1
mirror of https://github.com/hashcat/hashcat synced 2025-01-10 17:16:22 +01:00

Fix the processing for constant salt

KNX IP Secure uses a constant salt, which require the use of `OPTS_TYPE_DEEP_COMP_KERNEL`. This commit adds the required options and adjusts the indexing of the esalt accordingly. The attempt at an optimized kernel has been removed as requested in the PR feedback. Additionally, minor formatting improvements have been made.
This commit is contained in:
Robert Gützkow 2021-04-12 09:48:38 +02:00
parent 6928b95693
commit ada829fa20
No known key found for this signature in database
GPG Key ID: 34019377B21D8492
3 changed files with 87 additions and 783 deletions

View File

@ -1,724 +0,0 @@
/**
* Author......: See docs/credits.txt and Robert Guetzkow
* License.....: MIT
*/
/*
* This code implement PBKDF2-HMAC-SHA256 but makes assumptions about the input length for optimizations.
* Please keep this in mind when trying to reuse code. The comments explain what those assumptions are.
*
* The implementation is based on inc_hash_sha256.cl and m10900-pure.cl
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_sha256.cl"
#include "inc_cipher_aes.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct blocks
{
u32 b1[4];
u32 b2[4];
u32 b3[4];
} blocks_t;
typedef struct pbkdf2_sha256_tmp
{
u32x ipad_partial_hash[8];
u32x opad_partial_hash[8];
u32x digest[32];
u32x out[32];
} pbkdf2_sha256_tmp_t;
#define SHA256_STEP_NO_Wt(F0,F1,a,b,c,d,e,f,g,h,K) \
{ \
h += K; \
h = hc_add3 (h, SHA256_S3 (e), F1 (e,f,g)); \
d += h; \
h = hc_add3 (h, SHA256_S2 (a), F0 (a,b,c)); \
}
/*
* h = h + Kt + Wt -x => T1 (with Wt being 0)
* h + BSIG1(e) + CH(e,f,g) _|
* d += h - => d + T1 (d is used as e in the next step by switching the arguments.)
* h = h + BSIG0(a) + MAJ(a,b,c) - => T1 + T2 (h is used as a in the next step by switching the arguments.)
*/
#define ROUND_EXPAND() \
{ \
w0_t = SHA256_EXPAND (we_t, w9_t, w1_t, w0_t); \
w1_t = SHA256_EXPAND (wf_t, wa_t, w2_t, w1_t); \
w2_t = SHA256_EXPAND (w0_t, wb_t, w3_t, w2_t); \
w3_t = SHA256_EXPAND (w1_t, wc_t, w4_t, w3_t); \
w4_t = SHA256_EXPAND (w2_t, wd_t, w5_t, w4_t); \
w5_t = SHA256_EXPAND (w3_t, we_t, w6_t, w5_t); \
w6_t = SHA256_EXPAND (w4_t, wf_t, w7_t, w6_t); \
w7_t = SHA256_EXPAND (w5_t, w0_t, w8_t, w7_t); \
w8_t = SHA256_EXPAND (w6_t, w1_t, w9_t, w8_t); \
w9_t = SHA256_EXPAND (w7_t, w2_t, wa_t, w9_t); \
wa_t = SHA256_EXPAND (w8_t, w3_t, wb_t, wa_t); \
wb_t = SHA256_EXPAND (w9_t, w4_t, wc_t, wb_t); \
wc_t = SHA256_EXPAND (wa_t, w5_t, wd_t, wc_t); \
wd_t = SHA256_EXPAND (wb_t, w6_t, we_t, wd_t); \
we_t = SHA256_EXPAND (wc_t, w7_t, wf_t, we_t); \
wf_t = SHA256_EXPAND (wd_t, w8_t, w0_t, wf_t); \
}
#define ROUND_STEP(i) \
{ \
SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w0_t, k_sha256[i + 0]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w1_t, k_sha256[i + 1]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, w2_t, k_sha256[i + 2]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, w3_t, k_sha256[i + 3]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, w4_t, k_sha256[i + 4]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, w5_t, k_sha256[i + 5]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, w6_t, k_sha256[i + 6]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, w7_t, k_sha256[i + 7]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w8_t, k_sha256[i + 8]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w9_t, k_sha256[i + 9]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, wa_t, k_sha256[i + 10]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, wb_t, k_sha256[i + 11]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, wc_t, k_sha256[i + 12]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, wd_t, k_sha256[i + 13]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, we_t, k_sha256[i + 14]); \
SHA256_STEP (SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, wf_t, k_sha256[i + 15]); \
}
DECLSPEC void init_sha256_ctx(sha256_ctx_vector_t *ctx)
{
ctx->h[0] = SHA256M_A;
ctx->h[1] = SHA256M_B;
ctx->h[2] = SHA256M_C;
ctx->h[3] = SHA256M_D;
ctx->h[4] = SHA256M_E;
ctx->h[5] = SHA256M_F;
ctx->h[6] = SHA256M_G;
ctx->h[7] = SHA256M_H;
}
DECLSPEC void init_ipad(sha256_ctx_vector_t *ctx, const u32x *w0, const u32x *w1, const u32x *w2, const u32x *w3)
{
init_sha256_ctx(ctx);
ctx->w0[0] = w0[0] ^ 0x36363636;
ctx->w0[1] = w0[1] ^ 0x36363636;
ctx->w0[2] = w0[2] ^ 0x36363636;
ctx->w0[3] = w0[3] ^ 0x36363636;
ctx->w1[0] = w1[0] ^ 0x36363636;
ctx->w1[1] = w1[1] ^ 0x36363636;
ctx->w1[2] = w1[2] ^ 0x36363636;
ctx->w1[3] = w1[3] ^ 0x36363636;
ctx->w2[0] = w2[0] ^ 0x36363636;
ctx->w2[1] = w2[1] ^ 0x36363636;
ctx->w2[2] = w2[2] ^ 0x36363636;
ctx->w2[3] = w2[3] ^ 0x36363636;
ctx->w3[0] = w3[0] ^ 0x36363636;
ctx->w3[1] = w3[1] ^ 0x36363636;
ctx->w3[2] = w3[2] ^ 0x36363636;
ctx->w3[3] = w3[3] ^ 0x36363636;
}
DECLSPEC void init_opad(sha256_ctx_vector_t *ctx, const u32 *w0, const u32 *w1, const u32 *w2, const u32 *w3)
{
init_sha256_ctx(ctx);
ctx->w0[0] = w0[0] ^ 0x5c5c5c5c;
ctx->w0[1] = w0[1] ^ 0x5c5c5c5c;
ctx->w0[2] = w0[2] ^ 0x5c5c5c5c;
ctx->w0[3] = w0[3] ^ 0x5c5c5c5c;
ctx->w1[0] = w1[0] ^ 0x5c5c5c5c;
ctx->w1[1] = w1[1] ^ 0x5c5c5c5c;
ctx->w1[2] = w1[2] ^ 0x5c5c5c5c;
ctx->w1[3] = w1[3] ^ 0x5c5c5c5c;
ctx->w2[0] = w2[0] ^ 0x5c5c5c5c;
ctx->w2[1] = w2[1] ^ 0x5c5c5c5c;
ctx->w2[2] = w2[2] ^ 0x5c5c5c5c;
ctx->w2[3] = w2[3] ^ 0x5c5c5c5c;
ctx->w3[0] = w3[0] ^ 0x5c5c5c5c;
ctx->w3[1] = w3[1] ^ 0x5c5c5c5c;
ctx->w3[2] = w3[2] ^ 0x5c5c5c5c;
ctx->w3[3] = w3[3] ^ 0x5c5c5c5c;
}
DECLSPEC void sha256_transform_hash(const u32x *w0, const u32x *w1, const u32x *w2, const u32x *w3, u32x *digest)
{
/*
* This function assumes that the input is a hash of length 256 bit with padding applied and that the total length
* of all blocks is 768 bit. This allows to perform optimizations in the message schedule and hash round since some
* words are known to be all zero bits, thus not contributing to some of the calculation. Additionally, calculations
* for words that are known to be constant have been precomputed.
*
* The 256 bit hash is located in the first 8 words (index 0 to 7), followed by one word that has one bit set.
* The length is represented as a 128 bit integer in the last 4 words. However, since for the HMAC calculation
* the total size of all blocks doesn't exceed 768 bit, including ipad and opad respectively, only the last
* word (index 15) contains the length bits. Thus the 32 bit words from index 9 to 14 are all zero bits.
* Whenever these words would be used by the message schedule in
* Wt = SSIG1(W(t-2)) + W(t-7) + SSIG0(W(t-15)) + W(t-16) [1]
* or in the hash round in
* T1 = h + BSIG1(e) + CH(e,f,g) + Kt + Wt [1]
* the calculation can be simplified to remove the operand.
*
* The word at index 8, with one bit set, and the word at index 15, containing the length, are know to be constant.
* Therefore, the operations where they are used as an operand can be partially precomputed. For the message schedule
* this is possible for SSIG1(W(t-2)) and SSIG0(W(t-15)). In the hash round the Kt + Wt can be precomputed when Wt
* is constant.
*
* Like sha256_transform_vector it performs the message schedule and hash round calculation jointly for 16 of the
* 32 bit words. This requires fewer variables and thus less memory to hold the state, compared to calculating
* the whole message schedule first and then performing the hash round.
*
* [1] RFC 6234, section 6.2, https://tools.ietf.org/html/rfc6234#section-6.2
*/
u32x a = digest[0];
u32x b = digest[1];
u32x c = digest[2];
u32x d = digest[3];
u32x e = digest[4];
u32x f = digest[5];
u32x g = digest[6];
u32x h = digest[7];
// This assignment is equivalent to the message schedule for the first 16 words.
u32x w0_t = w0[0];
u32x w1_t = w0[1];
u32x w2_t = w0[2];
u32x w3_t = w0[3];
u32x w4_t = w1[0];
u32x w5_t = w1[1];
u32x w6_t = w1[2];
u32x w7_t = w1[3];
u32x w8_t = w2[0];
u32x w9_t = w2[1];
u32x wa_t = w2[2];
u32x wb_t = w2[3];
u32x wc_t = w3[0];
u32x wd_t = w3[1];
u32x we_t = w3[2];
u32x wf_t = w3[3];
// The first 16 words have already been assigned, perform the first hash round. Don't use W_t when zero.
SHA256_STEP(SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, w0_t, k_sha256[0]);
SHA256_STEP(SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, w1_t, k_sha256[1]);
SHA256_STEP(SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, w2_t, k_sha256[2]);
SHA256_STEP(SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, w3_t, k_sha256[3]);
SHA256_STEP(SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, w4_t, k_sha256[4]);
SHA256_STEP(SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, w5_t, k_sha256[5]);
SHA256_STEP(SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, w6_t, k_sha256[6]);
SHA256_STEP(SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, w7_t, k_sha256[7]);
SHA256_STEP_NO_Wt(SHA256_F0o, SHA256_F1o, a, b, c, d, e, f, g, h, 0x5807aa98);
SHA256_STEP_NO_Wt(SHA256_F0o, SHA256_F1o, h, a, b, c, d, e, f, g, k_sha256[9]);
SHA256_STEP_NO_Wt(SHA256_F0o, SHA256_F1o, g, h, a, b, c, d, e, f, k_sha256[10]);
SHA256_STEP_NO_Wt(SHA256_F0o, SHA256_F1o, f, g, h, a, b, c, d, e, k_sha256[11]);
SHA256_STEP_NO_Wt(SHA256_F0o, SHA256_F1o, e, f, g, h, a, b, c, d, k_sha256[12]);
SHA256_STEP_NO_Wt(SHA256_F0o, SHA256_F1o, d, e, f, g, h, a, b, c, k_sha256[13]);
SHA256_STEP_NO_Wt(SHA256_F0o, SHA256_F1o, c, d, e, f, g, h, a, b, k_sha256[14]);
SHA256_STEP_NO_Wt(SHA256_F0o, SHA256_F1o, b, c, d, e, f, g, h, a, 0xc19bf474);
// The message schedule for words 16 to 32 can skip calculations when W_t is zero
w0_t = SHA256_S0(w1_t) + w0_t;
w1_t = 0x01e00000 + SHA256_S0(w2_t) + w1_t;
w2_t = SHA256_S1(w0_t) + SHA256_S0(w3_t) + w2_t;
w3_t = SHA256_S1(w1_t) + SHA256_S0(w4_t) + w3_t;
w4_t = SHA256_S1(w2_t) + SHA256_S0(w5_t) + w4_t;
w5_t = SHA256_S1(w3_t) + SHA256_S0(w6_t) + w5_t;
w6_t = SHA256_S1(w4_t) + wf_t + SHA256_S0(w7_t) + w6_t;
w7_t = SHA256_S1(w5_t) + w0_t + 0x11002000 + w7_t;
w8_t = SHA256_S1(w6_t) + w1_t + w8_t;
w9_t = SHA256_S1(w7_t) + w2_t;
wa_t = SHA256_S1(w8_t) + w3_t;
wb_t = SHA256_S1(w9_t) + w4_t;
wc_t = SHA256_S1(wa_t) + w5_t;
wd_t = SHA256_S1(wb_t) + w6_t;
we_t = SHA256_S1(wc_t) + w7_t + 0x00c00066;
wf_t = SHA256_S1(wd_t) + w8_t + SHA256_S0(w0_t) + wf_t;
// Following rounds do not have words that are guaranteed to be zero or constant, thus perform full calculations.
ROUND_STEP(16);
ROUND_EXPAND();
ROUND_STEP(32);
ROUND_EXPAND();
ROUND_STEP(48);
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
digest[5] += f;
digest[6] += g;
digest[7] += h;
}
DECLSPEC void partial_hashes_ipad_opad(pbkdf2_sha256_tmp *tmp, GLOBAL_AS const u32 *pwd)
{
/*
* This functions assumes that passwords are smaller than 512 bit, which is the case for KNX IP Secure as the ETS 5 limits
* the maximum length to 20 characters.
*
* Both ipad and opad remain constant for a given password throughout the PBKDF2 computation. Futhermore they are both
* 512 bit long, which is exactly the block size of SHA-256. Thus, it is possible to compute a partial hash for both
* without knowing what will be concatenated to ipad and opad, as the processing in SHA-256 happens in blocks of 512 bit.
* The resulting intermediate result can be stored and reused in all rounds of the PBKDF.
*/
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = make_u32x (hc_swap32_S (pwd[ 0]));
w0[1] = make_u32x (hc_swap32_S (pwd[ 1]));
w0[2] = make_u32x (hc_swap32_S (pwd[ 2]));
w0[3] = make_u32x (hc_swap32_S (pwd[ 3]));
w1[0] = make_u32x (hc_swap32_S (pwd[ 4]));
w1[1] = make_u32x (hc_swap32_S (pwd[ 5]));
w1[2] = make_u32x (hc_swap32_S (pwd[ 6]));
w1[3] = make_u32x (hc_swap32_S (pwd[ 7]));
w2[0] = make_u32x (hc_swap32_S (pwd[ 8]));
w2[1] = make_u32x (hc_swap32_S (pwd[ 9]));
w2[2] = make_u32x (hc_swap32_S (pwd[10]));
w2[3] = make_u32x (hc_swap32_S (pwd[11]));
w3[0] = make_u32x (hc_swap32_S (pwd[12]));
w3[1] = make_u32x (hc_swap32_S (pwd[13]));
w3[2] = make_u32x (hc_swap32_S (pwd[14]));
w3[3] = make_u32x (hc_swap32_S (pwd[15]));
sha256_hmac_ctx_vector_t sha256_hmac_ctx_vector;
// The partial hash is equivalent to computing the hash of just that one block
init_ipad (&sha256_hmac_ctx_vector.ipad, w0, w1, w2, w3);
init_opad (&sha256_hmac_ctx_vector.opad, w0, w1, w2, w3);
sha256_transform_vector (sha256_hmac_ctx_vector.ipad.w0,
sha256_hmac_ctx_vector.ipad.w1,
sha256_hmac_ctx_vector.ipad.w2,
sha256_hmac_ctx_vector.ipad.w3,
sha256_hmac_ctx_vector.ipad.h);
sha256_transform_vector (sha256_hmac_ctx_vector.opad.w0,
sha256_hmac_ctx_vector.opad.w1,
sha256_hmac_ctx_vector.opad.w2,
sha256_hmac_ctx_vector.opad.w3,
sha256_hmac_ctx_vector.opad.h);
tmp->ipad_partial_hash[0] = sha256_hmac_ctx_vector.ipad.h[0];
tmp->ipad_partial_hash[1] = sha256_hmac_ctx_vector.ipad.h[1];
tmp->ipad_partial_hash[2] = sha256_hmac_ctx_vector.ipad.h[2];
tmp->ipad_partial_hash[3] = sha256_hmac_ctx_vector.ipad.h[3];
tmp->ipad_partial_hash[4] = sha256_hmac_ctx_vector.ipad.h[4];
tmp->ipad_partial_hash[5] = sha256_hmac_ctx_vector.ipad.h[5];
tmp->ipad_partial_hash[6] = sha256_hmac_ctx_vector.ipad.h[6];
tmp->ipad_partial_hash[7] = sha256_hmac_ctx_vector.ipad.h[7];
tmp->opad_partial_hash[0] = sha256_hmac_ctx_vector.opad.h[0];
tmp->opad_partial_hash[1] = sha256_hmac_ctx_vector.opad.h[1];
tmp->opad_partial_hash[2] = sha256_hmac_ctx_vector.opad.h[2];
tmp->opad_partial_hash[3] = sha256_hmac_ctx_vector.opad.h[3];
tmp->opad_partial_hash[4] = sha256_hmac_ctx_vector.opad.h[4];
tmp->opad_partial_hash[5] = sha256_hmac_ctx_vector.opad.h[5];
tmp->opad_partial_hash[6] = sha256_hmac_ctx_vector.opad.h[6];
tmp->opad_partial_hash[7] = sha256_hmac_ctx_vector.opad.h[7];
}
DECLSPEC void hmac_sha256(u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad_partial_hash, u32x *opad_partial_hash, u32x *digest)
{
/*
* This function assumes that the input has been padded according to RFC 6234 [3].
*
* [3] RFC 6234, section 4.1, https://tools.ietf.org/html/rfc6234#section-4.1
*/
digest[0] = ipad_partial_hash[0];
digest[1] = ipad_partial_hash[1];
digest[2] = ipad_partial_hash[2];
digest[3] = ipad_partial_hash[3];
digest[4] = ipad_partial_hash[4];
digest[5] = ipad_partial_hash[5];
digest[6] = ipad_partial_hash[6];
digest[7] = ipad_partial_hash[7];
sha256_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = digest[5];
w1[2] = digest[6];
w1[3] = digest[7];
w2[0] = 0x80000000;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 768; // 512 bit for they ipad and 256 bit for the previous hash
digest[0] = opad_partial_hash[0];
digest[1] = opad_partial_hash[1];
digest[2] = opad_partial_hash[2];
digest[3] = opad_partial_hash[3];
digest[4] = opad_partial_hash[4];
digest[5] = opad_partial_hash[5];
digest[6] = opad_partial_hash[6];
digest[7] = opad_partial_hash[7];
sha256_transform_hash (w0, w1, w2, w3, digest);
}
DECLSPEC void hmac_sha256_for_hash(u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad_partial_hash, u32x *opad_partial_hash, u32x *digest)
{
/*
* This function assumes that the input is the block containing the hash of 256 bit length and has been padded according to RFC 6234 [3]
*
* [3] RFC 6234, section 4.1, https://tools.ietf.org/html/rfc6234#section-4.1
*/
digest[0] = ipad_partial_hash[0];
digest[1] = ipad_partial_hash[1];
digest[2] = ipad_partial_hash[2];
digest[3] = ipad_partial_hash[3];
digest[4] = ipad_partial_hash[4];
digest[5] = ipad_partial_hash[5];
digest[6] = ipad_partial_hash[6];
digest[7] = ipad_partial_hash[7];
sha256_transform_hash (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = digest[5];
w1[2] = digest[6];
w1[3] = digest[7];
w2[0] = 0x80000000;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 768; // 512 bit for they ipad and 256 bit for the previous hash
digest[0] = opad_partial_hash[0];
digest[1] = opad_partial_hash[1];
digest[2] = opad_partial_hash[2];
digest[3] = opad_partial_hash[3];
digest[4] = opad_partial_hash[4];
digest[5] = opad_partial_hash[5];
digest[6] = opad_partial_hash[6];
digest[7] = opad_partial_hash[7];
sha256_transform_hash (w0, w1, w2, w3, digest);
}
DECLSPEC void hmac_sha256_first_round(pbkdf2_sha256_tmp *tmp, GLOBAL_AS const u32 *salt, const int len)
{
/*
* This function assumes that the salt is less than 56 byte (448 bit), which is the case for
* KNX IP Secure as the salt is constant and 46 byte (368 bit) long.
*/
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = make_u32x (hc_swap32_S (salt[ 0]));
w0[1] = make_u32x (hc_swap32_S (salt[ 1]));
w0[2] = make_u32x (hc_swap32_S (salt[ 2]));
w0[3] = make_u32x (hc_swap32_S (salt[ 3]));
w1[0] = make_u32x (hc_swap32_S (salt[ 4]));
w1[1] = make_u32x (hc_swap32_S (salt[ 5]));
w1[2] = make_u32x (hc_swap32_S (salt[ 6]));
w1[3] = make_u32x (hc_swap32_S (salt[ 7]));
w2[0] = make_u32x (hc_swap32_S (salt[ 8]));
w2[1] = make_u32x (hc_swap32_S (salt[ 9]));
w2[2] = make_u32x (hc_swap32_S (salt[10]));
w2[3] = make_u32x (hc_swap32_S (salt[11]));
w3[0] = make_u32x (hc_swap32_S (salt[12]));
w3[1] = make_u32x (hc_swap32_S (salt[13]));
w3[2] = make_u32x (hc_swap32_S (salt[14]));
w3[3] = make_u32x (hc_swap32_S (salt[15]));
/*
* PBKDF2 requires the one-based 32 bit big-endian block index to be appended to the salt [2].
* Since the salt is used in the first block, that integer is 1.
*
* [2] RFC 8018, section 5.2, item 3, https://tools.ietf.org/html/rfc8018#section-5.2
*/
u32x i0[4];
u32x i1[4];
u32x i2[4];
u32x i3[4];
i0[0] = 1;
i0[1] = 0;
i0[2] = 0;
i0[3] = 0;
i1[0] = 0;
i1[1] = 0;
i1[2] = 0;
i1[3] = 0;
i2[0] = 0;
i2[1] = 0;
i2[2] = 0;
i2[3] = 0;
i3[0] = 0;
i3[1] = 0;
i3[2] = 0;
i3[3] = 0;
switch_buffer_by_offset_be(i0, i1, i2, i3, len & 63); // Shift to the correct position after the end of the salt
w0[0] |= i0[0];
w0[1] |= i0[1];
w0[2] |= i0[2];
w0[3] |= i0[3];
w1[0] |= i1[0];
w1[1] |= i1[1];
w1[2] |= i1[2];
w1[3] |= i1[3];
w2[0] |= i2[0];
w2[1] |= i2[1];
w2[2] |= i2[2];
w2[3] |= i2[3];
w3[0] |= i3[0];
w3[1] |= i3[1];
w3[2] |= i3[2];
w3[3] |= i3[3];
// Updated length with the 32 bit block index appended
MAYBE_VOLATILE const int len_updated = len + 4;
/*
* Pad salt to 512 bit using the padding scheme described in RFC 6234 [3]
*
* [3] RFC 6234, section 4.1, https://tools.ietf.org/html/rfc6234#section-4.1
*/
append_0x80_4x4 (w0, w1, w2, w3, (len_updated & 63) ^ 3);
w3[2] = 0;
w3[3] = len_updated * 8 + 512; // Length in bits, ipad is 512 bit
hmac_sha256 (w0, w1, w2, w3, tmp->ipad_partial_hash, tmp->opad_partial_hash, tmp->digest);
tmp->out[0] = tmp->digest[0];
tmp->out[1] = tmp->digest[1];
tmp->out[2] = tmp->digest[2];
tmp->out[3] = tmp->digest[3];
tmp->out[4] = tmp->digest[4];
tmp->out[5] = tmp->digest[5];
tmp->out[6] = tmp->digest[6];
tmp->out[7] = tmp->digest[7];
}
DECLSPEC void aes128_encrypt_cbc (const u32 *aes_ks, u32 *aes_iv, const u32 *in, u32 *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
{
u32 in_s[4];
in_s[0] = in[0];
in_s[1] = in[1];
in_s[2] = in[2];
in_s[3] = in[3];
in_s[0] ^= aes_iv[0];
in_s[1] ^= aes_iv[1];
in_s[2] ^= aes_iv[2];
in_s[3] ^= aes_iv[3];
aes128_encrypt (aes_ks, in_s, out, s_te0, s_te1, s_te2, s_te3, s_te4);
aes_iv[0] = out[0];
aes_iv[1] = out[1];
aes_iv[2] = out[2];
aes_iv[3] = out[3];
}
KERNEL_FQ void m25900_init(KERN_ATTR_TMPS(pbkdf2_sha256_tmp_t))
{
const u64 gid = get_global_id(0);
if (gid >= gid_max) return;
partial_hashes_ipad_opad(&tmps[gid], pws[gid].i);
hmac_sha256_first_round(&tmps[gid], salt_bufs[SALT_POS].salt_buf, salt_bufs[SALT_POS].salt_len);
}
KERNEL_FQ void m25900_loop(KERN_ATTR_TMPS(pbkdf2_sha256_tmp_t))
{
const u64 gid = get_global_id(0);
if ((gid * VECT_SIZE) >= gid_max) return;
u32x* ipad_partial_hash = tmps[gid].ipad_partial_hash;
u32x* opad_partial_hash = tmps[gid].opad_partial_hash;
u32x* digest = tmps[gid].digest;
u32x* out = tmps[gid].out;
for (u32 j = 0; j < loop_cnt; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
// Pad the 256 bit hash from the previous PBKDF2-HMAC-SHA256 round to 512 bit
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = digest[5];
w1[2] = digest[6];
w1[3] = digest[7];
w2[0] = 0x80000000;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 768; // 512 bit for they ipad and 256 bit for the previous hash
hmac_sha256_for_hash (w0, w1, w2, w3, ipad_partial_hash, opad_partial_hash, digest);
// XOR digest created by HMAC-SHA256 for the PBKDF2 round
out[0] ^= digest[0];
out[1] ^= digest[1];
out[2] ^= digest[2];
out[3] ^= digest[3];
out[4] ^= digest[4];
out[5] ^= digest[5];
out[6] ^= digest[6];
out[7] ^= digest[7];
}
}
KERNEL_FQ void m25900_comp(KERN_ATTR_TMPS_ESALT(pbkdf2_sha256_tmp_t, blocks_t))
{
/**
* base
*/
const u64 gid = get_global_id(0);
const u64 lid = get_local_id(0);
const u64 lsz = get_local_size(0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS();
#else
CONSTANT_AS u32a* s_td0 = td0;
CONSTANT_AS u32a* s_td1 = td1;
CONSTANT_AS u32a* s_td2 = td2;
CONSTANT_AS u32a* s_td3 = td3;
CONSTANT_AS u32a* s_td4 = td4;
CONSTANT_AS u32a* s_te0 = te0;
CONSTANT_AS u32a* s_te1 = te1;
CONSTANT_AS u32a* s_te2 = te2;
CONSTANT_AS u32a* s_te3 = te3;
CONSTANT_AS u32a* s_te4 = te4;
#endif
if (gid >= gid_max) return;
u32 key[4];
key[0] = tmps[gid].out[DGST_R0];
key[1] = tmps[gid].out[DGST_R1];
key[2] = tmps[gid].out[DGST_R2];
key[3] = tmps[gid].out[DGST_R3];
u32 aes_ks[44];
AES128_set_encrypt_key (aes_ks, key, s_te0, s_te1, s_te2, s_te3);
u32 b0[4] = { 0 };
u32 aes_cbc_iv[4] = { 0 };
u32 yn[4];
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, b0, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, esalt_bufs[DIGESTS_OFFSET].b1, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, esalt_bufs[DIGESTS_OFFSET].b2, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, esalt_bufs[DIGESTS_OFFSET].b3, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
u32 nonce[4];
nonce[0] = 0;
nonce[1] = 0;
nonce[2] = 0;
nonce[3] = 0x00ff0000; // already swapped
u32 s0[4];
aes128_encrypt(aes_ks, nonce, s0, s_te0, s_te1, s_te2, s_te3, s_te4);
const u32 r0 = yn[0] ^ s0[0];
const u32 r1 = yn[1] ^ s0[1];
const u32 r2 = yn[2] ^ s0[2];
const u32 r3 = yn[3] ^ s0[3];
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}

View File

@ -1,10 +1,8 @@
/**
* Author......: See docs/credits.txt and Robert Guetzkow
* Author......: See docs/credits.txt
* License.....: MIT
*/
// The code is mostly reused from m10900-pure.cl and m19800-pure.cl
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
@ -49,7 +47,7 @@ DECLSPEC void hmac_sha256_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *i
digest[6] = ipad[6];
digest[7] = ipad[7];
sha256_transform_vector(w0, w1, w2, w3, digest);
sha256_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
@ -77,7 +75,7 @@ DECLSPEC void hmac_sha256_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *i
digest[6] = opad[6];
digest[7] = opad[7];
sha256_transform_vector(w0, w1, w2, w3, digest);
sha256_transform_vector (w0, w1, w2, w3, digest);
}
DECLSPEC void aes128_encrypt_cbc (const u32 *aes_ks, u32 *aes_iv, const u32 *in, u32 *out, SHM_TYPE u32 *s_te0, SHM_TYPE u32 *s_te1, SHM_TYPE u32 *s_te2, SHM_TYPE u32 *s_te3, SHM_TYPE u32 *s_te4)
@ -195,46 +193,46 @@ KERNEL_FQ void m25900_loop(KERN_ATTR_TMPS(pbkdf2_sha256_tmp_t))
u32x ipad[8];
u32x opad[8];
ipad[0] = packv(tmps, ipad, gid, 0);
ipad[1] = packv(tmps, ipad, gid, 1);
ipad[2] = packv(tmps, ipad, gid, 2);
ipad[3] = packv(tmps, ipad, gid, 3);
ipad[4] = packv(tmps, ipad, gid, 4);
ipad[5] = packv(tmps, ipad, gid, 5);
ipad[6] = packv(tmps, ipad, gid, 6);
ipad[7] = packv(tmps, ipad, gid, 7);
ipad[0] = packv (tmps, ipad, gid, 0);
ipad[1] = packv (tmps, ipad, gid, 1);
ipad[2] = packv (tmps, ipad, gid, 2);
ipad[3] = packv (tmps, ipad, gid, 3);
ipad[4] = packv (tmps, ipad, gid, 4);
ipad[5] = packv (tmps, ipad, gid, 5);
ipad[6] = packv (tmps, ipad, gid, 6);
ipad[7] = packv (tmps, ipad, gid, 7);
opad[0] = packv(tmps, opad, gid, 0);
opad[1] = packv(tmps, opad, gid, 1);
opad[2] = packv(tmps, opad, gid, 2);
opad[3] = packv(tmps, opad, gid, 3);
opad[4] = packv(tmps, opad, gid, 4);
opad[5] = packv(tmps, opad, gid, 5);
opad[6] = packv(tmps, opad, gid, 6);
opad[7] = packv(tmps, opad, gid, 7);
opad[0] = packv (tmps, opad, gid, 0);
opad[1] = packv (tmps, opad, gid, 1);
opad[2] = packv (tmps, opad, gid, 2);
opad[3] = packv (tmps, opad, gid, 3);
opad[4] = packv (tmps, opad, gid, 4);
opad[5] = packv (tmps, opad, gid, 5);
opad[6] = packv (tmps, opad, gid, 6);
opad[7] = packv (tmps, opad, gid, 7);
for (u32 i = 0; i < 8; i += 8)
{
u32x dgst[8];
u32x out[8];
dgst[0] = packv(tmps, dgst, gid, i + 0);
dgst[1] = packv(tmps, dgst, gid, i + 1);
dgst[2] = packv(tmps, dgst, gid, i + 2);
dgst[3] = packv(tmps, dgst, gid, i + 3);
dgst[4] = packv(tmps, dgst, gid, i + 4);
dgst[5] = packv(tmps, dgst, gid, i + 5);
dgst[6] = packv(tmps, dgst, gid, i + 6);
dgst[7] = packv(tmps, dgst, gid, i + 7);
dgst[0] = packv (tmps, dgst, gid, i + 0);
dgst[1] = packv (tmps, dgst, gid, i + 1);
dgst[2] = packv (tmps, dgst, gid, i + 2);
dgst[3] = packv (tmps, dgst, gid, i + 3);
dgst[4] = packv (tmps, dgst, gid, i + 4);
dgst[5] = packv (tmps, dgst, gid, i + 5);
dgst[6] = packv (tmps, dgst, gid, i + 6);
dgst[7] = packv (tmps, dgst, gid, i + 7);
out[0] = packv(tmps, out, gid, i + 0);
out[1] = packv(tmps, out, gid, i + 1);
out[2] = packv(tmps, out, gid, i + 2);
out[3] = packv(tmps, out, gid, i + 3);
out[4] = packv(tmps, out, gid, i + 4);
out[5] = packv(tmps, out, gid, i + 5);
out[6] = packv(tmps, out, gid, i + 6);
out[7] = packv(tmps, out, gid, i + 7);
out[0] = packv (tmps, out, gid, i + 0);
out[1] = packv (tmps, out, gid, i + 1);
out[2] = packv (tmps, out, gid, i + 2);
out[3] = packv (tmps, out, gid, i + 3);
out[4] = packv (tmps, out, gid, i + 4);
out[5] = packv (tmps, out, gid, i + 5);
out[6] = packv (tmps, out, gid, i + 6);
out[7] = packv (tmps, out, gid, i + 7);
for (u32 j = 0; j < loop_cnt; j++)
{
@ -260,7 +258,7 @@ KERNEL_FQ void m25900_loop(KERN_ATTR_TMPS(pbkdf2_sha256_tmp_t))
w3[2] = 0;
w3[3] = (64 + 32) * 8;
hmac_sha256_run_V(w0, w1, w2, w3, ipad, opad, dgst);
hmac_sha256_run_V (w0, w1, w2, w3, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
@ -272,23 +270,23 @@ KERNEL_FQ void m25900_loop(KERN_ATTR_TMPS(pbkdf2_sha256_tmp_t))
out[7] ^= dgst[7];
}
unpackv(tmps, dgst, gid, i + 0, dgst[0]);
unpackv(tmps, dgst, gid, i + 1, dgst[1]);
unpackv(tmps, dgst, gid, i + 2, dgst[2]);
unpackv(tmps, dgst, gid, i + 3, dgst[3]);
unpackv(tmps, dgst, gid, i + 4, dgst[4]);
unpackv(tmps, dgst, gid, i + 5, dgst[5]);
unpackv(tmps, dgst, gid, i + 6, dgst[6]);
unpackv(tmps, dgst, gid, i + 7, dgst[7]);
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
unpackv (tmps, dgst, gid, i + 5, dgst[5]);
unpackv (tmps, dgst, gid, i + 6, dgst[6]);
unpackv (tmps, dgst, gid, i + 7, dgst[7]);
unpackv(tmps, out, gid, i + 0, out[0]);
unpackv(tmps, out, gid, i + 1, out[1]);
unpackv(tmps, out, gid, i + 2, out[2]);
unpackv(tmps, out, gid, i + 3, out[3]);
unpackv(tmps, out, gid, i + 4, out[4]);
unpackv(tmps, out, gid, i + 5, out[5]);
unpackv(tmps, out, gid, i + 6, out[6]);
unpackv(tmps, out, gid, i + 7, out[7]);
unpackv (tmps, out, gid, i + 0, out[0]);
unpackv (tmps, out, gid, i + 1, out[1]);
unpackv (tmps, out, gid, i + 2, out[2]);
unpackv (tmps, out, gid, i + 3, out[3]);
unpackv (tmps, out, gid, i + 4, out[4]);
unpackv (tmps, out, gid, i + 5, out[5]);
unpackv (tmps, out, gid, i + 6, out[6]);
unpackv (tmps, out, gid, i + 7, out[7]);
}
}
@ -372,10 +370,34 @@ KERNEL_FQ void m25900_comp(KERN_ATTR_TMPS_ESALT(pbkdf2_sha256_tmp_t, blocks_t))
u32 yn[4];
const u32 digest_pos = loop_pos;
const u32 digest_cur = DIGESTS_OFFSET + digest_pos;
u32 b1[4];
b1[0] = esalt_bufs[digest_cur].b1[0];
b1[1] = esalt_bufs[digest_cur].b1[1];
b1[2] = esalt_bufs[digest_cur].b1[2];
b1[3] = esalt_bufs[digest_cur].b1[3];
u32 b2[4];
b2[0] = esalt_bufs[digest_cur].b2[0];
b2[1] = esalt_bufs[digest_cur].b2[1];
b2[2] = esalt_bufs[digest_cur].b2[2];
b2[3] = esalt_bufs[digest_cur].b2[3];
u32 b3[4];
b3[0] = esalt_bufs[digest_cur].b3[0];
b3[1] = esalt_bufs[digest_cur].b3[1];
b3[2] = esalt_bufs[digest_cur].b3[2];
b3[3] = esalt_bufs[digest_cur].b3[3];
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, b0, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, esalt_bufs[DIGESTS_OFFSET].b1, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, esalt_bufs[DIGESTS_OFFSET].b2, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, esalt_bufs[DIGESTS_OFFSET].b3, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, b1, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, b2, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
aes128_encrypt_cbc (aes_ks, aes_cbc_iv, b3, yn, s_te0, s_te1, s_te2, s_te3, s_te4);
u32 nonce[4];

View File

@ -20,7 +20,8 @@ static const u32 HASH_CATEGORY = HASH_CATEGORY_NETWORK_PROTOCOL;
static const char *HASH_NAME = "KNX IP Secure - Device Authentication Code";
static const u64 KERN_TYPE = 25900;
static const u32 OPTI_TYPE = OPTI_TYPE_SLOW_HASH_SIMD_LOOP;
static const u64 OPTS_TYPE = OPTS_TYPE_PT_GENERATE_LE;
static const u64 OPTS_TYPE = OPTS_TYPE_PT_GENERATE_LE
| OPTS_TYPE_DEEP_COMP_KERNEL;
static const u32 SALT_TYPE = SALT_TYPE_EMBEDDED;
static const char *ST_PASS = "hashcat";
static const char *ST_HASH = "$knx-ip-secure-device-authentication-code$*3033*fa7c0d787a9467c209f0a6e7cf16069ed704f3959dce19e45d7935c0a91bce41*f927640d9bbe9a4b0b74dd3289ad41ec";
@ -89,6 +90,11 @@ char* module_jit_build_options(MAYBE_UNUSED const hashconfig_t *hashconfig, MAYB
return jit_build_options;
}
u32 module_deep_comp_kernel(MAYBE_UNUSED const hashes_t *hashes, MAYBE_UNUSED const u32 salt_pos, MAYBE_UNUSED const u32 digest_pos)
{
return KERN_RUN_3;
}
u64 module_esalt_size(MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u64 esalt_size = (const u64) sizeof (blocks_t);
@ -260,7 +266,7 @@ void module_init(module_ctx_t *module_ctx)
module_ctx->module_benchmark_mask = MODULE_DEFAULT;
module_ctx->module_benchmark_salt = MODULE_DEFAULT;
module_ctx->module_build_plain_postprocess = MODULE_DEFAULT;
module_ctx->module_deep_comp_kernel = MODULE_DEFAULT;
module_ctx->module_deep_comp_kernel = module_deep_comp_kernel;
module_ctx->module_dgst_pos0 = module_dgst_pos0;
module_ctx->module_dgst_pos1 = module_dgst_pos1;
module_ctx->module_dgst_pos2 = module_dgst_pos2;