1
mirror of https://github.com/hashcat/hashcat synced 2024-11-20 23:27:31 +01:00

Add additional support for SQLCipher v3 and hashes SHA1 and SHA256 and a unit-test

This commit is contained in:
Jens Steube 2021-03-26 11:36:41 +01:00
parent 71766dab43
commit 524cb20703
9 changed files with 1166 additions and 156 deletions

346
OpenCL/m24610-pure.cl Normal file
View File

@ -0,0 +1,346 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_sha1.cl"
#include "inc_cipher_aes.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct sqlcipher_sha1_tmp
{
u32 ipad[5];
u32 opad[5];
u32 dgst[10];
u32 out[10];
} sqlcipher_sha1_tmp_t;
typedef struct sqlcipher
{
u32 iv_buf[4];
u32 data_buf[4];
u32 type;
} sqlcipher_t;
DECLSPEC void hmac_sha1_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
sha1_transform_vector (w0, w1, w2, w3, digest);
}
KERNEL_FQ void m24610_init (KERN_ATTR_TMPS_ESALT (sqlcipher_sha1_tmp_t, sqlcipher_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha1_hmac_ctx_t sha1_hmac_ctx;
sha1_hmac_init_global_swap (&sha1_hmac_ctx, pws[gid].i, pws[gid].pw_len);
tmps[gid].ipad[0] = sha1_hmac_ctx.ipad.h[0];
tmps[gid].ipad[1] = sha1_hmac_ctx.ipad.h[1];
tmps[gid].ipad[2] = sha1_hmac_ctx.ipad.h[2];
tmps[gid].ipad[3] = sha1_hmac_ctx.ipad.h[3];
tmps[gid].ipad[4] = sha1_hmac_ctx.ipad.h[4];
tmps[gid].opad[0] = sha1_hmac_ctx.opad.h[0];
tmps[gid].opad[1] = sha1_hmac_ctx.opad.h[1];
tmps[gid].opad[2] = sha1_hmac_ctx.opad.h[2];
tmps[gid].opad[3] = sha1_hmac_ctx.opad.h[3];
tmps[gid].opad[4] = sha1_hmac_ctx.opad.h[4];
sha1_hmac_update_global_swap (&sha1_hmac_ctx, salt_bufs[DIGESTS_OFFSET].salt_buf, salt_bufs[SALT_POS].salt_len);
for (u32 i = 0, j = 1; i < 8; i += 5, j += 1)
{
sha1_hmac_ctx_t sha1_hmac_ctx2 = sha1_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha1_hmac_update_64 (&sha1_hmac_ctx2, w0, w1, w2, w3, 4);
sha1_hmac_final (&sha1_hmac_ctx2);
tmps[gid].dgst[i + 0] = sha1_hmac_ctx2.opad.h[0];
tmps[gid].dgst[i + 1] = sha1_hmac_ctx2.opad.h[1];
tmps[gid].dgst[i + 2] = sha1_hmac_ctx2.opad.h[2];
tmps[gid].dgst[i + 3] = sha1_hmac_ctx2.opad.h[3];
tmps[gid].dgst[i + 4] = sha1_hmac_ctx2.opad.h[4];
tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
}
}
KERNEL_FQ void m24610_loop (KERN_ATTR_TMPS_ESALT (sqlcipher_sha1_tmp_t, sqlcipher_t))
{
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= gid_max) return;
u32x ipad[5];
u32x opad[5];
ipad[0] = packv (tmps, ipad, gid, 0);
ipad[1] = packv (tmps, ipad, gid, 1);
ipad[2] = packv (tmps, ipad, gid, 2);
ipad[3] = packv (tmps, ipad, gid, 3);
ipad[4] = packv (tmps, ipad, gid, 4);
opad[0] = packv (tmps, opad, gid, 0);
opad[1] = packv (tmps, opad, gid, 1);
opad[2] = packv (tmps, opad, gid, 2);
opad[3] = packv (tmps, opad, gid, 3);
opad[4] = packv (tmps, opad, gid, 4);
for (u32 i = 0; i < 8; i += 5)
{
u32x dgst[5];
u32x out[5];
dgst[0] = packv (tmps, dgst, gid, i + 0);
dgst[1] = packv (tmps, dgst, gid, i + 1);
dgst[2] = packv (tmps, dgst, gid, i + 2);
dgst[3] = packv (tmps, dgst, gid, i + 3);
dgst[4] = packv (tmps, dgst, gid, i + 4);
out[0] = packv (tmps, out, gid, i + 0);
out[1] = packv (tmps, out, gid, i + 1);
out[2] = packv (tmps, out, gid, i + 2);
out[3] = packv (tmps, out, gid, i + 3);
out[4] = packv (tmps, out, gid, i + 4);
for (u32 j = 0; j < loop_cnt; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = dgst[0];
w0[1] = dgst[1];
w0[2] = dgst[2];
w0[3] = dgst[3];
w1[0] = dgst[4];
w1[1] = 0x80000000;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 20) * 8;
hmac_sha1_run_V (w0, w1, w2, w3, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
out[2] ^= dgst[2];
out[3] ^= dgst[3];
out[4] ^= dgst[4];
}
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
unpackv (tmps, out, gid, i + 0, out[0]);
unpackv (tmps, out, gid, i + 1, out[1]);
unpackv (tmps, out, gid, i + 2, out[2]);
unpackv (tmps, out, gid, i + 3, out[3]);
unpackv (tmps, out, gid, i + 4, out[4]);
}
}
KERNEL_FQ void m24610_comp (KERN_ATTR_TMPS_ESALT (sqlcipher_sha1_tmp_t, sqlcipher_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
u32 ukey[8];
ukey[0] = tmps[gid].out[0];
ukey[1] = tmps[gid].out[1];
ukey[2] = tmps[gid].out[2];
ukey[3] = tmps[gid].out[3];
ukey[4] = tmps[gid].out[4];
ukey[5] = tmps[gid].out[5];
ukey[6] = tmps[gid].out[6];
ukey[7] = tmps[gid].out[7];
u32 ks[60];
AES256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
// first check the padding
u32 iv_buf[4];
iv_buf[0] = esalt_bufs[DIGESTS_OFFSET].iv_buf[0];
iv_buf[1] = esalt_bufs[DIGESTS_OFFSET].iv_buf[1];
iv_buf[2] = esalt_bufs[DIGESTS_OFFSET].iv_buf[2];
iv_buf[3] = esalt_bufs[DIGESTS_OFFSET].iv_buf[3];
u32 enc[4];
enc[0] = esalt_bufs[DIGESTS_OFFSET].data_buf[0];
enc[1] = esalt_bufs[DIGESTS_OFFSET].data_buf[1];
enc[2] = esalt_bufs[DIGESTS_OFFSET].data_buf[2];
enc[3] = esalt_bufs[DIGESTS_OFFSET].data_buf[3];
u32 dec[4];
aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= iv_buf[0];
dec[1] ^= iv_buf[1];
dec[2] ^= iv_buf[2];
dec[3] ^= iv_buf[3];
if (dec[0] != 0) return;
if (dec[1] != 0) return;
if (dec[2] != 0) return;
const u32 r0 = esalt_bufs[DIGESTS_OFFSET].data_buf[0];
const u32 r1 = esalt_bufs[DIGESTS_OFFSET].data_buf[1];
const u32 r2 = esalt_bufs[DIGESTS_OFFSET].data_buf[2];
const u32 r3 = esalt_bufs[DIGESTS_OFFSET].data_buf[3];
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}

385
OpenCL/m24620-pure.cl Normal file
View File

@ -0,0 +1,385 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#define NEW_SIMD_CODE
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_simd.cl"
#include "inc_hash_sha256.cl"
#include "inc_cipher_aes.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct sqlcipher_sha256_tmp
{
u32 ipad[8];
u32 opad[8];
u32 dgst[8];
u32 out[8];
} sqlcipher_sha256_tmp_t;
typedef struct sqlcipher
{
u32 iv_buf[4];
u32 data_buf[4];
u32 type;
} sqlcipher_t;
DECLSPEC void hmac_sha256_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *ipad, u32x *opad, u32x *digest)
{
digest[0] = ipad[0];
digest[1] = ipad[1];
digest[2] = ipad[2];
digest[3] = ipad[3];
digest[4] = ipad[4];
digest[5] = ipad[5];
digest[6] = ipad[6];
digest[7] = ipad[7];
sha256_transform_vector (w0, w1, w2, w3, digest);
w0[0] = digest[0];
w0[1] = digest[1];
w0[2] = digest[2];
w0[3] = digest[3];
w1[0] = digest[4];
w1[1] = digest[5];
w1[2] = digest[6];
w1[3] = digest[7];
w2[0] = 0x80000000;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 32) * 8;
digest[0] = opad[0];
digest[1] = opad[1];
digest[2] = opad[2];
digest[3] = opad[3];
digest[4] = opad[4];
digest[5] = opad[5];
digest[6] = opad[6];
digest[7] = opad[7];
sha256_transform_vector (w0, w1, w2, w3, digest);
}
KERNEL_FQ void m24620_init (KERN_ATTR_TMPS_ESALT (sqlcipher_sha256_tmp_t, sqlcipher_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
sha256_hmac_ctx_t sha256_hmac_ctx;
sha256_hmac_init_global_swap (&sha256_hmac_ctx, pws[gid].i, pws[gid].pw_len);
tmps[gid].ipad[0] = sha256_hmac_ctx.ipad.h[0];
tmps[gid].ipad[1] = sha256_hmac_ctx.ipad.h[1];
tmps[gid].ipad[2] = sha256_hmac_ctx.ipad.h[2];
tmps[gid].ipad[3] = sha256_hmac_ctx.ipad.h[3];
tmps[gid].ipad[4] = sha256_hmac_ctx.ipad.h[4];
tmps[gid].ipad[5] = sha256_hmac_ctx.ipad.h[5];
tmps[gid].ipad[6] = sha256_hmac_ctx.ipad.h[6];
tmps[gid].ipad[7] = sha256_hmac_ctx.ipad.h[7];
tmps[gid].opad[0] = sha256_hmac_ctx.opad.h[0];
tmps[gid].opad[1] = sha256_hmac_ctx.opad.h[1];
tmps[gid].opad[2] = sha256_hmac_ctx.opad.h[2];
tmps[gid].opad[3] = sha256_hmac_ctx.opad.h[3];
tmps[gid].opad[4] = sha256_hmac_ctx.opad.h[4];
tmps[gid].opad[5] = sha256_hmac_ctx.opad.h[5];
tmps[gid].opad[6] = sha256_hmac_ctx.opad.h[6];
tmps[gid].opad[7] = sha256_hmac_ctx.opad.h[7];
sha256_hmac_update_global_swap (&sha256_hmac_ctx, salt_bufs[DIGESTS_OFFSET].salt_buf, salt_bufs[SALT_POS].salt_len);
for (u32 i = 0, j = 1; i < 8; i += 8, j += 1)
{
sha256_hmac_ctx_t sha256_hmac_ctx2 = sha256_hmac_ctx;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = j;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = 0;
sha256_hmac_update_64 (&sha256_hmac_ctx2, w0, w1, w2, w3, 4);
sha256_hmac_final (&sha256_hmac_ctx2);
tmps[gid].dgst[i + 0] = sha256_hmac_ctx2.opad.h[0];
tmps[gid].dgst[i + 1] = sha256_hmac_ctx2.opad.h[1];
tmps[gid].dgst[i + 2] = sha256_hmac_ctx2.opad.h[2];
tmps[gid].dgst[i + 3] = sha256_hmac_ctx2.opad.h[3];
tmps[gid].dgst[i + 4] = sha256_hmac_ctx2.opad.h[4];
tmps[gid].dgst[i + 5] = sha256_hmac_ctx2.opad.h[5];
tmps[gid].dgst[i + 6] = sha256_hmac_ctx2.opad.h[6];
tmps[gid].dgst[i + 7] = sha256_hmac_ctx2.opad.h[7];
tmps[gid].out[i + 0] = tmps[gid].dgst[i + 0];
tmps[gid].out[i + 1] = tmps[gid].dgst[i + 1];
tmps[gid].out[i + 2] = tmps[gid].dgst[i + 2];
tmps[gid].out[i + 3] = tmps[gid].dgst[i + 3];
tmps[gid].out[i + 4] = tmps[gid].dgst[i + 4];
tmps[gid].out[i + 5] = tmps[gid].dgst[i + 5];
tmps[gid].out[i + 6] = tmps[gid].dgst[i + 6];
tmps[gid].out[i + 7] = tmps[gid].dgst[i + 7];
}
}
KERNEL_FQ void m24620_loop (KERN_ATTR_TMPS_ESALT (sqlcipher_sha256_tmp_t, sqlcipher_t))
{
const u64 gid = get_global_id (0);
if ((gid * VECT_SIZE) >= gid_max) return;
u32x ipad[8];
u32x opad[8];
ipad[0] = packv (tmps, ipad, gid, 0);
ipad[1] = packv (tmps, ipad, gid, 1);
ipad[2] = packv (tmps, ipad, gid, 2);
ipad[3] = packv (tmps, ipad, gid, 3);
ipad[4] = packv (tmps, ipad, gid, 4);
ipad[5] = packv (tmps, ipad, gid, 5);
ipad[6] = packv (tmps, ipad, gid, 6);
ipad[7] = packv (tmps, ipad, gid, 7);
opad[0] = packv (tmps, opad, gid, 0);
opad[1] = packv (tmps, opad, gid, 1);
opad[2] = packv (tmps, opad, gid, 2);
opad[3] = packv (tmps, opad, gid, 3);
opad[4] = packv (tmps, opad, gid, 4);
opad[5] = packv (tmps, opad, gid, 5);
opad[6] = packv (tmps, opad, gid, 6);
opad[7] = packv (tmps, opad, gid, 7);
for (u32 i = 0; i < 8; i += 8)
{
u32x dgst[8];
u32x out[8];
dgst[0] = packv (tmps, dgst, gid, i + 0);
dgst[1] = packv (tmps, dgst, gid, i + 1);
dgst[2] = packv (tmps, dgst, gid, i + 2);
dgst[3] = packv (tmps, dgst, gid, i + 3);
dgst[4] = packv (tmps, dgst, gid, i + 4);
dgst[5] = packv (tmps, dgst, gid, i + 5);
dgst[6] = packv (tmps, dgst, gid, i + 6);
dgst[7] = packv (tmps, dgst, gid, i + 7);
out[0] = packv (tmps, out, gid, i + 0);
out[1] = packv (tmps, out, gid, i + 1);
out[2] = packv (tmps, out, gid, i + 2);
out[3] = packv (tmps, out, gid, i + 3);
out[4] = packv (tmps, out, gid, i + 4);
out[5] = packv (tmps, out, gid, i + 5);
out[6] = packv (tmps, out, gid, i + 6);
out[7] = packv (tmps, out, gid, i + 7);
for (u32 j = 0; j < loop_cnt; j++)
{
u32x w0[4];
u32x w1[4];
u32x w2[4];
u32x w3[4];
w0[0] = dgst[0];
w0[1] = dgst[1];
w0[2] = dgst[2];
w0[3] = dgst[3];
w1[0] = dgst[4];
w1[1] = dgst[5];
w1[2] = dgst[6];
w1[3] = dgst[7];
w2[0] = 0x80000000;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (64 + 32) * 8;
hmac_sha256_run_V (w0, w1, w2, w3, ipad, opad, dgst);
out[0] ^= dgst[0];
out[1] ^= dgst[1];
out[2] ^= dgst[2];
out[3] ^= dgst[3];
out[4] ^= dgst[4];
out[5] ^= dgst[5];
out[6] ^= dgst[6];
out[7] ^= dgst[7];
}
unpackv (tmps, dgst, gid, i + 0, dgst[0]);
unpackv (tmps, dgst, gid, i + 1, dgst[1]);
unpackv (tmps, dgst, gid, i + 2, dgst[2]);
unpackv (tmps, dgst, gid, i + 3, dgst[3]);
unpackv (tmps, dgst, gid, i + 4, dgst[4]);
unpackv (tmps, dgst, gid, i + 5, dgst[5]);
unpackv (tmps, dgst, gid, i + 6, dgst[6]);
unpackv (tmps, dgst, gid, i + 7, dgst[7]);
unpackv (tmps, out, gid, i + 0, out[0]);
unpackv (tmps, out, gid, i + 1, out[1]);
unpackv (tmps, out, gid, i + 2, out[2]);
unpackv (tmps, out, gid, i + 3, out[3]);
unpackv (tmps, out, gid, i + 4, out[4]);
unpackv (tmps, out, gid, i + 5, out[5]);
unpackv (tmps, out, gid, i + 6, out[6]);
unpackv (tmps, out, gid, i + 7, out[7]);
}
}
KERNEL_FQ void m24620_comp (KERN_ATTR_TMPS_ESALT (sqlcipher_sha256_tmp_t, sqlcipher_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
u32 ukey[8];
ukey[0] = tmps[gid].out[0];
ukey[1] = tmps[gid].out[1];
ukey[2] = tmps[gid].out[2];
ukey[3] = tmps[gid].out[3];
ukey[4] = tmps[gid].out[4];
ukey[5] = tmps[gid].out[5];
ukey[6] = tmps[gid].out[6];
ukey[7] = tmps[gid].out[7];
u32 ks[60];
AES256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
// first check the padding
u32 iv_buf[4];
iv_buf[0] = esalt_bufs[DIGESTS_OFFSET].iv_buf[0];
iv_buf[1] = esalt_bufs[DIGESTS_OFFSET].iv_buf[1];
iv_buf[2] = esalt_bufs[DIGESTS_OFFSET].iv_buf[2];
iv_buf[3] = esalt_bufs[DIGESTS_OFFSET].iv_buf[3];
u32 enc[4];
enc[0] = esalt_bufs[DIGESTS_OFFSET].data_buf[0];
enc[1] = esalt_bufs[DIGESTS_OFFSET].data_buf[1];
enc[2] = esalt_bufs[DIGESTS_OFFSET].data_buf[2];
enc[3] = esalt_bufs[DIGESTS_OFFSET].data_buf[3];
u32 dec[4];
aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= iv_buf[0];
dec[1] ^= iv_buf[1];
dec[2] ^= iv_buf[2];
dec[3] ^= iv_buf[3];
if (dec[0] != 0) return;
if (dec[1] != 0) return;
if (dec[2] != 0) return;
const u32 r0 = esalt_bufs[DIGESTS_OFFSET].data_buf[0];
const u32 r1 = esalt_bufs[DIGESTS_OFFSET].data_buf[1];
const u32 r2 = esalt_bufs[DIGESTS_OFFSET].data_buf[2];
const u32 r3 = esalt_bufs[DIGESTS_OFFSET].data_buf[3];
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}

View File

@ -1,7 +1,7 @@
/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
*/
#define NEW_SIMD_CODE
@ -18,22 +18,24 @@
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
typedef struct pbkdf2_sha512_tmp
typedef struct sqlcipher_sha512_tmp
{
u64 ipad[8];
u64 opad[8];
u64 dgst[16];
u64 out[16];
u64 dgst[8];
u64 out[8];
} pbkdf2_sha512_tmp_t;
} sqlcipher_sha512_tmp_t;
typedef struct pbkdf2_sha512
typedef struct sqlcipher
{
u32 salt_buf[64];
u32 ciphertext[64];
u32 iv_buf[4];
u32 data_buf[4];
} pbkdf2_sha512_t;
u32 type;
} sqlcipher_t;
DECLSPEC void hmac_sha512_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *w4, u32x *w5, u32x *w6, u32x *w7, u64x *ipad, u64x *opad, u64x *digest)
{
@ -93,7 +95,7 @@ DECLSPEC void hmac_sha512_run_V (u32x *w0, u32x *w1, u32x *w2, u32x *w3, u32x *w
sha512_transform_vector (w0, w1, w2, w3, w4, w5, w6, w7, digest);
}
KERNEL_FQ void m24600_init (KERN_ATTR_TMPS_ESALT (pbkdf2_sha512_tmp_t, pbkdf2_sha512_t))
KERNEL_FQ void m24630_init (KERN_ATTR_TMPS_ESALT (sqlcipher_sha512_tmp_t, sqlcipher_t))
{
/**
* base
@ -125,7 +127,7 @@ KERNEL_FQ void m24600_init (KERN_ATTR_TMPS_ESALT (pbkdf2_sha512_tmp_t, pbkdf2_sh
tmps[gid].opad[6] = sha512_hmac_ctx.opad.h[6];
tmps[gid].opad[7] = sha512_hmac_ctx.opad.h[7];
sha512_hmac_update_global_swap (&sha512_hmac_ctx, esalt_bufs[DIGESTS_OFFSET].salt_buf, salt_bufs[SALT_POS].salt_len);
sha512_hmac_update_global_swap (&sha512_hmac_ctx, salt_bufs[DIGESTS_OFFSET].salt_buf, salt_bufs[SALT_POS].salt_len);
for (u32 i = 0, j = 1; i < 8; i += 8, j += 1)
{
@ -197,7 +199,7 @@ KERNEL_FQ void m24600_init (KERN_ATTR_TMPS_ESALT (pbkdf2_sha512_tmp_t, pbkdf2_sh
}
}
KERNEL_FQ void m24600_loop (KERN_ATTR_TMPS_ESALT (pbkdf2_sha512_tmp_t, pbkdf2_sha512_t))
KERNEL_FQ void m24630_loop (KERN_ATTR_TMPS_ESALT (sqlcipher_sha512_tmp_t, sqlcipher_t))
{
const u64 gid = get_global_id (0);
@ -323,20 +325,13 @@ KERNEL_FQ void m24600_loop (KERN_ATTR_TMPS_ESALT (pbkdf2_sha512_tmp_t, pbkdf2_sh
}
}
KERNEL_FQ void m24600_comp (KERN_ATTR_TMPS_ESALT (pbkdf2_sha512_tmp_t, pbkdf2_sha512_t))
KERNEL_FQ void m24630_comp (KERN_ATTR_TMPS_ESALT (sqlcipher_sha512_tmp_t, sqlcipher_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
const u64 lsz = get_local_size(0);
/**
/**
* aes shared
*/
@ -384,59 +379,63 @@ KERNEL_FQ void m24600_comp (KERN_ATTR_TMPS_ESALT (pbkdf2_sha512_tmp_t, pbkdf2_sh
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
const u32 a = h32_from_64_S (tmps[gid].out[0]);
const u32 b = l32_from_64_S (tmps[gid].out[0]);
const u32 c = h32_from_64_S (tmps[gid].out[1]);
const u32 d = l32_from_64_S (tmps[gid].out[1]);
const u32 e = h32_from_64_S (tmps[gid].out[2]);
const u32 f = l32_from_64_S (tmps[gid].out[2]);
const u32 g = h32_from_64_S (tmps[gid].out[3]);
const u32 h = l32_from_64_S (tmps[gid].out[3]);
if (gid >= gid_max) return;
const u32 key[8] = { a,b,c,d,e,f,g,h };
u32 ukey[8];
ukey[0] = h32_from_64_S (tmps[gid].out[0]);
ukey[1] = l32_from_64_S (tmps[gid].out[0]);
ukey[2] = h32_from_64_S (tmps[gid].out[1]);
ukey[3] = l32_from_64_S (tmps[gid].out[1]);
ukey[4] = h32_from_64_S (tmps[gid].out[2]);
ukey[5] = l32_from_64_S (tmps[gid].out[2]);
ukey[6] = h32_from_64_S (tmps[gid].out[3]);
ukey[7] = l32_from_64_S (tmps[gid].out[3]);
u32 iv[4] = { 0 };
u32 res[64];
u32 ks[60];
AES256_set_decrypt_key (ks, key, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
AES256_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
for (u32 i = 0; i < 64; i += 4)
{
u32 data[4];
// first check the padding
data[0] = esalt_bufs[DIGESTS_OFFSET].ciphertext[i + 0];
data[1] = esalt_bufs[DIGESTS_OFFSET].ciphertext[i + 1];
data[2] = esalt_bufs[DIGESTS_OFFSET].ciphertext[i + 2];
data[3] = esalt_bufs[DIGESTS_OFFSET].ciphertext[i + 3];
u32 iv_buf[4];
u32 out[4];
iv_buf[0] = esalt_bufs[DIGESTS_OFFSET].iv_buf[0];
iv_buf[1] = esalt_bufs[DIGESTS_OFFSET].iv_buf[1];
iv_buf[2] = esalt_bufs[DIGESTS_OFFSET].iv_buf[2];
iv_buf[3] = esalt_bufs[DIGESTS_OFFSET].iv_buf[3];
aes256_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
u32 enc[4];
res[i + 0] = hc_swap32_S (out[0] ^ iv[0]);
res[i + 1] = hc_swap32_S (out[1] ^ iv[1]);
res[i + 2] = hc_swap32_S (out[2] ^ iv[2]);
res[i + 3] = hc_swap32_S (out[3] ^ iv[3]);
enc[0] = esalt_bufs[DIGESTS_OFFSET].data_buf[0];
enc[1] = esalt_bufs[DIGESTS_OFFSET].data_buf[1];
enc[2] = esalt_bufs[DIGESTS_OFFSET].data_buf[2];
enc[3] = esalt_bufs[DIGESTS_OFFSET].data_buf[3];
iv[0] = data[0];
iv[1] = data[1];
iv[2] = data[2];
iv[3] = data[3];
}
u32 dec[4];
u32 counter = 0;
for (u32 i = 0; i < 64; i++)
{
if (res[i] == 0)
{
counter +=1;
}
}
if (counter >= 2)
{
mark_hash (plains_buf, d_return_buf, SALT_POS, digests_cnt, 0, DIGESTS_OFFSET + 0, gid, 0, 0, 0);
}
aes256_decrypt (ks, enc, dec, s_td0, s_td1, s_td2, s_td3, s_td4);
dec[0] ^= iv_buf[0];
dec[1] ^= iv_buf[1];
dec[2] ^= iv_buf[2];
dec[3] ^= iv_buf[3];
if (dec[0] != 0) return;
if (dec[1] != 0) return;
if (dec[2] != 0) return;
const u32 r0 = esalt_bufs[DIGESTS_OFFSET].data_buf[0];
const u32 r1 = esalt_bufs[DIGESTS_OFFSET].data_buf[1];
const u32 r2 = esalt_bufs[DIGESTS_OFFSET].data_buf[2];
const u32 r3 = esalt_bufs[DIGESTS_OFFSET].data_buf[3];
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}

View File

@ -13,8 +13,8 @@
- Added hash-mode: RAR3-p (Compressed)
- Added hash-mode: RAR3-p (Uncompressed)
- Added hash-mode: RSA/DSA/EC/OPENSSH Private Keys
- Added hash-mode: SQLCipher
- Added hash-mode: sha1(sha1($pass).$salt)
- Added hash-mode: SQLCipher V4
##
## Bugs

View File

@ -216,6 +216,7 @@ NVIDIA GPUs require "NVIDIA Driver" (440.64 or later) and "CUDA Toolkit" (9.0 or
- MySQL4.1/MySQL5
- MySQL $A$ (sha256crypt)
- Sybase ASE
- SQLCipher
- hMailServer
- DNSSEC (NSEC3)
- CRAM-MD5 Dovecot
@ -336,7 +337,6 @@ NVIDIA GPUs require "NVIDIA Driver" (440.64 or later) and "CUDA Toolkit" (9.0 or
- Django (SHA-1)
- Web2py pbkdf2-sha512
- TOTP (HMAC-SHA1)
- SQLCipher V4
##
## Attack-Modes

View File

@ -15,19 +15,18 @@ static const u32 DGST_POS0 = 0;
static const u32 DGST_POS1 = 1;
static const u32 DGST_POS2 = 2;
static const u32 DGST_POS3 = 3;
static const u32 DGST_SIZE = DGST_SIZE_8_16;
static const u32 HASH_CATEGORY = HASH_CATEGORY_GENERIC_KDF;
static const char *HASH_NAME = "SQL-CIPHER-V4";
static const u64 KERN_TYPE = 24600;
static const u32 DGST_SIZE = DGST_SIZE_4_4;
static const u32 HASH_CATEGORY = HASH_CATEGORY_DATABASE_SERVER;
static const char *HASH_NAME = "SQLCipher";
static const u64 KERN_TYPE = 24610;
static const u32 OPTI_TYPE = OPTI_TYPE_ZERO_BYTE
| OPTI_TYPE_USES_BITS_64
| OPTI_TYPE_SLOW_HASH_SIMD_LOOP;
static const u64 OPTS_TYPE = OPTS_TYPE_PT_GENERATE_LE
| OPTS_TYPE_ST_BASE64
| OPTS_TYPE_HASH_COPY;
| OPTS_TYPE_SELF_TEST_DISABLE;
static const u32 SALT_TYPE = SALT_TYPE_EMBEDDED;
static const char *ST_PASS = "hashcat";
static const char *ST_HASH = "sqlcipherv4:256000:8pKCwhWlnnMtP+dAsFR2kQ==:hGFfy1rUULCzl7MRgC1CqBv01+hizNb4ERKogdU529ZLc5odh1S203QidBWDxzds1ZjJ51573dnUbEkiHObV63xEtKLaLoP3Bv54REtfOYRb25dfSfb1A5IjKf5yrVTFjTXJrkO40NDybQDsxh/SOQCQcT0gjR7DNprxjv6/N+ZAR8vm8xhSNvm9BRWHu74rvg2hsMroyIZSF8KimsvbwTmAQfpYgy6vcg9MV/QI+BR0Mwmru1NIXTYo3huez37H7Cij1Jchia2pgyNt9rqMX3aBw7ae/i29D3aprO+CYQmisVWsGT1Mljx+rc7ujQG0I0CCB/TF2ycjYlZPmC/vYQ==";
static const char *ST_HASH = "SQLCIPHER*1*64000*25548249195677404156261816261456*85b5e156e1cf1e0be5e9f4217186817b*33435c230bbc7989bbd027630e3f47cd";
u32 module_attack_exec (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ATTACK_EXEC; }
u32 module_dgst_pos0 (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return DGST_POS0; }
@ -44,46 +43,65 @@ u32 module_salt_type (MAYBE_UNUSED const hashconfig_t *hashconfig,
const char *module_st_hash (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ST_HASH; }
const char *module_st_pass (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra) { return ST_PASS; }
typedef struct pbkdf2_sha512
typedef struct sqlcipher_sha1_tmp
{
u32 salt_buf[64];
u32 ciphertext[64];
u32 ipad[5];
u32 opad[5];
} pbkdf2_sha512_t;
u32 dgst[10];
u32 out[10];
typedef struct pbkdf2_sha512_tmp
} sqlcipher_sha1_tmp_t;
typedef struct sqlcipher_sha256_tmp
{
u32 ipad[8];
u32 opad[8];
u32 dgst[8];
u32 out[8];
} sqlcipher_sha256_tmp_t;
typedef struct sqlcipher_sha512_tmp
{
u64 ipad[8];
u64 opad[8];
u64 dgst[16];
u64 out[16];
u64 dgst[8];
u64 out[8];
} pbkdf2_sha512_tmp_t;
} sqlcipher_sha512_tmp_t;
static const char *SIGNATURE_PBKDF2_SHA512 = "sqlcipherv4";
bool module_unstable_warning (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra, MAYBE_UNUSED const hc_device_param_t *device_param)
typedef struct sqlcipher
{
// amdgpu-pro-19.30-934563-ubuntu-18.04: password not found
if ((device_param->opencl_device_vendor_id == VENDOR_ID_AMD) && (device_param->has_vperm == false))
{
return true;
}
u32 iv_buf[4];
u32 data_buf[4];
return false;
}
u32 type;
} sqlcipher_t;
typedef enum kern_type_sqlcipher
{
KERN_TYPE_SQLCIPHER_SHA1 = 24610,
KERN_TYPE_SQLCIPHER_SHA256 = 24620,
KERN_TYPE_SQLCIPHER_SHA512 = 24630,
} kern_type_sqlcipher_t;
static const char *SIGNATURE_SQLCIPHER = "SQLCIPHER";
u64 module_esalt_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u64 esalt_size = (const u64) sizeof (pbkdf2_sha512_t);
const u64 esalt_size = (const u64) sizeof (sqlcipher_t);
return esalt_size;
}
u64 module_tmp_size (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const user_options_t *user_options, MAYBE_UNUSED const user_options_extra_t *user_options_extra)
{
const u64 tmp_size = (const u64) sizeof (pbkdf2_sha512_tmp_t);
const u64 tmp_size = (const u64) sizeof (sqlcipher_sha512_tmp_t); // we just select the largest
return tmp_size;
}
@ -98,96 +116,166 @@ u32 module_pw_max (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED con
return pw_max;
}
u64 module_kern_type_dynamic (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const void *digest_buf, MAYBE_UNUSED const salt_t *salt, MAYBE_UNUSED const void *esalt_buf, MAYBE_UNUSED const void *hook_salt_buf, MAYBE_UNUSED const hashinfo_t *hash_info)
{
const sqlcipher_t *sqlcipher = (const sqlcipher_t *) esalt_buf;
u64 kern_type = -1;
if (sqlcipher->type == 1)
{
kern_type = KERN_TYPE_SQLCIPHER_SHA1;
}
else if (sqlcipher->type == 2)
{
kern_type = KERN_TYPE_SQLCIPHER_SHA256;
}
else if (sqlcipher->type == 3)
{
kern_type = KERN_TYPE_SQLCIPHER_SHA512;
}
else
{
return (PARSER_HASH_LENGTH);
}
return kern_type;
}
int module_hash_decode (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED void *digest_buf, MAYBE_UNUSED salt_t *salt, MAYBE_UNUSED void *esalt_buf, MAYBE_UNUSED void *hook_salt_buf, MAYBE_UNUSED hashinfo_t *hash_info, const char *line_buf, MAYBE_UNUSED const int line_len)
{
u32 *digest = (u32 *) digest_buf;
pbkdf2_sha512_t *pbkdf2_sha512 = (pbkdf2_sha512_t *) esalt_buf;
sqlcipher_t *sqlcipher = (sqlcipher_t *) esalt_buf;
token_t token;
token.token_cnt = 4;
token.token_cnt = 6;
token.signatures_cnt = 1;
token.signatures_buf[0] = SIGNATURE_PBKDF2_SHA512;
token.signatures_buf[0] = SIGNATURE_SQLCIPHER;
token.sep[0] = ':';
token.len_min[0] = 11;
token.len_max[0] = 11;
token.sep[0] = '*';
token.len_min[0] = 9;
token.len_max[0] = 9;
token.attr[0] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_SIGNATURE;
token.sep[1] = ':';
token.sep[1] = '*';
token.len_min[1] = 1;
token.len_max[1] = 6;
token.len_max[1] = 1;
token.attr[1] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_DIGIT;
token.sep[2] = ':';
token.len_min[2] = 0;
token.len_max[2] = 50;
token.sep[2] = '*';
token.len_min[2] = 1;
token.len_max[2] = 6;
token.attr[2] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_BASE64A;
| TOKEN_ATTR_VERIFY_DIGIT;
token.sep[3] = ':';
token.len_min[3] = 0;
token.len_max[3] = 800;
token.sep[3] = '*';
token.len_min[3] = 32;
token.len_max[3] = 32;
token.attr[3] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_BASE64A;
| TOKEN_ATTR_VERIFY_HEX;
token.sep[4] = '*';
token.len_min[4] = 32;
token.len_max[4] = 32;
token.attr[4] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_HEX;
token.sep[5] = '*';
token.len_min[5] = 32;
token.len_max[5] = 32;
token.attr[5] = TOKEN_ATTR_VERIFY_LENGTH
| TOKEN_ATTR_VERIFY_HEX;
const int rc_tokenizer = input_tokenizer ((const u8 *) line_buf, line_len, &token);
if (rc_tokenizer != PARSER_OK) return (rc_tokenizer);
u8 tmp_buf[512];
u8 tmp_buf2[512];
int tmp_len;
int tmp_len2;
// type
// iter
const u8 *type_pos = token.buf[1];
const u8 *iter_pos = token.buf[1];
const int type = hc_strtoul ((const char *) type_pos, NULL, 10);
const u32 iter = hc_strtoul ((const char *) iter_pos, NULL, 10);
if ((type != 1) && (type != 2) && (type != 3)) return (PARSER_SIGNATURE_UNMATCHED);
sqlcipher->type = type;
// cipher
const u8 *iter_pos = token.buf[2];
int iter = hc_strtoul ((const char *) iter_pos, NULL, 10);
salt->salt_iter = iter - 1;
// salt
// salt buffer
const u8 *salt_pos = token.buf[2];
const int salt_len = token.len[2];
const u8 *salt_pos = token.buf[3];
memset (tmp_buf, 0, sizeof (tmp_buf));
salt->salt_buf[0] = hex_to_u32 (salt_pos + 0);
salt->salt_buf[1] = hex_to_u32 (salt_pos + 8);
salt->salt_buf[2] = hex_to_u32 (salt_pos + 16);
salt->salt_buf[3] = hex_to_u32 (salt_pos + 24);
tmp_len = base64_decode (base64_to_int, salt_pos, salt_len, tmp_buf);
salt->salt_len = 16;
if (tmp_len > SALT_MAX) return (PARSER_SALT_LENGTH);
// IV buffer
memcpy (pbkdf2_sha512->salt_buf, tmp_buf, tmp_len);
const u8 *iv_pos = token.buf[4];
salt->salt_len = tmp_len;
sqlcipher->iv_buf[0] = hex_to_u32 (iv_pos + 0);
sqlcipher->iv_buf[1] = hex_to_u32 (iv_pos + 8);
sqlcipher->iv_buf[2] = hex_to_u32 (iv_pos + 16);
sqlcipher->iv_buf[3] = hex_to_u32 (iv_pos + 24);
salt->salt_buf[0] = pbkdf2_sha512->salt_buf[0];
salt->salt_buf[1] = pbkdf2_sha512->salt_buf[1];
salt->salt_buf[2] = pbkdf2_sha512->salt_buf[2];
salt->salt_buf[3] = pbkdf2_sha512->salt_buf[3];
salt->salt_buf[4] = salt->salt_iter;
// data buffer
// ciphertext
const u8 *data_pos = token.buf[5];
const u8 *ciphertext_pos = token.buf[3];
const int ciphertext_len = token.len[3];
memset (tmp_buf2, 0, sizeof (tmp_buf2));
sqlcipher->data_buf[0] = hex_to_u32 (data_pos + 0);
sqlcipher->data_buf[1] = hex_to_u32 (data_pos + 8);
sqlcipher->data_buf[2] = hex_to_u32 (data_pos + 16);
sqlcipher->data_buf[3] = hex_to_u32 (data_pos + 24);
tmp_len2 = base64_decode (base64_to_int, ciphertext_pos, ciphertext_len, tmp_buf2);
// hash
memcpy (pbkdf2_sha512->ciphertext, tmp_buf2, tmp_len2);
digest[0] = sqlcipher->data_buf[0];
digest[1] = sqlcipher->data_buf[1];
digest[2] = sqlcipher->data_buf[2];
digest[3] = sqlcipher->data_buf[3];
return (PARSER_OK);
}
int module_hash_encode (MAYBE_UNUSED const hashconfig_t *hashconfig, MAYBE_UNUSED const void *digest_buf, MAYBE_UNUSED const salt_t *salt, MAYBE_UNUSED const void *esalt_buf, MAYBE_UNUSED const void *hook_salt_buf, MAYBE_UNUSED const hashinfo_t *hash_info, char *line_buf, MAYBE_UNUSED const int line_size)
{
return snprintf (line_buf, line_size, "%s", hash_info->orighash);
sqlcipher_t *sqlcipher = (sqlcipher_t *) esalt_buf;
u8 *out_buf = (u8 *) line_buf;
const int out_len = snprintf ((char *) out_buf, line_size, "%s*%d*%d*%08x%08x%08x%08x*%08x%08x%08x%08x*%08x%08x%08x%08x",
SIGNATURE_SQLCIPHER,
sqlcipher->type,
salt->salt_iter + 1,
byte_swap_32 (salt->salt_buf[0]),
byte_swap_32 (salt->salt_buf[1]),
byte_swap_32 (salt->salt_buf[2]),
byte_swap_32 (salt->salt_buf[3]),
byte_swap_32 (sqlcipher->iv_buf[0]),
byte_swap_32 (sqlcipher->iv_buf[1]),
byte_swap_32 (sqlcipher->iv_buf[2]),
byte_swap_32 (sqlcipher->iv_buf[3]),
byte_swap_32 (sqlcipher->data_buf[0]),
byte_swap_32 (sqlcipher->data_buf[1]),
byte_swap_32 (sqlcipher->data_buf[2]),
byte_swap_32 (sqlcipher->data_buf[3]));
return out_len;
}
void module_init (module_ctx_t *module_ctx)
@ -244,7 +332,7 @@ void module_init (module_ctx_t *module_ctx)
module_ctx->module_kernel_threads_max = MODULE_DEFAULT;
module_ctx->module_kernel_threads_min = MODULE_DEFAULT;
module_ctx->module_kern_type = module_kern_type;
module_ctx->module_kern_type_dynamic = MODULE_DEFAULT;
module_ctx->module_kern_type_dynamic = module_kern_type_dynamic;
module_ctx->module_opti_type = module_opti_type;
module_ctx->module_opts_type = module_opts_type;
module_ctx->module_outfile_check_disable = MODULE_DEFAULT;
@ -262,6 +350,6 @@ void module_init (module_ctx_t *module_ctx)
module_ctx->module_st_hash = module_st_hash;
module_ctx->module_st_pass = module_st_pass;
module_ctx->module_tmp_size = module_tmp_size;
module_ctx->module_unstable_warning = module_unstable_warning;
module_ctx->module_unstable_warning = MODULE_DEFAULT;
module_ctx->module_warmup_disable = MODULE_DEFAULT;
}

75
tools/sqlcipher2hashcat.pl Executable file
View File

@ -0,0 +1,75 @@
#!/usr/bin/env perl
##
## Author......: See docs/credits.txt
## License.....: MIT
##
# In a first version I wrote a kernel that followed the original sqlcipher scheme which uses a MAC to verify the integrity (and therefore we knew we had guessed the correct password).
# But it turns out it's much easier to exploit the sqlite header format, which guarantees 20 zero bytes starting from offset 72.
# See: https://www.sqlite.org/fileformat.html
# The advantage is the user doesn't need to guess the MAC hash type and/or pagesize (in case it they customized).
# The user still needs to know the KDF hash type and iteration count, but they sqlcipher v3 and v4 come with a default for these.
# We'll check only 12 of 16 bytes from the encrypted block as an optimization so we only need to decrypt one block.
# Another optimization is that since the scheme uses CBC we do not need to find the correct position of the IV.
# This position is depending on the pagesize and the KDF hash type (which could be customized).
# As an alternative, or in case the sqlite header changes, we could also use entropy test.
# -atom
use strict;
use warnings;
if (scalar (@ARGV) < 2)
{
print "usage: $0 encrypted.db preset [hash] [iteration]\n\n";
print "preset 1 = SQLCIPHER v3\n";
print "preset 2 = SQLCIPHER v4\n";
print "preset 3 = CUSTOM, please specify hash type (1 = SHA1, 2 = SHA256, 3 = SHA512) and iteration count\n";
exit -1;
}
my $db = $ARGV[0];
my $preset = $ARGV[1];
my $type = 0;
my $iter = 0;
if ($preset == 1)
{
$type = 1;
$iter = 64000;
}
elsif ($preset == 2)
{
$type = 3;
$iter = 256000;
}
elsif ($preset == 3)
{
$type = $ARGV[2];
$iter = $ARGV[3];
}
else
{
die "Invalid preset\n";
}
open (IN, $db) or die ("$db: $!\n");
binmode (IN);
my $data;
if (read (IN, $data, 96) != 96)
{
die "ERROR: Couldn't read data from the file. Maybe incorrect file format?\n";
}
close (IN);
my $salt = substr ($data, 0, 16);
my $iv = substr ($data, 64, 16);
my $enc = substr ($data, 80, 16);
printf ("SQLCIPHER*%d*%d*%s*%s*%s\n", $type, $iter, unpack ("H*", $salt), unpack ("H*", $iv), unpack ("H*", $enc));

View File

@ -1,18 +0,0 @@
#!/usr/bin/env python3
from base64 import b64encode
import sys
def usage():
print('./sqlcipher2hashcat DATABASE_FILE')
def main():
database = open(sys.argv[1], "rb").read(272)
salt = database[:16]
print('sqlcipherv4:256000:' + b64encode(salt).decode() + ':' + b64encode(database[16:272]).decode())
if __name__ == '__main__':
if len(sys.argv < 2):
usage()
else:
main()

View File

@ -0,0 +1,135 @@
#!/usr/bin/env perl
##
## Author......: See docs/credits.txt
## License.....: MIT
##
use strict;
use warnings;
use Crypt::PBKDF2;
use Crypt::CBC;
sub module_constraints { [[0, 256], [32, 32], [-1, -1], [-1, -1], [-1, -1]] }
sub module_generate_hash
{
my $word = shift;
my $salt = shift;
my $type = shift // 1; #random_number (1, 3);
my $iter = shift // random_number (10000, 20000);
my $iv = shift // random_hex_string (32);
my $enc = shift;
my $kdf;
if ($type == 1)
{
$kdf = Crypt::PBKDF2->new
(
hash_class => 'HMACSHA1',
iterations => $iter,
output_len => 32
);
}
elsif ($type == 2)
{
$kdf = Crypt::PBKDF2->new
(
hasher => Crypt::PBKDF2->hasher_from_algorithm ('HMACSHA2', 256),
iterations => $iter,
output_len => 32
);
}
elsif ($type == 3)
{
$kdf = Crypt::PBKDF2->new
(
hasher => Crypt::PBKDF2->hasher_from_algorithm ('HMACSHA2', 512),
iterations => $iter,
output_len => 32
);
}
my $salt_bin = pack ("H*", $salt);
my $key = $kdf->PBKDF2 ($salt_bin, $word);
my $iv_bin = pack ("H*", $iv);
my $data;
if (defined $enc)
{
my $aes_cbc = Crypt::CBC->new ({
cipher => "Crypt::Rijndael",
iv => $iv_bin,
key => $key,
keysize => 32,
literal_key => 1,
header => "none",
padding => "none"
});
my $enc_bin = pack ("H*", $enc);
$data = $aes_cbc->decrypt ($enc_bin);
if (substr ($data, 0, 12) ne "\x00" x 12)
{
$data = "\xff" x 16;
}
}
else
{
$data = "\x00" x 16;
}
my $aes_cbc = Crypt::CBC->new ({
cipher => "Crypt::Rijndael",
iv => $iv_bin,
key => $key,
keysize => 32,
literal_key => 1,
header => "none",
padding => "none"
});
my $enc_bin = $aes_cbc->encrypt ($data);
my $hash = sprintf ("SQLCIPHER*%d*%d*%s*%s*%s", $type, $iter, unpack ("H*", $salt_bin), unpack ("H*", $iv_bin), unpack ("H*", $enc_bin));
return $hash;
}
sub module_verify_hash
{
my $line = shift;
my $idx = index ($line, ':');
return unless $idx >= 0;
my $hash = substr ($line, 0, $idx);
my $word = substr ($line, $idx + 1);
return unless substr ($hash, 0, 9) eq 'SQLCIPHER';
my ($signature, $type, $iter, $salt, $iv, $data) = split '\*', $hash;
return unless defined $signature;
return unless defined $type;
return unless defined $iter;
return unless defined $salt;
return unless defined $iv;
return unless defined $data;
my $word_packed = pack_if_HEX_notation ($word);
my $new_hash = module_generate_hash ($word_packed, $salt, $type, $iter, $iv, $data);
return ($new_hash, $word);
}
1;