cur.data.size())) {
fprintf(stderr, "%s: control vector in %s does not match previous vector dimensions\n", __func__, info.fname.c_str());
return result;
}
if (result.n_embd == -1) {
result = std::move(cur);
} else {
for (size_t i = 0; i < cur.data.size(); i++) {
result.data[i] += cur.data[i];
}
}
}
if (result.n_embd == -1) {
fprintf(stderr, "%s: no vectors passed\n", __func__);
}
return result;
}