llama.cpp/ggml-backend.c

2102 lines
76 KiB
C

#include "ggml-backend-impl.h"
#include "ggml-alloc.h"
#include "ggml-impl.h"
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// backend buffer type
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name(buft);
}
GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
return buft->iface.alloc_buffer(buft, size);
}
size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
return buft->iface.get_alignment(buft);
}
size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
// get_max_size is optional, defaults to SIZE_MAX
if (buft->iface.get_max_size) {
return buft->iface.get_max_size(buft);
}
return SIZE_MAX;
}
GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
// get_alloc_size is optional, defaults to ggml_nbytes
if (buft->iface.get_alloc_size) {
size_t size = buft->iface.get_alloc_size(buft, tensor);
assert(size >= ggml_nbytes(tensor));
return size;
}
return ggml_nbytes(tensor);
}
bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
return buft->iface.supports_backend(buft, backend);
}
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
if (buft->iface.is_host) {
return buft->iface.is_host(buft);
}
return false;
}
// backend buffer
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
ggml_backend_buffer_type_t buft,
struct ggml_backend_buffer_i iface,
ggml_backend_buffer_context_t context,
size_t size) {
ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
(*buffer) = (struct ggml_backend_buffer) {
/* .interface = */ iface,
/* .buft = */ buft,
/* .context = */ context,
/* .size = */ size,
/* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
};
return buffer;
}
const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name(buffer);
}
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
if (buffer == NULL) {
return;
}
if (buffer->iface.free_buffer != NULL) {
buffer->iface.free_buffer(buffer);
}
free(buffer);
}
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
return buffer->size;
}
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
void * base = buffer->iface.get_base(buffer);
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
return base;
}
GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
// init_tensor is optional
if (buffer->iface.init_tensor) {
buffer->iface.init_tensor(buffer, tensor);
}
}
size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
}
size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
}
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
}
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
buffer->iface.clear(buffer, value);
}
bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
}
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
buffer->usage = usage;
// FIXME: add a generic callback to the buffer interface
if (ggml_backend_buffer_is_multi_buffer(buffer)) {
ggml_backend_multi_buffer_set_usage(buffer, usage);
}
}
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
return buffer->buft;
}
void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
if (buffer->iface.reset) {
buffer->iface.reset(buffer);
}
}
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
if (dst_buf->iface.cpy_tensor) {
return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
}
return false;
}
// backend
ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
if (backend == NULL) {
return NULL;
}
return backend->guid;
}
const char * ggml_backend_name(ggml_backend_t backend) {
if (backend == NULL) {
return "NULL";
}
return backend->iface.get_name(backend);
}
void ggml_backend_free(ggml_backend_t backend) {
if (backend == NULL) {
return;
}
backend->iface.free(backend);
}
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
return backend->iface.get_default_buffer_type(backend);
}
ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
}
size_t ggml_backend_get_alignment(ggml_backend_t backend) {
return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
}
size_t ggml_backend_get_max_size(ggml_backend_t backend) {
return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
}
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
if (backend->iface.set_tensor_async == NULL) {
ggml_backend_tensor_set(tensor, data, offset, size);
} else {
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
}
}
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
if (backend->iface.get_tensor_async == NULL) {
ggml_backend_tensor_get(tensor, data, offset, size);
} else {
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
}
}
GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
if (!size) {
return;
}
buf->iface.set_tensor(buf, tensor, data, offset, size);
}
GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
if (!size) {
return;
}
buf->iface.get_tensor(buf, tensor, data, offset, size);
}
void ggml_backend_synchronize(ggml_backend_t backend) {
if (backend->iface.synchronize == NULL) {
return;
}
backend->iface.synchronize(backend);
}
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
GGML_ASSERT(backend->iface.graph_plan_create != NULL);
return backend->iface.graph_plan_create(backend, cgraph);
}
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend->iface.graph_plan_free != NULL);
backend->iface.graph_plan_free(backend, plan);
}
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
return backend->iface.graph_plan_compute(backend, plan);
}
enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
ggml_backend_synchronize(backend);
return err;
}
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
return backend->iface.graph_compute(backend, cgraph);
}
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
return backend->iface.supports_op(backend, op);
}
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
if (backend->iface.offload_op != NULL) {
return backend->iface.offload_op(backend, op);
}
return false;
}
// backend copy
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
if (src == dst) {
return;
}
if (ggml_backend_buffer_is_host(src->buffer)) {
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
} else if (ggml_backend_buffer_is_host(dst->buffer)) {
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
} else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
#ifndef NDEBUG
fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
#endif
size_t nbytes = ggml_nbytes(src);
void * data = malloc(nbytes);
ggml_backend_tensor_get(src, data, 0, nbytes);
ggml_backend_tensor_set(dst, data, 0, nbytes);
free(data);
}
}
void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
if (src == dst) {
return;
}
if (backend_dst->iface.cpy_tensor_async != NULL) {
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
return;
}
}
// an async copy would normally happen after all the queued operations on both backends are completed
// sync src, set_async dst
if (ggml_backend_buffer_is_host(src->buffer)) {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
} else {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_copy(src, dst);
ggml_backend_synchronize(backend_dst);
}
}
// events
ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
if (backend->iface.event_new == NULL) {
return NULL;
}
return backend->iface.event_new(backend);
}
void ggml_backend_event_free(ggml_backend_event_t event) {
if (event == NULL) {
return;
}
event->backend->iface.event_free(event);
}
void ggml_backend_event_record(ggml_backend_event_t event) {
GGML_ASSERT(event->backend->iface.event_record != NULL);
event->backend->iface.event_record(event);
}
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
event->backend->iface.event_synchronize(event);
}
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
GGML_ASSERT(backend->iface.event_wait != NULL);
backend->iface.event_wait(backend, event);
}
// backend registry
#define GGML_REG_MAX_BACKENDS 16
struct ggml_backend_reg {
char name[128];
ggml_backend_init_fn init_fn;
ggml_backend_buffer_type_t default_buffer_type;
void * user_data;
};
static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
static size_t ggml_backend_registry_count = 0;
GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
GGML_CALL static void ggml_backend_registry_init(void) {
static bool initialized = false;
if (initialized) {
return;
}
initialized = true;
ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
// add forward decls here to avoid including the backend headers
#ifdef GGML_USE_CUDA
extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
ggml_backend_cuda_reg_devices();
#endif
#ifdef GGML_USE_SYCL
extern void ggml_backend_sycl_reg_devices(void);
ggml_backend_sycl_reg_devices();
#endif
#ifdef GGML_USE_METAL
extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
#endif
#ifdef GGML_USE_VULKAN
extern GGML_CALL int ggml_backend_vk_reg_devices(void);
ggml_backend_vk_reg_devices();
#endif
#ifdef GGML_USE_KOMPUTE
extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
ggml_backend_kompute_reg_devices();
#endif
}
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
size_t id = ggml_backend_registry_count;
ggml_backend_registry[id] = (struct ggml_backend_reg) {
/* .name = */ {0},
/* .fn = */ init_fn,
/* .default_buffer_type = */ default_buffer_type,
/* .user_data = */ user_data,
};
snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
#ifndef NDEBUG
fprintf(stderr, "%s: registered backend %s\n", __func__, name);
#endif
ggml_backend_registry_count++;
}
size_t ggml_backend_reg_get_count(void) {
ggml_backend_registry_init();
return ggml_backend_registry_count;
}
size_t ggml_backend_reg_find_by_name(const char * name) {
ggml_backend_registry_init();
for (size_t i = 0; i < ggml_backend_registry_count; i++) {
// TODO: case insensitive in a portable way
if (strcmp(ggml_backend_registry[i].name, name) == 0) {
return i;
}
}
// not found
return SIZE_MAX;
}
// init from backend:params string
ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
ggml_backend_registry_init();
const char * params = strchr(backend_str, ':');
char backend_name[128];
if (params == NULL) {
snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
params = "";
} else {
snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
params++;
}
size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
if (backend_i == SIZE_MAX) {
fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
return NULL;
}
return ggml_backend_reg_init_backend(backend_i, params);
}
const char * ggml_backend_reg_get_name(size_t i) {
ggml_backend_registry_init();
GGML_ASSERT(i < ggml_backend_registry_count);
return ggml_backend_registry[i].name;
}
ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
ggml_backend_registry_init();
GGML_ASSERT(i < ggml_backend_registry_count);
return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
}
ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
ggml_backend_registry_init();
GGML_ASSERT(i < ggml_backend_registry_count);
return ggml_backend_registry[i].default_buffer_type;
}
ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
ggml_backend_registry_init();
GGML_ASSERT(i < ggml_backend_registry_count);
return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
}
// backend CPU
static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
return "CPU";
GGML_UNUSED(buffer);
}
GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
uintptr_t data = (uintptr_t)buffer->context;
// align the buffer
if (data % TENSOR_ALIGNMENT != 0) {
data = GGML_PAD(data, TENSOR_ALIGNMENT);
}
return (void *)data;
}
GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
free(buffer->context);
}
GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
memcpy((char *)tensor->data + offset, data, size);
GGML_UNUSED(buffer);
}
GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
memcpy(data, (const char *)tensor->data + offset, size);
GGML_UNUSED(buffer);
}
GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
}
return false;
GGML_UNUSED(buffer);
}
GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
memset(buffer->context, value, buffer->size);
}
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
/* .get_name = */ ggml_backend_cpu_buffer_name,
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .init_tensor = */ NULL, // no initialization required
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
/* .clear = */ ggml_backend_cpu_buffer_clear,
/* .reset = */ NULL,
};
// for buffers from ptr, free is not called
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
/* .get_name = */ ggml_backend_cpu_buffer_name,
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
/* .init_tensor = */ NULL, // no initialization required
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
/* .clear = */ ggml_backend_cpu_buffer_clear,
/* .reset = */ NULL,
};
GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU";
GGML_UNUSED(buft);
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
if (data == NULL) {
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
return NULL;
}
return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
}
GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
return TENSOR_ALIGNMENT;
GGML_UNUSED(buft);
}
GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
return ggml_backend_is_cpu(backend);
GGML_UNUSED(buft);
}
GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
return true;
GGML_UNUSED(buft);
}
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
/* .context = */ NULL,
};
return &ggml_backend_cpu_buffer_type;
}
#ifdef GGML_USE_CPU_HBM
// buffer type HBM
#include <hbwmalloc.h>
GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU_HBM";
GGML_UNUSED(buft);
}
GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
return "CPU_HBM";
GGML_UNUSED(buf);
}
GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
hbw_free(buffer->context);
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
//void * ptr = hbw_malloc(size);
void * ptr;
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
if (result != 0) {
fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
return NULL;
}
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
return buffer;
}
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
/* .context = */ NULL,
};
return &ggml_backend_cpu_buffer_type_hbm;
}
#endif
struct ggml_backend_cpu_context {
int n_threads;
void * work_data;
size_t work_size;
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
return "CPU";
GGML_UNUSED(backend);
}
GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
free(cpu_ctx->work_data);
free(cpu_ctx);
free(backend);
}
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_cpu_buffer_type();
GGML_UNUSED(backend);
}
struct ggml_backend_plan_cpu {
struct ggml_cplan cplan;
struct ggml_cgraph cgraph;
};
GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
if (cpu_plan->cplan.work_size > 0) {
cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
if (cpu_plan->cplan.work_data == NULL) {
free(cpu_plan);
return NULL;
}
}
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
return cpu_plan;
}
GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
free(cpu_plan->cplan.work_data);
free(cpu_plan);
GGML_UNUSED(backend);
}
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
GGML_UNUSED(backend);
}
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
if (cpu_ctx->work_size < cplan.work_size) {
free(cpu_ctx->work_data);
cpu_ctx->work_data = malloc(cplan.work_size);
if (cpu_ctx->work_data == NULL) {
cpu_ctx->work_size = 0;
return GGML_STATUS_ALLOC_FAILED;
}
cpu_ctx->work_size = cplan.work_size;
}
cplan.work_data = cpu_ctx->work_data;
cplan.abort_callback = cpu_ctx->abort_callback;
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
return ggml_graph_compute(cgraph, &cplan);
}
GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
switch (op->op) {
case GGML_OP_CPY:
return
op->type != GGML_TYPE_IQ2_XXS &&
op->type != GGML_TYPE_IQ2_XS &&
op->type != GGML_TYPE_IQ1_S &&
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
case GGML_OP_MUL_MAT:
return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
default:
return true;
}
GGML_UNUSED(backend);
}
static struct ggml_backend_i cpu_backend_i = {
/* .get_name = */ ggml_backend_cpu_name,
/* .free = */ ggml_backend_cpu_free,
/* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
/* .supports_op = */ ggml_backend_cpu_supports_op,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_synchronize = */ NULL,
};
static ggml_guid_t ggml_backend_cpu_guid(void) {
static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
return &guid;
}
ggml_backend_t ggml_backend_cpu_init(void) {
struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
if (ctx == NULL) {
return NULL;
}
ctx->n_threads = GGML_DEFAULT_N_THREADS;
ctx->work_data = NULL;
ctx->work_size = 0;
ctx->abort_callback = NULL;
ctx->abort_callback_data = NULL;
ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
if (cpu_backend == NULL) {
free(ctx);
return NULL;
}
*cpu_backend = (struct ggml_backend) {
/* .guid = */ ggml_backend_cpu_guid(),
/* .interface = */ cpu_backend_i,
/* .context = */ ctx
};
return cpu_backend;
}
GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
}
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
ctx->n_threads = n_threads;
}
void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
ctx->abort_callback = abort_callback;
ctx->abort_callback_data = abort_callback_data;
}
GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
}
GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
return ggml_backend_cpu_init();
GGML_UNUSED(params);
GGML_UNUSED(user_data);
}
// multi-buffer buffer
struct ggml_backend_multi_buffer_context {
ggml_backend_buffer_t * buffers;
size_t n_buffers;
};
typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
}
GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_free(ctx->buffers[i]);
}
free(ctx->buffers);
free(ctx);
}
GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_clear(ctx->buffers[i], value);
}
}
static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
static struct ggml_backend_buffer_i multi_backend_buffer_i = {
/* .get_name = */ ggml_backend_multi_buffer_get_name,
/* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
/* .get_base = */ NULL,
/* .init_tensor = */ NULL,
/* .set_tensor = */ NULL,
/* .get_tensor = */ NULL,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_multi_buffer_clear,
/* .reset = */ NULL,
};
return multi_backend_buffer_i;
}
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
ctx->n_buffers = n_buffers;
ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
GGML_ASSERT(ctx->buffers != NULL);
size_t total_size = 0;
for (size_t i = 0; i < n_buffers; i++) {
ctx->buffers[i] = buffers[i];
total_size += ggml_backend_buffer_get_size(buffers[i]);
}
return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
}
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
}
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
for (size_t i = 0; i < ctx->n_buffers; i++) {
ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
}
}
// creates a copy of the tensor with the same memory layout
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
dup->nb[i] = tensor->nb[i];
}
return dup;
}
static bool ggml_is_view_op(enum ggml_op op) {
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
}
// scheduler
#ifndef GGML_SCHED_MAX_BACKENDS
#define GGML_SCHED_MAX_BACKENDS 16
#endif
#ifndef GGML_SCHED_MAX_SPLITS
#define GGML_SCHED_MAX_SPLITS 2048
#endif
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
#endif
#ifndef GGML_SCHED_MAX_COPIES
#define GGML_SCHED_MAX_COPIES 4
#endif
struct ggml_backend_sched_split {
int backend_id;
int i_start;
int i_end;
struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
int n_inputs;
// graph view of this split
struct ggml_cgraph graph;
};
struct ggml_backend_sched {
bool is_reset; // true if the scheduler has been reset since the last graph split
bool is_alloc;
int n_backends;
ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
ggml_gallocr_t galloc;
// hash keys of the nodes in the graph
struct ggml_hash_set hash_set;
// hash values
int * tensor_backend_id;
struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
int * node_backend_ids; // [graph_size]
int * leaf_backend_ids; // [graph_size]
// copy of the graph with modified inputs
struct ggml_cgraph * graph;
// graph splits
struct ggml_backend_sched_split * splits;
int n_splits;
int splits_capacity;
// pipeline parallelism support
int n_copies;
int cur_copy;
ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
int n_graph_inputs;
struct ggml_context * ctx;
ggml_backend_sched_eval_callback callback_eval;
void * callback_eval_user_data;
// align context_buffer to GGML_MEM_ALIGN
#ifdef _MSC_VER
__declspec(align(GGML_MEM_ALIGN))
#else
__attribute__((aligned(GGML_MEM_ALIGN)))
#endif
char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
};
#define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
// returns the priority of the backend, lower id is higher priority
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
for (int i = 0; i < sched->n_backends; i++) {
if (sched->backends[i] == backend) {
return i;
}
}
return -1;
}
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
ggml_backend_buffer_t buffer = tensor->buffer;
if (buffer == NULL) {
return -1;
}
// find highest prio backend that supports the buffer type
for (int i = 0; i < sched->n_backends; i++) {
if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
return i;
}
}
fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
__func__, ggml_backend_buffer_name(buffer), tensor->name);
GGML_ASSERT(false);
return -1;
}
#if 0
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
#define GET_CAUSE(node) causes[hash_id(node)]
#else
#define SET_CAUSE(node, ...)
#define GET_CAUSE(node) ""
#endif
// returns the backend that should be used for the node based on the current locations
static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
// TODO: use supports_op to check if the backend supports the op
// assign pre-allocated nodes to their backend
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
if (cur_backend_id != -1) {
SET_CAUSE(tensor, "1.dst");
return cur_backend_id;
}
// view_src
if (tensor->view_src != NULL) {
cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
if (cur_backend_id != -1) {
SET_CAUSE(tensor, "1.vsrc");
return cur_backend_id;
}
}
// graph input
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
SET_CAUSE(tensor, "1.inp");
return cur_backend_id;
}
// assign nodes that use weights to the backend of the weights
// operations with weights are preferably run on the same backend as the weights
for (int i = 0; i < GGML_MAX_SRC; i++) {
const struct ggml_tensor * src = tensor->src[i];
if (src == NULL) {
continue;
}
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
// check if a backend with higher prio wants to offload the op
if (src_backend_id == sched->n_backends - 1) {
for (int b = 0; b < src_backend_id; b++) {
if (ggml_backend_offload_op(sched->backends[b], tensor)) {
SET_CAUSE(tensor, "1.off");
return b;
}
}
}
SET_CAUSE(tensor, "1.wgt%d", i);
return src_backend_id;
}
}
return -1;
}
static char * fmt_size(size_t size) {
static char buffer[128];
if (size >= 1024*1024) {
sprintf(buffer, "%zuM", size/1024/1024);
} else {
sprintf(buffer, "%zuK", size/1024);
}
return buffer;
}
static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
int cur_split = 0;
for (int i = 0; i < graph->n_nodes; i++) {
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
sched->splits[cur_split].n_inputs);
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
}
fprintf(stderr, "\n");
cur_split++;
}
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
}
fprintf(stderr, "\n");
}
}
//#define DEBUG_PASS1
//#define DEBUG_PASS2
//#define DEBUG_PASS3
//#define DEBUG_PASS4
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
// reset splits
sched->n_splits = 0;
sched->n_graph_inputs = 0;
sched->is_reset = false;
struct ggml_init_params params = {
/* .mem_size = */ sizeof(sched->context_buffer),
/* .mem_buffer = */ sched->context_buffer,
/* .no_alloc = */ true
};
ggml_free(sched->ctx);
sched->ctx = ggml_init(params);
if (sched->ctx == NULL) {
fprintf(stderr, "%s: failed to initialize context\n", __func__);
GGML_ASSERT(false);
}
// pass 1: assign backends to ops with pre-allocated inputs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
int * leaf_backend_id = &tensor_backend_id(leaf);
if (*leaf_backend_id != -1) {
// do not overwrite user assignments
continue;
}
*leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
}
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
// do not overwrite user assignments
continue;
}
*node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
// src
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
int * src_backend_id = &tensor_backend_id(src);
if (*src_backend_id == -1) {
*src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
}
}
}
#ifdef DEBUG_PASS1
fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
// pass 2: expand current backend assignments
// assign the same backend to adjacent nodes
// expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
// thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
// pass 2.2 expand gpu down
{
int cur_backend_id = -1;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
if (*node_backend_id == sched->n_backends - 1) {
// skip cpu (lowest prio backend)
cur_backend_id = -1;
} else {
cur_backend_id = *node_backend_id;
}
} else {
*node_backend_id = cur_backend_id;
SET_CAUSE(node, "2.2");
}
}
}
// pass 2.1 expand gpu up
{
int cur_backend_id = -1;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
if (*node_backend_id == sched->n_backends - 1) {
// skip cpu (lowest prio backend)
cur_backend_id = -1;
} else {
cur_backend_id = *node_backend_id;
}
} else {
*node_backend_id = cur_backend_id;
SET_CAUSE(node, "2.1");
}
}
}
// pass 2.4 expand rest down
{
int cur_backend_id = -1;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
cur_backend_id = *node_backend_id;
} else {
*node_backend_id = cur_backend_id;
SET_CAUSE(node, "2.4");
}
}
}
// pass 2.3 expand rest up
{
int cur_backend_id = -1;
for (int i = graph->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
int * node_backend_id = &tensor_backend_id(node);
if (*node_backend_id != -1) {
cur_backend_id = *node_backend_id;
} else {
*node_backend_id = cur_backend_id;
SET_CAUSE(node, "2.3");
}
}
}
#ifdef DEBUG_PASS2
fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
// pass 3: assign backends to remaining src from dst and view_src
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
int * cur_backend_id = &tensor_backend_id(node);
if (node->view_src != NULL && *cur_backend_id == -1) {
*cur_backend_id = tensor_backend_id(node->view_src);
SET_CAUSE(node, "3.vsrc");
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
int * src_backend_id = &tensor_backend_id(src);
if (*src_backend_id == -1) {
if (src->view_src != NULL) {
// views are always on the same backend as the source
*src_backend_id = tensor_backend_id(src->view_src);
SET_CAUSE(src, "3.vsrc");
} else {
*src_backend_id = *cur_backend_id;
SET_CAUSE(src, "3.cur");
}
}
}
}
#ifdef DEBUG_PASS3
fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
// pass 4: split graph, find tensors that need to be copied
{
int i_split = 0;
struct ggml_backend_sched_split * split = &sched->splits[0];
// find the backend of the first split, skipping view ops
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (!ggml_is_view_op(node->op)) {
split->backend_id = tensor_backend_id(node);
break;
}
}
split->i_start = 0;
split->n_inputs = 0;
memset(split->inputs, 0, sizeof(split->inputs)); //HACK
int cur_backend_id = split->backend_id;
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
if (ggml_is_view_op(node->op)) {
continue;
}
const int node_backend_id = tensor_backend_id(node);
GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
// check if we should start a new split based on the sources of the current node
bool need_new_split = false;
if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
// check if a weight is on a different backend
// by starting a new split, the memory of the previously offloaded weights can be reused
if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend_id = tensor_backend_id(src);
if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
need_new_split = true;
break;
}
}
// check if the split has too many inputs
if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
const size_t id = hash_id(src);
int src_backend_id = sched->tensor_backend_id[id];
if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
//printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
need_new_split = true;
break;
}
}
}
}
if (node_backend_id != cur_backend_id || need_new_split) {
split->i_end = i;
i_split++;
if (i_split >= sched->splits_capacity) {
sched->splits_capacity *= 2;
sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
GGML_ASSERT(sched->splits != NULL);
}
GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
split = &sched->splits[i_split];
split->backend_id = node_backend_id;
split->i_start = i;
split->n_inputs = 0;
cur_backend_id = node_backend_id;
}
// find inputs that are not on the same backend
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
continue;
}
const int src_backend_id = tensor_backend_id(src);
assert(src_backend_id != -1); // all inputs should be assigned by now
if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
size_t id = hash_id(src);
if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[src_backend_id];
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy;
if (c == sched->cur_copy) {
tensor_copy = src; // use the original tensor as the current copy
} else {
tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
}
if (sched->n_copies > 1) {
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_graph_inputs = sched->n_graph_inputs++;
GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
sched->graph_inputs[n_graph_inputs] = src;
}
}
if (src_backend_id != node_backend_id) {
// create a copy of the input in the split's backend
const size_t id = hash_id(src);
if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
ggml_backend_t backend = sched->backends[cur_backend_id];
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
if (sched->n_copies > 1) {
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
SET_CAUSE(tensor_copy, "4.cpy");
}
int n_inputs = split->n_inputs++;
GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
split->inputs[n_inputs] = src;
}
node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
}
}
}
split->i_end = graph->n_nodes;
sched->n_splits = i_split + 1;
}
#ifdef DEBUG_PASS4
fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
#endif
// create copies of the graph for each split
// TODO: avoid this copy
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
for (int j = 0; j < split->n_inputs; j++) {
assert(graph_copy->size > (graph_copy->n_nodes + 1));
struct ggml_tensor * input = split->inputs[j];
const size_t input_id = hash_id(input);
struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
// add a dependency to the input source so that it is not freed before the copy is done
struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
input_dep->src[0] = input;
sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
// add a dependency to the input copy so that it is allocated at the start of the split
sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
}
for (int j = split->i_start; j < split->i_end; j++) {
assert(graph_copy->size > graph_copy->n_nodes);
sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
}
}
if (sched->n_copies > 1) {
// add input copies as leafs so that they are allocated first
for (int i = 0; i < sched->n_graph_inputs; i++) {
struct ggml_tensor * input = sched->graph_inputs[i];
size_t id = hash_id(input);
int backend_id = tensor_backend_id(input);
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &sched->splits[i];
int backend_id = split->backend_id;
for (int j = 0; j < split->n_inputs; j++) {
struct ggml_tensor * input = split->inputs[j];
size_t id = hash_id(input);
for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
}
}
}
}
// add leafs from the original graph
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
graph_copy->leafs[graph_copy->n_leafs++] = leaf;
}
sched->graph = graph_copy;
}
static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
// allocate graph
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
// the re-allocation may cause the split inputs to be moved to a different address
ggml_backend_sched_synchronize(sched);
#ifndef NDEBUG
fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
#endif
ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
fprintf(stderr, "%s: failed to allocate graph\n", __func__);
return false;
}
}
return true;
}
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
struct ggml_backend_sched_split * splits = sched->splits;
for (int i = 0; i < sched->n_splits; i++) {
struct ggml_backend_sched_split * split = &splits[i];
int split_backend_id = split->backend_id;
ggml_backend_t split_backend = sched->backends[split_backend_id];
// copy the input tensors to the split backend
for (int j = 0; j < split->n_inputs; j++) {
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
struct ggml_tensor * input = split->inputs[j];
struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
}
ggml_backend_tensor_copy(input, input_cpy);
} else {
// wait for the split backend to finish using the input before overwriting it
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
}
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
}
}
if (!sched->callback_eval) {
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
if (ec != GGML_STATUS_SUCCESS) {
return ec;
}
} else {
// similar to ggml_backend_compare_graph_backend
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
struct ggml_tensor * t = split->graph.nodes[j0];
// check if the user needs data from this node
bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
int j1 = j0;
// determine the range [j0, j1] of nodes that can be computed together
while (!need && j1 < split->graph.n_nodes - 1) {
t = split->graph.nodes[++j1];
need = sched->callback_eval(t, true, sched->callback_eval_user_data);
}
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
if (ec != GGML_STATUS_SUCCESS) {
return ec;
}
// TODO: pass backend to the callback, then the user can decide if they want to synchronize
ggml_backend_synchronize(split_backend);
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
break;
}
j0 = j1;
}
}
// record the event of this copy
if (split->n_inputs > 0) {
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
}
}
}
sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
return GGML_STATUS_SUCCESS;
}
ggml_backend_sched_t ggml_backend_sched_new(
ggml_backend_t * backends,
ggml_backend_buffer_type_t * bufts,
int n_backends,
size_t graph_size,
bool parallel) {
GGML_ASSERT(n_backends > 0);
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
// initialize hash table
sched->hash_set = ggml_hash_set_new(graph_size);
sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
sched->n_backends = n_backends;
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
const int initial_splits_capacity = 16;
sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
sched->splits_capacity = initial_splits_capacity;
for (int b = 0; b < n_backends; b++) {
sched->backends[b] = backends[b];
sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
if (sched->n_copies > 1) {
for (int c = 0; c < sched->n_copies; c++) {
sched->events[b][c] = ggml_backend_event_new(backends[b]);
}
}
}
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
ggml_backend_sched_reset(sched);
return sched;
}
void ggml_backend_sched_free(ggml_backend_sched_t sched) {
if (sched == NULL) {
return;
}
for (int b = 0; b < sched->n_backends; b++) {
for (int c = 0; c < sched->n_copies; c++) {
ggml_backend_event_free(sched->events[b][c]);
}
}
ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx);
free(sched->splits);
free(sched->hash_set.keys);
free(sched->tensor_backend_id);
free(sched->tensor_copies);
free(sched->node_backend_ids);
free(sched->leaf_backend_ids);
free(sched);
}
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
// reset state for the next run
if (!sched->is_reset) {
size_t hash_size = sched->hash_set.size;
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
sched->is_reset = true;
}
sched->is_alloc = false;
}
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
ggml_backend_sched_split_graph(sched, measure_graph);
// TODO: extract this to a separate function
if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
return false;
}
ggml_backend_sched_reset(sched);
ggml_backend_sched_synchronize(sched);
return true;
}
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
ggml_backend_sched_split_graph(sched, graph);
if (!ggml_backend_sched_alloc_splits(sched)) {
return false;
}
sched->is_alloc = true;
return true;
}
enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
ggml_backend_sched_synchronize(sched);
return err;
}
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
if (!sched->is_reset && !sched->is_alloc) {
ggml_backend_sched_reset(sched);
}
if (!sched->is_alloc) {
if (!ggml_backend_sched_alloc_graph(sched, graph)) {
return GGML_STATUS_ALLOC_FAILED;
}
}
return ggml_backend_sched_compute_splits(sched);
}
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
}
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
sched->callback_eval = callback;
sched->callback_eval_user_data = user_data;
}
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
return sched->n_splits;
}
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
return sched->n_copies;
}
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
tensor_backend_id(node) = backend_index;
}
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
int backend_index = tensor_backend_id(node);
if (backend_index == -1) {
return NULL;
}
return sched->backends[backend_index];
}
// utils
void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->view_src != NULL);
GGML_ASSERT(tensor->view_src->buffer != NULL);
GGML_ASSERT(tensor->view_src->data != NULL);
tensor->buffer = buffer;
tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
tensor->backend = tensor->view_src->backend;
ggml_backend_buffer_init_tensor(buffer, tensor);
}
void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
GGML_ASSERT(tensor->buffer == NULL);
GGML_ASSERT(tensor->data == NULL);
GGML_ASSERT(tensor->view_src == NULL);
GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
(char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
tensor->buffer = buffer;
tensor->data = addr;
ggml_backend_buffer_init_tensor(buffer, tensor);
}
static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
GGML_ASSERT(src != NULL);
GGML_ASSERT(src->data && "graph must be allocated");
size_t id = ggml_hash_insert(hash_set, src);
if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
return node_copies[ggml_hash_find(hash_set, src)];
}
struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
if (src->view_src != NULL) {
dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
dst->view_offs = src->view_offs;
}
dst->op = src->op;
memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
ggml_set_name(dst, src->name);
// copy src
for (int i = 0; i < GGML_MAX_SRC; i++) {
struct ggml_tensor * s = src->src[i];
if (s == NULL) {
continue;
}
dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
}
node_copies[id] = dst;
return dst;
}
static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
size_t id = ggml_hash_find(hash_set, src);
if (node_init[id]) {
return;
}
node_init[id] = true;
struct ggml_tensor * dst = node_copies[id];
if (dst->view_src != NULL) {
graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
ggml_backend_view_init(dst->view_src->buffer, dst);
}
else {
ggml_backend_tensor_copy(src, dst);
}
// init src
for (int i = 0; i < GGML_MAX_SRC; i++) {
struct ggml_tensor * s = src->src[i];
if (s == NULL) {
continue;
}
graph_copy_init_tensor(hash_set, node_copies, node_init, s);
}
}
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
struct ggml_hash_set hash_set = {
/* .size = */ graph->visited_hash_table.size,
/* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
};
struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
struct ggml_init_params params = {
/* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
/* .mem_buffer = */ NULL,
/* .no_alloc = */ true
};
struct ggml_context * ctx_allocated = ggml_init(params);
struct ggml_context * ctx_unallocated = ggml_init(params);
if (ctx_allocated == NULL || ctx_unallocated == NULL) {
fprintf(stderr, "failed to allocate context for graph copy\n");
free(hash_set.keys);
free(node_copies);
free(node_init);
ggml_free(ctx_allocated);
ggml_free(ctx_unallocated);
return (struct ggml_backend_graph_copy) {
/* .buffer = */ NULL,
/* .ctx_allocated = */ NULL,
/* .ctx_unallocated = */ NULL,
/* .graph = */ NULL,
};
}
// dup nodes
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
}
// allocate nodes
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
if (buffer == NULL) {
fprintf(stderr, "failed to allocate buffer for graph copy\n");
free(hash_set.keys);
free(node_copies);
free(node_init);
ggml_free(ctx_allocated);
ggml_free(ctx_unallocated);
return (struct ggml_backend_graph_copy) {
/* .buffer = */ NULL,
/* .ctx_allocated = */ NULL,
/* .ctx_unallocated = */ NULL,
/* .graph = */ NULL,
};
}
//printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
// copy data and init views
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
graph_copy_init_tensor(hash_set, node_copies, node_init, node);
}
// build graph copy
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
graph_copy->nodes[i] = node_copy;
}
graph_copy->n_nodes = graph->n_nodes;
free(hash_set.keys);
free(node_copies);
free(node_init);
return (struct ggml_backend_graph_copy) {
/* .buffer = */ buffer,
/* .ctx_allocated = */ ctx_allocated,
/* .ctx_unallocated = */ ctx_unallocated,
/* .graph = */ graph_copy,
};
}
void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
ggml_backend_buffer_free(copy.buffer);
ggml_free(copy.ctx_allocated);
ggml_free(copy.ctx_unallocated);
}
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
if (copy.buffer == NULL) {
return false;
}
struct ggml_cgraph * g1 = graph;
struct ggml_cgraph * g2 = copy.graph;
assert(g1->n_nodes == g2->n_nodes);
for (int i = 0; i < g1->n_nodes; i++) {
//printf("eval %d/%d\n", i, g1->n_nodes);
struct ggml_tensor * t1 = g1->nodes[i];
struct ggml_tensor * t2 = g2->nodes[i];
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
ggml_backend_graph_compute(backend1, &g1v);
ggml_backend_graph_compute(backend2, &g2v);
if (ggml_is_view_op(t1->op)) {
continue;
}
// compare results, calculate rms etc
if (!callback(i, t1, t2, user_data)) {
break;
}
}
ggml_backend_graph_copy_free(copy);
return true;
}