hashcat/OpenCL/m29700-pure.cl

626 lines
15 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#ifdef KERNEL_STATIC
#include M2S(INCLUDE_PATH/inc_vendor.h)
#include M2S(INCLUDE_PATH/inc_types.h)
#include M2S(INCLUDE_PATH/inc_platform.cl)
#include M2S(INCLUDE_PATH/inc_common.cl)
#include M2S(INCLUDE_PATH/inc_hash_sha256.cl)
#include M2S(INCLUDE_PATH/inc_cipher_aes.cl)
#include M2S(INCLUDE_PATH/inc_cipher_twofish.cl)
#endif
#define COMPARE_S M2S(INCLUDE_PATH/inc_comp_single.cl)
#define COMPARE_M M2S(INCLUDE_PATH/inc_comp_multi.cl)
typedef struct keepass_tmp
{
u32 tmp_digest[8];
} keepass_tmp_t;
typedef struct keepass
{
u32 version;
u32 algorithm;
/* key-file handling */
u32 keyfile_len;
u32 keyfile[8];
u32 final_random_seed[8];
u32 transf_random_seed[8];
u32 enc_iv[4];
u32 contents_hash[8];
/* specific to version 1 */
u32 contents_len;
u32 contents[0x200000];
/* specific to version 2 */
u32 expected_bytes[8];
} keepass_t;
KERNEL_FQ void m29700_init (KERN_ATTR_TMPS_ESALT (keepass_tmp_t, keepass_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= GID_CNT) return;
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update_global_swap (&ctx, pws[gid].i, pws[gid].pw_len);
sha256_final (&ctx);
u32 digest[8];
digest[0] = ctx.h[0];
digest[1] = ctx.h[1];
digest[2] = ctx.h[2];
digest[3] = ctx.h[3];
digest[4] = ctx.h[4];
digest[5] = ctx.h[5];
digest[6] = ctx.h[6];
digest[7] = ctx.h[7];
tmps[gid].tmp_digest[0] = digest[0];
tmps[gid].tmp_digest[1] = digest[1];
tmps[gid].tmp_digest[2] = digest[2];
tmps[gid].tmp_digest[3] = digest[3];
tmps[gid].tmp_digest[4] = digest[4];
tmps[gid].tmp_digest[5] = digest[5];
tmps[gid].tmp_digest[6] = digest[6];
tmps[gid].tmp_digest[7] = digest[7];
}
KERNEL_FQ void m29700_loop (KERN_ATTR_TMPS_ESALT (keepass_tmp_t, keepass_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
/* Construct AES key */
u32 ukey[8];
ukey[0] = esalt_bufs[DIGESTS_OFFSET_HOST].transf_random_seed[0];
ukey[1] = esalt_bufs[DIGESTS_OFFSET_HOST].transf_random_seed[1];
ukey[2] = esalt_bufs[DIGESTS_OFFSET_HOST].transf_random_seed[2];
ukey[3] = esalt_bufs[DIGESTS_OFFSET_HOST].transf_random_seed[3];
ukey[4] = esalt_bufs[DIGESTS_OFFSET_HOST].transf_random_seed[4];
ukey[5] = esalt_bufs[DIGESTS_OFFSET_HOST].transf_random_seed[5];
ukey[6] = esalt_bufs[DIGESTS_OFFSET_HOST].transf_random_seed[6];
ukey[7] = esalt_bufs[DIGESTS_OFFSET_HOST].transf_random_seed[7];
#define KEYLEN 60
u32 ks[KEYLEN];
AES256_set_encrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3);
u32 data0[4];
u32 data1[4];
data0[0] = tmps[gid].tmp_digest[0];
data0[1] = tmps[gid].tmp_digest[1];
data0[2] = tmps[gid].tmp_digest[2];
data0[3] = tmps[gid].tmp_digest[3];
data1[0] = tmps[gid].tmp_digest[4];
data1[1] = tmps[gid].tmp_digest[5];
data1[2] = tmps[gid].tmp_digest[6];
data1[3] = tmps[gid].tmp_digest[7];
for (u32 i = 0; i < LOOP_CNT; i++)
{
AES256_encrypt (ks, data0, data0, s_te0, s_te1, s_te2, s_te3, s_te4);
AES256_encrypt (ks, data1, data1, s_te0, s_te1, s_te2, s_te3, s_te4);
}
tmps[gid].tmp_digest[0] = data0[0];
tmps[gid].tmp_digest[1] = data0[1];
tmps[gid].tmp_digest[2] = data0[2];
tmps[gid].tmp_digest[3] = data0[3];
tmps[gid].tmp_digest[4] = data1[0];
tmps[gid].tmp_digest[5] = data1[1];
tmps[gid].tmp_digest[6] = data1[2];
tmps[gid].tmp_digest[7] = data1[3];
}
KERNEL_FQ void m29700_comp (KERN_ATTR_TMPS_ESALT (keepass_tmp_t, keepass_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= GID_CNT) return;
/* hash output... */
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = tmps[gid].tmp_digest[0];
w0[1] = tmps[gid].tmp_digest[1];
w0[2] = tmps[gid].tmp_digest[2];
w0[3] = tmps[gid].tmp_digest[3];
w1[0] = tmps[gid].tmp_digest[4];
w1[1] = tmps[gid].tmp_digest[5];
w1[2] = tmps[gid].tmp_digest[6];
w1[3] = tmps[gid].tmp_digest[7];
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_ctx_t ctx;
sha256_init (&ctx);
sha256_update_64 (&ctx, w0, w1, w2, w3, 32);
sha256_final (&ctx);
u32 digest[8];
digest[0] = ctx.h[0];
digest[1] = ctx.h[1];
digest[2] = ctx.h[2];
digest[3] = ctx.h[3];
digest[4] = ctx.h[4];
digest[5] = ctx.h[5];
digest[6] = ctx.h[6];
digest[7] = ctx.h[7];
/* ...then hash final_random_seed | output */
if (esalt_bufs[DIGESTS_OFFSET_HOST].version == 1)
{
w0[0] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[0];
w0[1] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[1];
w0[2] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[2];
w0[3] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[3];
w1[0] = digest[0];
w1[1] = digest[1];
w1[2] = digest[2];
w1[3] = digest[3];
w2[0] = digest[4];
w2[1] = digest[5];
w2[2] = digest[6];
w2[3] = digest[7];
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_init (&ctx);
sha256_update_64 (&ctx, w0, w1, w2, w3, 48);
sha256_final (&ctx);
digest[0] = ctx.h[0];
digest[1] = ctx.h[1];
digest[2] = ctx.h[2];
digest[3] = ctx.h[3];
digest[4] = ctx.h[4];
digest[5] = ctx.h[5];
digest[6] = ctx.h[6];
digest[7] = ctx.h[7];
}
else
{
w0[0] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[0];
w0[1] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[1];
w0[2] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[2];
w0[3] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[3];
w1[0] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[4];
w1[1] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[5];
w1[2] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[6];
w1[3] = esalt_bufs[DIGESTS_OFFSET_HOST].final_random_seed[7];
w2[0] = digest[0];
w2[1] = digest[1];
w2[2] = digest[2];
w2[3] = digest[3];
w3[0] = digest[4];
w3[1] = digest[5];
w3[2] = digest[6];
w3[3] = digest[7];
sha256_init (&ctx);
sha256_update_64 (&ctx, w0, w1, w2, w3, 64);
sha256_final (&ctx);
digest[0] = ctx.h[0];
digest[1] = ctx.h[1];
digest[2] = ctx.h[2];
digest[3] = ctx.h[3];
digest[4] = ctx.h[4];
digest[5] = ctx.h[5];
digest[6] = ctx.h[6];
digest[7] = ctx.h[7];
}
// at this point we have to distinguish between the different keypass versions
u32 iv[4];
iv[0] = esalt_bufs[DIGESTS_OFFSET_HOST].enc_iv[0];
iv[1] = esalt_bufs[DIGESTS_OFFSET_HOST].enc_iv[1];
iv[2] = esalt_bufs[DIGESTS_OFFSET_HOST].enc_iv[2];
iv[3] = esalt_bufs[DIGESTS_OFFSET_HOST].enc_iv[3];
u32 r0 = 0;
u32 r1 = 0;
u32 r2 = 0;
u32 r3 = 0;
if (esalt_bufs[DIGESTS_OFFSET_HOST].version == 1)
{
sha256_ctx_t ctx;
sha256_init (&ctx);
if (esalt_bufs[DIGESTS_OFFSET_HOST].algorithm == 1)
{
/* Construct final Twofish key */
u32 sk[4];
u32 lk[40];
digest[0] = hc_swap32_S (digest[0]);
digest[1] = hc_swap32_S (digest[1]);
digest[2] = hc_swap32_S (digest[2]);
digest[3] = hc_swap32_S (digest[3]);
digest[4] = hc_swap32_S (digest[4]);
digest[5] = hc_swap32_S (digest[5]);
digest[6] = hc_swap32_S (digest[6]);
digest[7] = hc_swap32_S (digest[7]);
twofish256_set_key (sk, lk, digest);
iv[0] = hc_swap32_S (iv[0]);
iv[1] = hc_swap32_S (iv[1]);
iv[2] = hc_swap32_S (iv[2]);
iv[3] = hc_swap32_S (iv[3]);
u32 contents_len = esalt_bufs[DIGESTS_OFFSET_HOST].contents_len;
u32 contents_pos;
u32 contents_off;
// process (decrypt and hash) the buffer with the biggest steps possible.
for (contents_pos = 0, contents_off = 0; contents_pos < contents_len - 16; contents_pos += 16, contents_off += 4)
{
u32 data[4];
data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 0];
data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 1];
data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 2];
data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 3];
data[0] = hc_swap32_S (data[0]);
data[1] = hc_swap32_S (data[1]);
data[2] = hc_swap32_S (data[2]);
data[3] = hc_swap32_S (data[3]);
u32 out[4];
twofish256_decrypt (sk, lk, data, out);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
out[0] = hc_swap32_S (out[0]);
out[1] = hc_swap32_S (out[1]);
out[2] = hc_swap32_S (out[2]);
out[3] = hc_swap32_S (out[3]);
u32 w0[4] = { 0 };
u32 w1[4] = { 0 };
u32 w2[4] = { 0 };
u32 w3[4] = { 0 };
w0[0] = out[0];
w0[1] = out[1];
w0[2] = out[2];
w0[3] = out[3];
sha256_update_64 (&ctx, w0, w1, w2, w3, 16);
iv[0] = data[0];
iv[1] = data[1];
iv[2] = data[2];
iv[3] = data[3];
}
// we've reached the final block for decrypt, it will contain the padding bytes we're looking for
u32 data[4];
data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 0];
data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 1];
data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 2];
data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 3];
data[0] = hc_swap32_S (data[0]);
data[1] = hc_swap32_S (data[1]);
data[2] = hc_swap32_S (data[2]);
data[3] = hc_swap32_S (data[3]);
u32 out[4];
twofish256_decrypt (sk, lk, data, out);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
out[0] = hc_swap32_S (out[0]);
out[1] = hc_swap32_S (out[1]);
out[2] = hc_swap32_S (out[2]);
out[3] = hc_swap32_S (out[3]);
// now we can access the pad byte
const u32 pad_byte = out[3] & 0xff;
// we need to clear the buffer of the padding data
truncate_block_4x4_be_S (out, 16 - pad_byte);
u32 w0[4] = { 0 };
u32 w1[4] = { 0 };
u32 w2[4] = { 0 };
u32 w3[4] = { 0 };
w0[0] = out[0];
w0[1] = out[1];
w0[2] = out[2];
w0[3] = out[3];
sha256_update_64 (&ctx, w0, w1, w2, w3, 16 - pad_byte);
}
else
{
/* Construct final AES key */
#define KEYLEN 60
u32 ks[KEYLEN];
AES256_set_decrypt_key (ks, digest, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
u32 contents_len = esalt_bufs[DIGESTS_OFFSET_HOST].contents_len;
u32 contents_pos;
u32 contents_off;
for (contents_pos = 0, contents_off = 0; contents_pos < contents_len - 16; contents_pos += 16, contents_off += 4)
{
u32 data[4];
data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 0];
data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 1];
data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 2];
data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 3];
u32 out[4];
AES256_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
u32 w0[4] = { 0 };
u32 w1[4] = { 0 };
u32 w2[4] = { 0 };
u32 w3[4] = { 0 };
w0[0] = out[0];
w0[1] = out[1];
w0[2] = out[2];
w0[3] = out[3];
sha256_update_64 (&ctx, w0, w1, w2, w3, 16);
iv[0] = data[0];
iv[1] = data[1];
iv[2] = data[2];
iv[3] = data[3];
}
// we've reached the final block for decrypt, it will contain the padding bytes we're looking for
u32 data[4];
data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 0];
data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 1];
data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 2];
data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].contents[contents_off + 3];
u32 out[4];
AES256_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
// now we can access the pad byte
const u32 pad_byte = out[3] & 0xff;
// we need to clear the buffer of the padding data
truncate_block_4x4_be_S (out, 16 - pad_byte);
u32 w0[4] = { 0 };
u32 w1[4] = { 0 };
u32 w2[4] = { 0 };
u32 w3[4] = { 0 };
w0[0] = out[0];
w0[1] = out[1];
w0[2] = out[2];
w0[3] = out[3];
sha256_update_64 (&ctx, w0, w1, w2, w3, 16 - pad_byte);
}
sha256_final (&ctx);
r0 = ctx.h[0];
r1 = ctx.h[1];
r2 = ctx.h[2];
r3 = ctx.h[3];
}
else
{
/* Construct final AES key */
#define KEYLEN 60
u32 ks[KEYLEN];
AES256_set_decrypt_key (ks, digest, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
u32 data[4];
data[0] = esalt_bufs[DIGESTS_OFFSET_HOST].contents_hash[0];
data[1] = esalt_bufs[DIGESTS_OFFSET_HOST].contents_hash[1];
data[2] = esalt_bufs[DIGESTS_OFFSET_HOST].contents_hash[2];
data[3] = esalt_bufs[DIGESTS_OFFSET_HOST].contents_hash[3];
u32 out[4];
AES256_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
out[0] ^= iv[0];
out[1] ^= iv[1];
out[2] ^= iv[2];
out[3] ^= iv[3];
r0 = out[0];
r1 = out[1];
r2 = out[2];
r3 = out[3];
}
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}