1
mirror of https://github.com/hashcat/hashcat synced 2024-12-12 17:13:55 +01:00
hashcat/OpenCL/inc_types.cl
2017-04-16 10:07:12 -04:00

1481 lines
25 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
typedef uchar u8;
typedef ushort u16;
typedef uint u32;
typedef ulong u64;
typedef u8 u8a __attribute__ ((aligned (8)));
typedef u16 u16a __attribute__ ((aligned (8)));
typedef u32 u32a __attribute__ ((aligned (8)));
typedef u64 u64a __attribute__ ((aligned (8)));
#ifndef NEW_SIMD_CODE
#undef VECT_SIZE
#define VECT_SIZE 1
#endif
#define CONCAT(a, b) a##b
#define VTYPE(type, width) CONCAT(type, width)
#if VECT_SIZE == 1
typedef uchar u8x;
typedef ushort u16x;
typedef uint u32x;
typedef ulong u64x;
#else
typedef VTYPE(uchar, VECT_SIZE) u8x;
typedef VTYPE(ushort, VECT_SIZE) u16x;
typedef VTYPE(uint, VECT_SIZE) u32x;
typedef VTYPE(ulong, VECT_SIZE) u64x;
#endif
inline u32 l32_from_64_S (u64 a)
{
const u32 r = (u32) (a);
return r;
}
inline u32 h32_from_64_S (u64 a)
{
a >>= 32;
const u32 r = (u32) (a);
return r;
}
inline u64 hl32_to_64_S (const u32 a, const u32 b)
{
return as_ulong ((uint2) (b, a));
}
inline u32x l32_from_64 (u64x a)
{
u32x r;
#if VECT_SIZE == 1
r = (u32) a;
#endif
#if VECT_SIZE >= 2
r.s0 = (u32) a.s0;
r.s1 = (u32) a.s1;
#endif
#if VECT_SIZE >= 4
r.s2 = (u32) a.s2;
r.s3 = (u32) a.s3;
#endif
#if VECT_SIZE >= 8
r.s4 = (u32) a.s4;
r.s5 = (u32) a.s5;
r.s6 = (u32) a.s6;
r.s7 = (u32) a.s7;
#endif
#if VECT_SIZE >= 16
r.s8 = (u32) a.s8;
r.s9 = (u32) a.s9;
r.sa = (u32) a.sa;
r.sb = (u32) a.sb;
r.sc = (u32) a.sc;
r.sd = (u32) a.sd;
r.se = (u32) a.se;
r.sf = (u32) a.sf;
#endif
return r;
}
inline u32x h32_from_64 (u64x a)
{
a >>= 32;
u32x r;
#if VECT_SIZE == 1
r = (u32) a;
#endif
#if VECT_SIZE >= 2
r.s0 = (u32) a.s0;
r.s1 = (u32) a.s1;
#endif
#if VECT_SIZE >= 4
r.s2 = (u32) a.s2;
r.s3 = (u32) a.s3;
#endif
#if VECT_SIZE >= 8
r.s4 = (u32) a.s4;
r.s5 = (u32) a.s5;
r.s6 = (u32) a.s6;
r.s7 = (u32) a.s7;
#endif
#if VECT_SIZE >= 16
r.s8 = (u32) a.s8;
r.s9 = (u32) a.s9;
r.sa = (u32) a.sa;
r.sb = (u32) a.sb;
r.sc = (u32) a.sc;
r.sd = (u32) a.sd;
r.se = (u32) a.se;
r.sf = (u32) a.sf;
#endif
return r;
}
inline u64x hl32_to_64 (const u32x a, const u32x b)
{
u64x r;
#if VECT_SIZE == 1
r = as_ulong ((uint2) (b, a));
#endif
#if VECT_SIZE >= 2
r.s0 = as_ulong ((uint2) (b.s0, a.s0));
r.s1 = as_ulong ((uint2) (b.s1, a.s1));
#endif
#if VECT_SIZE >= 4
r.s2 = as_ulong ((uint2) (b.s2, a.s2));
r.s3 = as_ulong ((uint2) (b.s3, a.s3));
#endif
#if VECT_SIZE >= 8
r.s4 = as_ulong ((uint2) (b.s4, a.s4));
r.s5 = as_ulong ((uint2) (b.s5, a.s5));
r.s6 = as_ulong ((uint2) (b.s6, a.s6));
r.s7 = as_ulong ((uint2) (b.s7, a.s7));
#endif
#if VECT_SIZE >= 16
r.s8 = as_ulong ((uint2) (b.s8, a.s8));
r.s9 = as_ulong ((uint2) (b.s9, a.s9));
r.sa = as_ulong ((uint2) (b.sa, a.sa));
r.sb = as_ulong ((uint2) (b.sb, a.sb));
r.sc = as_ulong ((uint2) (b.sc, a.sc));
r.sd = as_ulong ((uint2) (b.sd, a.sd));
r.se = as_ulong ((uint2) (b.se, a.se));
r.sf = as_ulong ((uint2) (b.sf, a.sf));
#endif
return r;
}
#ifdef IS_AMD
inline u32 swap32_S (const u32 v)
{
return (as_uint (as_uchar4 (v).s3210));
}
inline u64 swap64_S (const u64 v)
{
return (as_ulong (as_uchar8 (v).s76543210));
}
inline u32 rotr32_S (const u32 a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32 rotl32_S (const u32 a, const u32 n)
{
return rotate (a, n);
}
inline u64 rotr64_S (const u64 a, const u32 n)
{
const u32 a0 = h32_from_64_S (a);
const u32 a1 = l32_from_64_S (a);
const u32 t0 = (n >= 32) ? amd_bitalign (a0, a1, n - 32) : amd_bitalign (a1, a0, n);
const u32 t1 = (n >= 32) ? amd_bitalign (a1, a0, n - 32) : amd_bitalign (a0, a1, n);
const u64 r = hl32_to_64_S (t0, t1);
return r;
}
inline u64 rotl64_S (const u64 a, const u32 n)
{
return rotr64_S (a, 64 - n);
}
inline u32x swap32 (const u32x v)
{
return ((v >> 24) & 0x000000ff)
| ((v >> 8) & 0x0000ff00)
| ((v << 8) & 0x00ff0000)
| ((v << 24) & 0xff000000);
}
inline u64x swap64 (const u64x v)
{
return ((v >> 56) & 0x00000000000000ff)
| ((v >> 40) & 0x000000000000ff00)
| ((v >> 24) & 0x0000000000ff0000)
| ((v >> 8) & 0x00000000ff000000)
| ((v << 8) & 0x000000ff00000000)
| ((v << 24) & 0x0000ff0000000000)
| ((v << 40) & 0x00ff000000000000)
| ((v << 56) & 0xff00000000000000);
}
inline u32x rotr32 (const u32x a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32x rotl32 (const u32x a, const u32 n)
{
return rotate (a, n);
}
inline u64x rotr64 (const u64x a, const u32 n)
{
const u32x a0 = h32_from_64 (a);
const u32x a1 = l32_from_64 (a);
const u32x t0 = (n >= 32) ? amd_bitalign (a0, a1, n - 32) : amd_bitalign (a1, a0, n);
const u32x t1 = (n >= 32) ? amd_bitalign (a1, a0, n - 32) : amd_bitalign (a0, a1, n);
const u64x r = hl32_to_64 (t0, t1);
return r;
}
inline u64x rotl64 (const u64x a, const u32 n)
{
return rotr64 (a, 64 - n);
}
inline u32x __bfe (const u32x a, const u32x b, const u32x c)
{
return amd_bfe (a, b, c);
}
inline u32 __bfe_S (const u32 a, const u32 b, const u32 c)
{
return amd_bfe (a, b, c);
}
inline u32 amd_bytealign_S (const u32 a, const u32 b, const u32 c)
{
return amd_bytealign (a, b, c);
}
#endif
#ifdef IS_NV
inline u32 swap32_S (const u32 v)
{
u32 r;
asm ("prmt.b32 %0, %1, 0, 0x0123;" : "=r"(r) : "r"(v));
return r;
}
inline u64 swap64_S (const u64 v)
{
u32 il;
u32 ir;
asm ("mov.b64 {%0, %1}, %2;" : "=r"(il), "=r"(ir) : "l"(v));
u32 tl;
u32 tr;
asm ("prmt.b32 %0, %1, 0, 0x0123;" : "=r"(tl) : "r"(il));
asm ("prmt.b32 %0, %1, 0, 0x0123;" : "=r"(tr) : "r"(ir));
u64 r;
asm ("mov.b64 %0, {%1, %2};" : "=l"(r) : "r"(tr), "r"(tl));
return r;
}
inline u32 rotr32_S (const u32 a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32 rotl32_S (const u32 a, const u32 n)
{
return rotate (a, n);
}
inline u64 rotr64_S (const u64 a, const u32 n)
{
return rotate (a, (u64) 64 - n);
}
inline u64 rotl64_S (const u64 a, const u32 n)
{
return rotr64_S (a, 64 - n);
}
inline u32x swap32 (const u32x v)
{
return ((v >> 24) & 0x000000ff)
| ((v >> 8) & 0x0000ff00)
| ((v << 8) & 0x00ff0000)
| ((v << 24) & 0xff000000);
}
inline u64x swap64 (const u64x v)
{
return ((v >> 56) & 0x00000000000000ff)
| ((v >> 40) & 0x000000000000ff00)
| ((v >> 24) & 0x0000000000ff0000)
| ((v >> 8) & 0x00000000ff000000)
| ((v << 8) & 0x000000ff00000000)
| ((v << 24) & 0x0000ff0000000000)
| ((v << 40) & 0x00ff000000000000)
| ((v << 56) & 0xff00000000000000);
}
inline u32x rotr32 (const u32x a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32x rotl32 (const u32x a, const u32 n)
{
return rotate (a, n);
}
inline u64x rotr64 (const u64x a, const u32 n)
{
return rotate (a, (u64) 64 - n);
}
inline u64x rotl64 (const u64x a, const u32 n)
{
return rotate (a, (u64) n);
}
inline u32x __byte_perm (const u32x a, const u32x b, const u32x c)
{
u32x r;
#if VECT_SIZE == 1
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(c) );
#endif
#if VECT_SIZE >= 2
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s0) : "r"(a.s0), "r"(b.s0), "r"(c.s0));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s1) : "r"(a.s1), "r"(b.s1), "r"(c.s1));
#endif
#if VECT_SIZE >= 4
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s2) : "r"(a.s2), "r"(b.s2), "r"(c.s2));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s3) : "r"(a.s3), "r"(b.s3), "r"(c.s3));
#endif
#if VECT_SIZE >= 8
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s4) : "r"(a.s4), "r"(b.s4), "r"(c.s4));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s5) : "r"(a.s5), "r"(b.s5), "r"(c.s5));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s6) : "r"(a.s6), "r"(b.s6), "r"(c.s6));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s7) : "r"(a.s7), "r"(b.s7), "r"(c.s7));
#endif
#if VECT_SIZE >= 16
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s8) : "r"(a.s8), "r"(b.s8), "r"(c.s8));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.s9) : "r"(a.s9), "r"(b.s9), "r"(c.s9));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.sa) : "r"(a.sa), "r"(b.sa), "r"(c.sa));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.sb) : "r"(a.sb), "r"(b.sb), "r"(c.sb));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.sc) : "r"(a.sc), "r"(b.sc), "r"(c.sc));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.sd) : "r"(a.sd), "r"(b.sd), "r"(c.sd));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.se) : "r"(a.se), "r"(b.se), "r"(c.se));
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r.sf) : "r"(a.sf), "r"(b.sf), "r"(c.sf));
#endif
return r;
}
inline u32 __byte_perm_S (const u32 a, const u32 b, const u32 c)
{
u32 r;
asm ("prmt.b32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(c));
return r;
}
inline u32x __bfe (const u32x a, const u32x b, const u32x c)
{
u32x r;
#if VECT_SIZE == 1
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(c));
#endif
#if VECT_SIZE >= 2
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s0) : "r"(a.s0), "r"(b.s0), "r"(c.s0));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s1) : "r"(a.s1), "r"(b.s1), "r"(c.s1));
#endif
#if VECT_SIZE >= 4
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s2) : "r"(a.s2), "r"(b.s2), "r"(c.s2));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s3) : "r"(a.s3), "r"(b.s3), "r"(c.s3));
#endif
#if VECT_SIZE >= 8
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s4) : "r"(a.s4), "r"(b.s4), "r"(c.s4));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s5) : "r"(a.s5), "r"(b.s5), "r"(c.s5));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s6) : "r"(a.s6), "r"(b.s6), "r"(c.s6));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s7) : "r"(a.s7), "r"(b.s7), "r"(c.s7));
#endif
#if VECT_SIZE >= 16
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s8) : "r"(a.s8), "r"(b.s8), "r"(c.s8));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.s9) : "r"(a.s9), "r"(b.s9), "r"(c.s9));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.sa) : "r"(a.sa), "r"(b.sa), "r"(c.sa));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.sb) : "r"(a.sb), "r"(b.sb), "r"(c.sb));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.sc) : "r"(a.sc), "r"(b.sc), "r"(c.sc));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.sd) : "r"(a.sd), "r"(b.sd), "r"(c.sd));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.se) : "r"(a.se), "r"(b.se), "r"(c.se));
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r.sf) : "r"(a.sf), "r"(b.sf), "r"(c.sf));
#endif
return r;
}
inline u32 __bfe_S (const u32 a, const u32 b, const u32 c)
{
u32 r;
asm ("bfe.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(c));
return r;
}
inline u32x amd_bytealign (const u32x a, const u32x b, const u32x c)
{
u32x r;
#if CUDA_ARCH >= 350
#if VECT_SIZE == 1
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r) : "r"(b), "r"(a), "r"((c & 3) * 8));
#endif
#if VECT_SIZE >= 2
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s0) : "r"(b.s0), "r"(a.s0), "r"((c.s0 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s1) : "r"(b.s1), "r"(a.s1), "r"((c.s1 & 3) * 8));
#endif
#if VECT_SIZE >= 4
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s2) : "r"(b.s2), "r"(a.s2), "r"((c.s2 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s3) : "r"(b.s3), "r"(a.s3), "r"((c.s3 & 3) * 8));
#endif
#if VECT_SIZE >= 8
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s4) : "r"(b.s4), "r"(a.s4), "r"((c.s4 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s5) : "r"(b.s5), "r"(a.s5), "r"((c.s5 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s6) : "r"(b.s6), "r"(a.s6), "r"((c.s6 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s7) : "r"(b.s7), "r"(a.s7), "r"((c.s7 & 3) * 8));
#endif
#if VECT_SIZE >= 16
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s8) : "r"(b.s8), "r"(a.s8), "r"((c.s8 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.s9) : "r"(b.s9), "r"(a.s9), "r"((c.s9 & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.sa) : "r"(b.sa), "r"(a.sa), "r"((c.sa & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.sb) : "r"(b.sb), "r"(a.sb), "r"((c.sb & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.sc) : "r"(b.sc), "r"(a.sc), "r"((c.sc & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.sd) : "r"(b.sd), "r"(a.sd), "r"((c.sd & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.se) : "r"(b.se), "r"(a.se), "r"((c.se & 3) * 8));
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r.sf) : "r"(b.sf), "r"(a.sf), "r"((c.sf & 3) * 8));
#endif
#else
r = __byte_perm (b, a, ((u32x) (0x76543210) >> ((c & 3) * 4)) & 0xffff);
#endif
return r;
}
inline u32 amd_bytealign_S (const u32 a, const u32 b, const u32 c)
{
u32 r;
#if CUDA_ARCH >= 350
asm ("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(r) : "r"(b), "r"(a), "r"((c & 3) * 8));
#else
r = __byte_perm_S (b, a, (0x76543210 >> ((c & 3) * 4)) & 0xffff);
#endif
return r;
}
#endif
#ifdef IS_GENERIC
inline u32 swap32_S (const u32 v)
{
return (as_uint (as_uchar4 (v).s3210));
}
inline u64 swap64_S (const u64 v)
{
return (as_ulong (as_uchar8 (v).s76543210));
}
inline u32 rotr32_S (const u32 a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32 rotl32_S (const u32 a, const u32 n)
{
return rotate (a, n);
}
inline u64 rotr64_S (const u64 a, const u32 n)
{
return rotate (a, (u64) 64 - n);
}
inline u64 rotl64_S (const u64 a, const u32 n)
{
return rotate (a, (u64) n);
}
inline u32x swap32 (const u32x v)
{
return ((v >> 24) & 0x000000ff)
| ((v >> 8) & 0x0000ff00)
| ((v << 8) & 0x00ff0000)
| ((v << 24) & 0xff000000);
}
inline u64x swap64 (const u64x v)
{
return ((v >> 56) & 0x00000000000000ff)
| ((v >> 40) & 0x000000000000ff00)
| ((v >> 24) & 0x0000000000ff0000)
| ((v >> 8) & 0x00000000ff000000)
| ((v << 8) & 0x000000ff00000000)
| ((v << 24) & 0x0000ff0000000000)
| ((v << 40) & 0x00ff000000000000)
| ((v << 56) & 0xff00000000000000);
}
inline u32x rotr32 (const u32x a, const u32 n)
{
return rotate (a, 32 - n);
}
inline u32x rotl32 (const u32x a, const u32 n)
{
return rotate (a, n);
}
inline u64x rotr64 (const u64x a, const u32 n)
{
return rotate (a, (u64) 64 - n);
}
inline u64x rotl64 (const u64x a, const u32 n)
{
return rotate (a, (u64) n);
}
inline u32x __bfe (const u32x a, const u32x b, const u32x c)
{
#define BIT(x) ((u32x) (1u) << (x))
#define BIT_MASK(x) (BIT (x) - 1)
#define BFE(x,y,z) (((x) >> (y)) & BIT_MASK (z))
return BFE (a, b, c);
#undef BIT
#undef BIT_MASK
#undef BFE
}
inline u32 __bfe_S (const u32 a, const u32 b, const u32 c)
{
#define BIT(x) (1u << (x))
#define BIT_MASK(x) (BIT (x) - 1)
#define BFE(x,y,z) (((x) >> (y)) & BIT_MASK (z))
return BFE (a, b, c);
#undef BIT
#undef BIT_MASK
#undef BFE
}
inline u32x amd_bytealign (const u32x a, const u32x b, const u32 c)
{
#if VECT_SIZE == 1
const u64x tmp = ((((u64x) (a)) << 32) | ((u64x) (b))) >> ((c & 3) * 8);
return (u32x) (tmp);
#endif
#if VECT_SIZE == 2
const u64x tmp = ((((u64x) (a.s0, a.s1)) << 32) | ((u64x) (b.s0, b.s1))) >> ((c & 3) * 8);
return (u32x) (tmp.s0, tmp.s1);
#endif
#if VECT_SIZE == 4
const u64x tmp = ((((u64x) (a.s0, a.s1, a.s2, a.s3)) << 32) | ((u64x) (b.s0, b.s1, b.s2, b.s3))) >> ((c & 3) * 8);
return (u32x) (tmp.s0, tmp.s1, tmp.s2, tmp.s3);
#endif
#if VECT_SIZE == 8
const u64x tmp = ((((u64x) (a.s0, a.s1, a.s2, a.s3, a.s4, a.s5, a.s6, a.s7)) << 32) | ((u64x) (b.s0, b.s1, b.s2, b.s3, b.s4, b.s5, b.s6, b.s7))) >> ((c & 3) * 8);
return (u32x) (tmp.s0, tmp.s1, tmp.s2, tmp.s3, tmp.s4, tmp.s5, tmp.s6, tmp.s7);
#endif
#if VECT_SIZE == 16
const u64x tmp = ((((u64x) (a.s0, a.s1, a.s2, a.s3, a.s4, a.s5, a.s6, a.s7, a.s8, a.s9, a.sa, a.sb, a.sc, a.sd, a.se, a.sf)) << 32) | ((u64x) (b.s0, b.s1, b.s2, b.s3, b.s4, b.s5, b.s6, b.s7, b.s8, b.s9, b.sa, b.sb, b.sc, b.sd, b.se, b.sf))) >> ((c & 3) * 8);
return (u32x) (tmp.s0, tmp.s1, tmp.s2, tmp.s3, tmp.s4, tmp.s5, tmp.s6, tmp.s7, tmp.s8, tmp.s9, tmp.sa, tmp.sb, tmp.sc, tmp.sd, tmp.se, tmp.sf);
#endif
}
inline u32 amd_bytealign_S (const u32 a, const u32 b, const u32 c)
{
const u64 tmp = ((((u64) a) << 32) | ((u64) b)) >> ((c & 3) * 8);
return (u32) (tmp);
}
#endif
typedef struct
{
u32 digest_buf[DGST_ELEM];
} digest_t;
typedef struct
{
u32 salt_buf[16];
u32 salt_buf_pc[16];
u32 salt_len;
u32 salt_len_pc;
u32 salt_iter;
u32 salt_iter2;
u32 salt_sign[2];
u32 keccak_mdlen;
u32 digests_cnt;
u32 digests_done;
u32 digests_offset;
u32 scrypt_N;
u32 scrypt_r;
u32 scrypt_p;
} salt_t;
#define LUKS_STRIPES 4000
typedef enum hc_luks_hash_type
{
HC_LUKS_HASH_TYPE_SHA1 = 1,
HC_LUKS_HASH_TYPE_SHA256 = 2,
HC_LUKS_HASH_TYPE_SHA512 = 3,
HC_LUKS_HASH_TYPE_RIPEMD160 = 4,
HC_LUKS_HASH_TYPE_WHIRLPOOL = 5,
} hc_luks_hash_type_t;
typedef enum hc_luks_key_size
{
HC_LUKS_KEY_SIZE_128 = 128,
HC_LUKS_KEY_SIZE_256 = 256,
HC_LUKS_KEY_SIZE_512 = 512,
} hc_luks_key_size_t;
typedef enum hc_luks_cipher_type
{
HC_LUKS_CIPHER_TYPE_AES = 1,
HC_LUKS_CIPHER_TYPE_SERPENT = 2,
HC_LUKS_CIPHER_TYPE_TWOFISH = 3,
} hc_luks_cipher_type_t;
typedef enum hc_luks_cipher_mode
{
HC_LUKS_CIPHER_MODE_CBC_ESSIV = 1,
HC_LUKS_CIPHER_MODE_CBC_PLAIN = 2,
HC_LUKS_CIPHER_MODE_XTS_PLAIN = 3,
} hc_luks_cipher_mode_t;
typedef struct luks
{
int hash_type; // hc_luks_hash_type_t
int key_size; // hc_luks_key_size_t
int cipher_type; // hc_luks_cipher_type_t
int cipher_mode; // hc_luks_cipher_mode_t
u32 ct_buf[128];
u32 af_src_buf[((HC_LUKS_KEY_SIZE_512 / 8) * LUKS_STRIPES) / 4];
} luks_t;
typedef struct itunes_backup
{
u32 wpky[10];
u32 dpsl[5];
} itunes_backup_t;
typedef struct luks_tmp
{
u32 ipad32[8];
u64 ipad64[8];
u32 opad32[8];
u64 opad64[8];
u32 dgst32[32];
u64 dgst64[16];
u32 out32[32];
u64 out64[16];
} luks_tmp_t;
typedef struct
{
int V;
int R;
int P;
int enc_md;
u32 id_buf[8];
u32 u_buf[32];
u32 o_buf[32];
int id_len;
int o_len;
int u_len;
u32 rc4key[2];
u32 rc4data[2];
} pdf_t;
typedef struct wpa
{
u32 pke[25];
u32 eapol[64 + 16];
u16 eapol_len;
u8 message_pair;
int message_pair_chgd;
u8 keyver;
u8 orig_mac_ap[6];
u8 orig_mac_sta[6];
u8 orig_nonce_ap[32];
u8 orig_nonce_sta[32];
u8 essid_len;
u8 essid[32];
u32 keymic[4];
u32 hash[4];
int nonce_compare;
int nonce_error_corrections;
} wpa_t;
typedef struct
{
u32 cry_master_buf[64];
u32 ckey_buf[64];
u32 public_key_buf[64];
u32 cry_master_len;
u32 ckey_len;
u32 public_key_len;
} bitcoin_wallet_t;
typedef struct
{
u32 salt_buf[30];
u32 salt_len;
u32 esalt_buf[38];
u32 esalt_len;
} sip_t;
typedef struct
{
u32 data[384];
} androidfde_t;
typedef struct
{
u32 nr_buf[16];
u32 nr_len;
u32 msg_buf[128];
u32 msg_len;
} ikepsk_t;
typedef struct
{
u32 user_len;
u32 domain_len;
u32 srvchall_len;
u32 clichall_len;
u32 userdomain_buf[64];
u32 chall_buf[256];
} netntlm_t;
typedef struct
{
u32 user[16];
u32 realm[16];
u32 salt[32];
u32 timestamp[16];
u32 checksum[4];
} krb5pa_t;
typedef struct
{
u32 account_info[512];
u32 checksum[4];
u32 edata2[2560];
u32 edata2_len;
} krb5tgs_t;
typedef struct
{
u32 salt_buf[16];
u32 data_buf[112];
u32 keyfile_buf[16];
u32 signature;
} tc_t;
typedef struct
{
u32 salt_buf[16];
} pbkdf2_md5_t;
typedef struct
{
u32 salt_buf[16];
} pbkdf2_sha1_t;
typedef struct
{
u32 salt_buf[16];
} pbkdf2_sha256_t;
typedef struct
{
u32 salt_buf[32];
} pbkdf2_sha512_t;
typedef struct
{
u32 salt_buf[128];
u32 salt_len;
} rakp_t;
typedef struct
{
u32 data_len;
u32 data_buf[512];
} cloudkey_t;
typedef struct
{
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[5];
u32 keySize;
} office2007_t;
typedef struct
{
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[8];
} office2010_t;
typedef struct
{
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[8];
} office2013_t;
typedef struct
{
u32 version;
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[4];
u32 rc4key[2];
} oldoffice01_t;
typedef struct
{
u32 version;
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[5];
u32 rc4key[2];
} oldoffice34_t;
typedef struct
{
u32 salt_buf[128];
u32 salt_len;
u32 pc_digest[5];
u32 pc_offset;
} pstoken_t;
typedef struct
{
u32 type;
u32 mode;
u32 magic;
u32 salt_len;
u32 salt_buf[4];
u32 verify_bytes;
u32 compress_length;
u32 data_len;
u32 data_buf[2048];
u32 auth_len;
u32 auth_buf[4];
} zip2_t;
typedef struct
{
u32 salt_buf[32];
} win8phone_t;
typedef struct
{
u32 version;
u32 algorithm;
/* key-file handling */
u32 keyfile_len;
u32 keyfile[8];
u32 final_random_seed[8];
u32 transf_random_seed[8];
u32 enc_iv[4];
u32 contents_hash[8];
/* specific to version 1 */
u32 contents_len;
u32 contents[75000];
/* specific to version 2 */
u32 expected_bytes[8];
} keepass_t;
typedef struct
{
u32 digest[4];
u32 out[4];
} pdf14_tmp_t;
typedef struct
{
union
{
u32 dgst32[16];
u64 dgst64[8];
};
u32 dgst_len;
u32 W_len;
} pdf17l8_tmp_t;
typedef struct
{
u32 digest_buf[4];
} phpass_tmp_t;
typedef struct
{
u32 digest_buf[4];
} md5crypt_tmp_t;
typedef struct
{
u32 alt_result[8];
u32 p_bytes[4];
u32 s_bytes[4];
} sha256crypt_tmp_t;
typedef struct
{
u64 l_alt_result[8];
u64 l_p_bytes[2];
u64 l_s_bytes[2];
} sha512crypt_tmp_t;
typedef struct
{
u32 ipad[5];
u32 opad[5];
u32 dgst[10];
u32 out[10];
} wpa_tmp_t;
typedef struct
{
u64 dgst[8];
} bitcoin_wallet_tmp_t;
typedef struct
{
u32 ipad[5];
u32 opad[5];
u32 dgst[5];
u32 out[4];
} dcc2_tmp_t;
typedef struct
{
u32 E[18];
u32 P[18];
u32 S0[256];
u32 S1[256];
u32 S2[256];
u32 S3[256];
} bcrypt_tmp_t;
typedef struct
{
u32 digest[2];
u32 P[18];
u32 S0[256];
u32 S1[256];
u32 S2[256];
u32 S3[256];
} pwsafe2_tmp_t;
typedef struct
{
u32 digest_buf[8];
} pwsafe3_tmp_t;
typedef struct
{
u32 digest_buf[5];
} androidpin_tmp_t;
typedef struct
{
u32 ipad[5];
u32 opad[5];
u32 dgst[10];
u32 out[10];
} androidfde_tmp_t;
typedef struct
{
u32 ipad[16];
u32 opad[16];
u32 dgst[64];
u32 out[64];
} tc_tmp_t;
typedef struct
{
u64 ipad[8];
u64 opad[8];
u64 dgst[32];
u64 out[32];
} tc64_tmp_t;
typedef struct
{
// pbkdf1-sha1 is limited to 160 bits
u32 ipad[5];
u32 opad[5];
u32 out[5];
} pbkdf1_sha1_tmp_t;
typedef struct
{
u32 ipad[4];
u32 opad[4];
u32 dgst[32];
u32 out[32];
} pbkdf2_md5_tmp_t;
typedef struct
{
u32 ipad[5];
u32 opad[5];
u32 dgst[32];
u32 out[32];
} pbkdf2_sha1_tmp_t;
typedef struct
{
u32 ipad[8];
u32 opad[8];
u32 dgst[32];
u32 out[32];
} pbkdf2_sha256_tmp_t;
typedef struct
{
u64 ipad[8];
u64 opad[8];
u64 dgst[16];
u64 out[16];
} pbkdf2_sha512_tmp_t;
typedef struct
{
u64 out[8];
} ecryptfs_tmp_t;
typedef struct
{
u64 ipad[8];
u64 opad[8];
u64 dgst[16];
u64 out[16];
} oraclet_tmp_t;
typedef struct
{
u32 ipad[5];
u32 opad[5];
u32 dgst[5];
u32 out[5];
} agilekey_tmp_t;
typedef struct
{
u32 ipad[5];
u32 opad[5];
u32 dgst1[5];
u32 out1[5];
u32 dgst2[5];
u32 out2[5];
} mywallet_tmp_t;
typedef struct
{
u32 ipad[5];
u32 opad[5];
u32 dgst[5];
u32 out[5];
} sha1aix_tmp_t;
typedef struct
{
u32 ipad[8];
u32 opad[8];
u32 dgst[8];
u32 out[8];
} sha256aix_tmp_t;
typedef struct
{
u64 ipad[8];
u64 opad[8];
u64 dgst[8];
u64 out[8];
} sha512aix_tmp_t;
typedef struct
{
u32 ipad[8];
u32 opad[8];
u32 dgst[8];
u32 out[8];
} lastpass_tmp_t;
typedef struct
{
u64 digest_buf[8];
} drupal7_tmp_t;
typedef struct
{
u32 ipad[5];
u32 opad[5];
u32 dgst[5];
u32 out[5];
} lotus8_tmp_t;
typedef struct
{
u32 out[5];
} office2007_tmp_t;
typedef struct
{
u32 out[5];
} office2010_tmp_t;
typedef struct
{
u64 out[8];
} office2013_tmp_t;
typedef struct
{
u32 digest_buf[5];
} saph_sha1_tmp_t;
typedef struct
{
u32 block[16];
u32 dgst[8];
u32 block_len;
u32 final_len;
} seven_zip_tmp_t;
typedef struct
{
u32 KEK[4];
u32 lsb[4];
u32 cipher[4];
} axcrypt_tmp_t;
typedef struct
{
u32 tmp_digest[8];
} keepass_tmp_t;
typedef struct
{
u32 Kc[16];
u32 Kd[16];
u32 iv[2];
} bsdicrypt_tmp_t;
typedef struct
{
u32 dgst[17][5];
} rar3_tmp_t;
typedef struct
{
u32 ukey[8];
u32 hook_success;
} seven_zip_hook_t;
typedef struct
{
u32 user[16];
} cram_md5_t;
typedef struct
{
u32 key;
u64 val;
} hcstat_table_t;
typedef struct
{
u32 cs_buf[0x100];
u32 cs_len;
} cs_t;
typedef struct
{
u32 cmds[32];
} kernel_rule_t;
typedef struct
{
u32 salt_pos;
u32 digest_pos;
u32 hash_pos;
u32 gidvid;
u32 il_pos;
} plain_t;
typedef struct
{
u32 i[16];
u32 pw_len;
u32 alignment_placeholder_1;
u32 alignment_placeholder_2;
u32 alignment_placeholder_3;
} pw_t;
typedef struct
{
u32 i;
} bf_t;
typedef struct
{
u32 i[8];
u32 pw_len;
} comb_t;
typedef struct
{
u32 b[32];
} bs_word_t;
typedef struct
{
#ifndef SCRYPT_TMP_ELEM
#define SCRYPT_TMP_ELEM 1
#endif
uint4 P[SCRYPT_TMP_ELEM];
} scrypt_tmp_t;
typedef enum combinator_mode
{
COMBINATOR_MODE_BASE_LEFT = 10001,
COMBINATOR_MODE_BASE_RIGHT = 10002
} combinator_mode_t;
typedef enum blake2b_constants__
{
BLAKE2B_BLOCKBYTES = 128,
BLAKE2B_OUTBYTES = 64,
BLAKE2B_KEYBYTES = 64,
BLAKE2B_SALTBYTES = 16,
BLAKE2B_PERSONALBYTES = 16
} blake2b_constants;