bitcoin/src/test/fuzz/p2p_transport_serialization...

409 lines
18 KiB
C++

// Copyright (c) 2019-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <chainparams.h>
#include <hash.h>
#include <net.h>
#include <netmessagemaker.h>
#include <protocol.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/util/xoroshiro128plusplus.h>
#include <util/chaintype.h>
#include <cassert>
#include <cstdint>
#include <limits>
#include <optional>
#include <vector>
namespace {
std::vector<std::string> g_all_messages;
void initialize_p2p_transport_serialization()
{
ECC_Start();
SelectParams(ChainType::REGTEST);
g_all_messages = getAllNetMessageTypes();
std::sort(g_all_messages.begin(), g_all_messages.end());
}
} // namespace
FUZZ_TARGET(p2p_transport_serialization, .init = initialize_p2p_transport_serialization)
{
// Construct transports for both sides, with dummy NodeIds.
V1Transport recv_transport{NodeId{0}};
V1Transport send_transport{NodeId{1}};
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
auto checksum_assist = fuzzed_data_provider.ConsumeBool();
auto magic_bytes_assist = fuzzed_data_provider.ConsumeBool();
std::vector<uint8_t> mutable_msg_bytes;
auto header_bytes_remaining = CMessageHeader::HEADER_SIZE;
if (magic_bytes_assist) {
auto msg_start = Params().MessageStart();
for (size_t i = 0; i < CMessageHeader::MESSAGE_SIZE_SIZE; ++i) {
mutable_msg_bytes.push_back(msg_start[i]);
}
header_bytes_remaining -= CMessageHeader::MESSAGE_SIZE_SIZE;
}
if (checksum_assist) {
header_bytes_remaining -= CMessageHeader::CHECKSUM_SIZE;
}
auto header_random_bytes = fuzzed_data_provider.ConsumeBytes<uint8_t>(header_bytes_remaining);
mutable_msg_bytes.insert(mutable_msg_bytes.end(), header_random_bytes.begin(), header_random_bytes.end());
auto payload_bytes = fuzzed_data_provider.ConsumeRemainingBytes<uint8_t>();
if (checksum_assist && mutable_msg_bytes.size() == CMessageHeader::CHECKSUM_OFFSET) {
CHash256 hasher;
unsigned char hsh[32];
hasher.Write(payload_bytes);
hasher.Finalize(hsh);
for (size_t i = 0; i < CMessageHeader::CHECKSUM_SIZE; ++i) {
mutable_msg_bytes.push_back(hsh[i]);
}
}
mutable_msg_bytes.insert(mutable_msg_bytes.end(), payload_bytes.begin(), payload_bytes.end());
Span<const uint8_t> msg_bytes{mutable_msg_bytes};
while (msg_bytes.size() > 0) {
if (!recv_transport.ReceivedBytes(msg_bytes)) {
break;
}
if (recv_transport.ReceivedMessageComplete()) {
const std::chrono::microseconds m_time{std::numeric_limits<int64_t>::max()};
bool reject_message{false};
CNetMessage msg = recv_transport.GetReceivedMessage(m_time, reject_message);
assert(msg.m_type.size() <= CMessageHeader::COMMAND_SIZE);
assert(msg.m_raw_message_size <= mutable_msg_bytes.size());
assert(msg.m_raw_message_size == CMessageHeader::HEADER_SIZE + msg.m_message_size);
assert(msg.m_time == m_time);
std::vector<unsigned char> header;
auto msg2 = NetMsg::Make(msg.m_type, Span{msg.m_recv});
bool queued = send_transport.SetMessageToSend(msg2);
assert(queued);
std::optional<bool> known_more;
while (true) {
const auto& [to_send, more, _msg_type] = send_transport.GetBytesToSend(false);
if (known_more) assert(!to_send.empty() == *known_more);
if (to_send.empty()) break;
send_transport.MarkBytesSent(to_send.size());
known_more = more;
}
}
}
}
namespace {
template<typename R>
void SimulationTest(Transport& initiator, Transport& responder, R& rng, FuzzedDataProvider& provider)
{
// Simulation test with two Transport objects, which send messages to each other, with
// sending and receiving fragmented into multiple pieces that may be interleaved. It primarily
// verifies that the sending and receiving side are compatible with each other, plus a few
// sanity checks. It does not attempt to introduce errors in the communicated data.
// Put the transports in an array for by-index access.
const std::array<Transport*, 2> transports = {&initiator, &responder};
// Two vectors representing in-flight bytes. inflight[i] is from transport[i] to transport[!i].
std::array<std::vector<uint8_t>, 2> in_flight;
// Two queues with expected messages. expected[i] is expected to arrive in transport[!i].
std::array<std::deque<CSerializedNetMsg>, 2> expected;
// Vectors with bytes last returned by GetBytesToSend() on transport[i].
std::array<std::vector<uint8_t>, 2> to_send;
// Last returned 'more' values (if still relevant) by transport[i]->GetBytesToSend(), for
// both have_next_message false and true.
std::array<std::optional<bool>, 2> last_more, last_more_next;
// Whether more bytes to be sent are expected on transport[i], before and after
// SetMessageToSend().
std::array<std::optional<bool>, 2> expect_more, expect_more_next;
// Function to consume a message type.
auto msg_type_fn = [&]() {
uint8_t v = provider.ConsumeIntegral<uint8_t>();
if (v == 0xFF) {
// If v is 0xFF, construct a valid (but possibly unknown) message type from the fuzz
// data.
std::string ret;
while (ret.size() < CMessageHeader::COMMAND_SIZE) {
char c = provider.ConsumeIntegral<char>();
// Match the allowed characters in CMessageHeader::IsCommandValid(). Any other
// character is interpreted as end.
if (c < ' ' || c > 0x7E) break;
ret += c;
}
return ret;
} else {
// Otherwise, use it as index into the list of known messages.
return g_all_messages[v % g_all_messages.size()];
}
};
// Function to construct a CSerializedNetMsg to send.
auto make_msg_fn = [&](bool first) {
CSerializedNetMsg msg;
if (first) {
// Always send a "version" message as first one.
msg.m_type = "version";
} else {
msg.m_type = msg_type_fn();
}
// Determine size of message to send (limited to 75 kB for performance reasons).
size_t size = provider.ConsumeIntegralInRange<uint32_t>(0, 75000);
// Get payload of message from RNG.
msg.data.resize(size);
for (auto& v : msg.data) v = uint8_t(rng());
// Return.
return msg;
};
// The next message to be sent (initially version messages, but will be replaced once sent).
std::array<CSerializedNetMsg, 2> next_msg = {
make_msg_fn(/*first=*/true),
make_msg_fn(/*first=*/true)
};
// Wrapper around transport[i]->GetBytesToSend() that performs sanity checks.
auto bytes_to_send_fn = [&](int side) -> Transport::BytesToSend {
// Invoke GetBytesToSend twice (for have_next_message = {false, true}). This function does
// not modify state (it's const), and only the "more" return value should differ between
// the calls.
const auto& [bytes, more_nonext, msg_type] = transports[side]->GetBytesToSend(false);
const auto& [bytes_next, more_next, msg_type_next] = transports[side]->GetBytesToSend(true);
// Compare with expected more.
if (expect_more[side].has_value()) assert(!bytes.empty() == *expect_more[side]);
// Verify consistency between the two results.
assert(bytes == bytes_next);
assert(msg_type == msg_type_next);
if (more_nonext) assert(more_next);
// Compare with previously reported output.
assert(to_send[side].size() <= bytes.size());
assert(to_send[side] == Span{bytes}.first(to_send[side].size()));
to_send[side].resize(bytes.size());
std::copy(bytes.begin(), bytes.end(), to_send[side].begin());
// Remember 'more' results.
last_more[side] = {more_nonext};
last_more_next[side] = {more_next};
// Return.
return {bytes, more_nonext, msg_type};
};
// Function to make side send a new message.
auto new_msg_fn = [&](int side) {
// Don't do anything if there are too many unreceived messages already.
if (expected[side].size() >= 16) return;
// Try to send (a copy of) the message in next_msg[side].
CSerializedNetMsg msg = next_msg[side].Copy();
bool queued = transports[side]->SetMessageToSend(msg);
// Update expected more data.
expect_more[side] = expect_more_next[side];
expect_more_next[side] = std::nullopt;
// Verify consistency of GetBytesToSend after SetMessageToSend
bytes_to_send_fn(/*side=*/side);
if (queued) {
// Remember that this message is now expected by the receiver.
expected[side].emplace_back(std::move(next_msg[side]));
// Construct a new next message to send.
next_msg[side] = make_msg_fn(/*first=*/false);
}
};
// Function to make side send out bytes (if any).
auto send_fn = [&](int side, bool everything = false) {
const auto& [bytes, more, msg_type] = bytes_to_send_fn(/*side=*/side);
// Don't do anything if no bytes to send.
if (bytes.empty()) return false;
size_t send_now = everything ? bytes.size() : provider.ConsumeIntegralInRange<size_t>(0, bytes.size());
if (send_now == 0) return false;
// Add bytes to the in-flight queue, and mark those bytes as consumed.
in_flight[side].insert(in_flight[side].end(), bytes.begin(), bytes.begin() + send_now);
transports[side]->MarkBytesSent(send_now);
// If all to-be-sent bytes were sent, move last_more data to expect_more data.
if (send_now == bytes.size()) {
expect_more[side] = last_more[side];
expect_more_next[side] = last_more_next[side];
}
// Remove the bytes from the last reported to-be-sent vector.
assert(to_send[side].size() >= send_now);
to_send[side].erase(to_send[side].begin(), to_send[side].begin() + send_now);
// Verify that GetBytesToSend gives a result consistent with earlier.
bytes_to_send_fn(/*side=*/side);
// Return whether anything was sent.
return send_now > 0;
};
// Function to make !side receive bytes (if any).
auto recv_fn = [&](int side, bool everything = false) {
// Don't do anything if no bytes in flight.
if (in_flight[side].empty()) return false;
// Decide span to receive
size_t to_recv_len = in_flight[side].size();
if (!everything) to_recv_len = provider.ConsumeIntegralInRange<size_t>(0, to_recv_len);
Span<const uint8_t> to_recv = Span{in_flight[side]}.first(to_recv_len);
// Process those bytes
while (!to_recv.empty()) {
size_t old_len = to_recv.size();
bool ret = transports[!side]->ReceivedBytes(to_recv);
// Bytes must always be accepted, as this test does not introduce any errors in
// communication.
assert(ret);
// Clear cached expected 'more' information: if certainly no more data was to be sent
// before, receiving bytes makes this uncertain.
if (expect_more[!side] == false) expect_more[!side] = std::nullopt;
if (expect_more_next[!side] == false) expect_more_next[!side] = std::nullopt;
// Verify consistency of GetBytesToSend after ReceivedBytes
bytes_to_send_fn(/*side=*/!side);
bool progress = to_recv.size() < old_len;
if (transports[!side]->ReceivedMessageComplete()) {
bool reject{false};
auto received = transports[!side]->GetReceivedMessage({}, reject);
// Receiving must succeed.
assert(!reject);
// There must be a corresponding expected message.
assert(!expected[side].empty());
// The m_message_size field must be correct.
assert(received.m_message_size == received.m_recv.size());
// The m_type must match what is expected.
assert(received.m_type == expected[side].front().m_type);
// The data must match what is expected.
assert(MakeByteSpan(received.m_recv) == MakeByteSpan(expected[side].front().data));
expected[side].pop_front();
progress = true;
}
// Progress must be made (by processing incoming bytes and/or returning complete
// messages) until all received bytes are processed.
assert(progress);
}
// Remove the processed bytes from the in_flight buffer.
in_flight[side].erase(in_flight[side].begin(), in_flight[side].begin() + to_recv_len);
// Return whether anything was received.
return to_recv_len > 0;
};
// Main loop, interleaving new messages, sends, and receives.
LIMITED_WHILE(provider.remaining_bytes(), 1000) {
CallOneOf(provider,
// (Try to) give the next message to the transport.
[&] { new_msg_fn(/*side=*/0); },
[&] { new_msg_fn(/*side=*/1); },
// (Try to) send some bytes from the transport to the network.
[&] { send_fn(/*side=*/0); },
[&] { send_fn(/*side=*/1); },
// (Try to) receive bytes from the network, converting to messages.
[&] { recv_fn(/*side=*/0); },
[&] { recv_fn(/*side=*/1); }
);
}
// When we're done, perform sends and receives of existing messages to flush anything already
// in flight.
while (true) {
bool any = false;
if (send_fn(/*side=*/0, /*everything=*/true)) any = true;
if (send_fn(/*side=*/1, /*everything=*/true)) any = true;
if (recv_fn(/*side=*/0, /*everything=*/true)) any = true;
if (recv_fn(/*side=*/1, /*everything=*/true)) any = true;
if (!any) break;
}
// Make sure nothing is left in flight.
assert(in_flight[0].empty());
assert(in_flight[1].empty());
// Make sure all expected messages were received.
assert(expected[0].empty());
assert(expected[1].empty());
// Compare session IDs.
assert(transports[0]->GetInfo().session_id == transports[1]->GetInfo().session_id);
}
std::unique_ptr<Transport> MakeV1Transport(NodeId nodeid) noexcept
{
return std::make_unique<V1Transport>(nodeid);
}
template<typename RNG>
std::unique_ptr<Transport> MakeV2Transport(NodeId nodeid, bool initiator, RNG& rng, FuzzedDataProvider& provider)
{
// Retrieve key
auto key = ConsumePrivateKey(provider);
if (!key.IsValid()) return {};
// Construct garbage
size_t garb_len = provider.ConsumeIntegralInRange<size_t>(0, V2Transport::MAX_GARBAGE_LEN);
std::vector<uint8_t> garb;
if (garb_len <= 64) {
// When the garbage length is up to 64 bytes, read it directly from the fuzzer input.
garb = provider.ConsumeBytes<uint8_t>(garb_len);
garb.resize(garb_len);
} else {
// If it's longer, generate it from the RNG. This avoids having large amounts of
// (hopefully) irrelevant data needing to be stored in the fuzzer data.
for (auto& v : garb) v = uint8_t(rng());
}
// Retrieve entropy
auto ent = provider.ConsumeBytes<std::byte>(32);
ent.resize(32);
// Use as entropy SHA256(ent || garbage). This prevents a situation where the fuzzer manages to
// include the garbage terminator (which is a function of both ellswift keys) in the garbage.
// This is extremely unlikely (~2^-116) with random keys/garbage, but the fuzzer can choose
// both non-randomly and dependently. Since the entropy is hashed anyway inside the ellswift
// computation, no coverage should be lost by using a hash as entropy, and it removes the
// possibility of garbage that happens to contain what is effectively a hash of the keys.
CSHA256().Write(UCharCast(ent.data()), ent.size())
.Write(garb.data(), garb.size())
.Finalize(UCharCast(ent.data()));
return std::make_unique<V2Transport>(nodeid, initiator, key, ent, std::move(garb));
}
} // namespace
FUZZ_TARGET(p2p_transport_bidirectional, .init = initialize_p2p_transport_serialization)
{
// Test with two V1 transports talking to each other.
FuzzedDataProvider provider{buffer.data(), buffer.size()};
XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
auto t1 = MakeV1Transport(NodeId{0});
auto t2 = MakeV1Transport(NodeId{1});
if (!t1 || !t2) return;
SimulationTest(*t1, *t2, rng, provider);
}
FUZZ_TARGET(p2p_transport_bidirectional_v2, .init = initialize_p2p_transport_serialization)
{
// Test with two V2 transports talking to each other.
FuzzedDataProvider provider{buffer.data(), buffer.size()};
XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
auto t1 = MakeV2Transport(NodeId{0}, true, rng, provider);
auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
if (!t1 || !t2) return;
SimulationTest(*t1, *t2, rng, provider);
}
FUZZ_TARGET(p2p_transport_bidirectional_v1v2, .init = initialize_p2p_transport_serialization)
{
// Test with a V1 initiator talking to a V2 responder.
FuzzedDataProvider provider{buffer.data(), buffer.size()};
XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
auto t1 = MakeV1Transport(NodeId{0});
auto t2 = MakeV2Transport(NodeId{1}, false, rng, provider);
if (!t1 || !t2) return;
SimulationTest(*t1, *t2, rng, provider);
}