1
mirror of https://github.com/hashcat/hashcat synced 2024-12-09 02:13:10 +01:00
hashcat/OpenCL/m09500-pure.cl
Jens Steube 04d5e5a119 New Attack-Mode: Association Attack. Like JtR's single mode. Very early
stage. See hashcat Forum for detailed writeup.
2020-09-29 15:56:32 +02:00

352 lines
6.8 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_sha1.cl"
#include "inc_cipher_aes.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct office2010
{
u32 encryptedVerifier[4];
u32 encryptedVerifierHash[8];
} office2010_t;
typedef struct office2010_tmp
{
u32 out[5];
} office2010_tmp_t;
KERNEL_FQ void m09500_init (KERN_ATTR_TMPS_ESALT (office2010_tmp_t, office2010_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha1_ctx_t ctx;
sha1_init (&ctx);
sha1_update_global (&ctx, salt_bufs[SALT_POS].salt_buf, salt_bufs[SALT_POS].salt_len);
sha1_update_global_utf16le_swap (&ctx, pws[gid].i, pws[gid].pw_len);
sha1_final (&ctx);
tmps[gid].out[0] = ctx.h[0];
tmps[gid].out[1] = ctx.h[1];
tmps[gid].out[2] = ctx.h[2];
tmps[gid].out[3] = ctx.h[3];
tmps[gid].out[4] = ctx.h[4];
}
KERNEL_FQ void m09500_loop (KERN_ATTR_TMPS_ESALT (office2010_tmp_t, office2010_t))
{
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= gid_max) return;
u32x t0 = packv (tmps, out, gid, 0);
u32x t1 = packv (tmps, out, gid, 1);
u32x t2 = packv (tmps, out, gid, 2);
u32x t3 = packv (tmps, out, gid, 3);
u32x t4 = packv (tmps, out, gid, 4);
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = 0;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0x80000000;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (4 + 20) * 8;
for (u32 i = 0, j = loop_pos; i < loop_cnt; i++, j++)
{
w0[0] = hc_swap32 (j);
w0[1] = t0;
w0[2] = t1;
w0[3] = t2;
w1[0] = t3;
w1[1] = t4;
u32x digest[5];
digest[0] = SHA1M_A;
digest[1] = SHA1M_B;
digest[2] = SHA1M_C;
digest[3] = SHA1M_D;
digest[4] = SHA1M_E;
sha1_transform_vector (w0, w1, w2, w3, digest);
t0 = digest[0];
t1 = digest[1];
t2 = digest[2];
t3 = digest[3];
t4 = digest[4];
}
unpackv (tmps, out, gid, 0, t0);
unpackv (tmps, out, gid, 1, t1);
unpackv (tmps, out, gid, 2, t2);
unpackv (tmps, out, gid, 3, t3);
unpackv (tmps, out, gid, 4, t4);
}
KERNEL_FQ void m09500_comp (KERN_ATTR_TMPS_ESALT (office2010_tmp_t, office2010_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
/**
* base
*/
u32 encryptedVerifierHashInputBlockKey[2] = { 0xfea7d276, 0x3b4b9e79 };
u32 encryptedVerifierHashValueBlockKey[2] = { 0xd7aa0f6d, 0x3061344e };
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = tmps[gid].out[0];
w0[1] = tmps[gid].out[1];
w0[2] = tmps[gid].out[2];
w0[3] = tmps[gid].out[3];
w1[0] = tmps[gid].out[4];
w1[1] = encryptedVerifierHashInputBlockKey[0];
w1[2] = encryptedVerifierHashInputBlockKey[1];
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_ctx_t ctx;
sha1_init (&ctx);
sha1_update_64 (&ctx, w0, w1, w2, w3, 20 + 8);
sha1_final (&ctx);
u32 digest0[4];
digest0[0] = ctx.h[0];
digest0[1] = ctx.h[1];
digest0[2] = ctx.h[2];
digest0[3] = ctx.h[3];
w0[0] = tmps[gid].out[0];
w0[1] = tmps[gid].out[1];
w0[2] = tmps[gid].out[2];
w0[3] = tmps[gid].out[3];
w1[0] = tmps[gid].out[4];
w1[1] = encryptedVerifierHashValueBlockKey[0];
w1[2] = encryptedVerifierHashValueBlockKey[1];
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_init (&ctx);
sha1_update_64 (&ctx, w0, w1, w2, w3, 20 + 8);
sha1_final (&ctx);
u32 digest1[4];
digest1[0] = ctx.h[0];
digest1[1] = ctx.h[1];
digest1[2] = ctx.h[2];
digest1[3] = ctx.h[3];
// now we got the AES key, decrypt the verifier
u32 ukey[4];
ukey[0] = digest0[0];
ukey[1] = digest0[1];
ukey[2] = digest0[2];
ukey[3] = digest0[3];
u32 ks[44];
AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
const u32 digest_cur = DIGESTS_OFFSET + loop_pos;
u32 data[4];
data[0] = esalt_bufs[digest_cur].encryptedVerifier[0];
data[1] = esalt_bufs[digest_cur].encryptedVerifier[1];
data[2] = esalt_bufs[digest_cur].encryptedVerifier[2];
data[3] = esalt_bufs[digest_cur].encryptedVerifier[3];
u32 out[4];
AES128_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
out[0] ^= salt_bufs[SALT_POS].salt_buf[0];
out[1] ^= salt_bufs[SALT_POS].salt_buf[1];
out[2] ^= salt_bufs[SALT_POS].salt_buf[2];
out[3] ^= salt_bufs[SALT_POS].salt_buf[3];
// do a sha1 of the result
w0[0] = out[0];
w0[1] = out[1];
w0[2] = out[2];
w0[3] = out[3];
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_init (&ctx);
sha1_update_64 (&ctx, w0, w1, w2, w3, 16);
sha1_final (&ctx);
u32 digest[4];
digest[0] = ctx.h[0];
digest[1] = ctx.h[1];
digest[2] = ctx.h[2];
digest[3] = ctx.h[3];
// encrypt it again for verify
ukey[0] = digest1[0];
ukey[1] = digest1[1];
ukey[2] = digest1[2];
ukey[3] = digest1[3];
AES128_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3);
data[0] = digest[0] ^ salt_bufs[SALT_POS].salt_buf[0];
data[1] = digest[1] ^ salt_bufs[SALT_POS].salt_buf[1];
data[2] = digest[2] ^ salt_bufs[SALT_POS].salt_buf[2];
data[3] = digest[3] ^ salt_bufs[SALT_POS].salt_buf[3];
AES128_encrypt (ks, data, out, s_te0, s_te1, s_te2, s_te3, s_te4);
const u32 r0 = out[0];
const u32 r1 = out[1];
const u32 r2 = out[2];
const u32 r3 = out[3];
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}