bitcoin/src/test/fuzz/mini_miner.cpp

194 lines
8.2 KiB
C++

#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/fuzz/util/mempool.h>
#include <test/util/script.h>
#include <test/util/setup_common.h>
#include <test/util/txmempool.h>
#include <test/util/mining.h>
#include <node/mini_miner.h>
#include <node/miner.h>
#include <primitives/transaction.h>
#include <random.h>
#include <txmempool.h>
#include <deque>
#include <vector>
namespace {
const TestingSetup* g_setup;
std::deque<COutPoint> g_available_coins;
void initialize_miner()
{
static const auto testing_setup = MakeNoLogFileContext<const TestingSetup>();
g_setup = testing_setup.get();
for (uint32_t i = 0; i < uint32_t{100}; ++i) {
g_available_coins.emplace_back(Txid::FromUint256(uint256::ZERO), i);
}
}
// Test that the MiniMiner can run with various outpoints and feerates.
FUZZ_TARGET(mini_miner, .init = initialize_miner)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
CTxMemPool pool{CTxMemPool::Options{}};
std::vector<COutPoint> outpoints;
std::deque<COutPoint> available_coins = g_available_coins;
LOCK2(::cs_main, pool.cs);
// Cluster size cannot exceed 500
LIMITED_WHILE(!available_coins.empty(), 500)
{
CMutableTransaction mtx = CMutableTransaction();
const size_t num_inputs = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(1, available_coins.size());
const size_t num_outputs = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(1, 50);
for (size_t n{0}; n < num_inputs; ++n) {
auto prevout = available_coins.front();
mtx.vin.emplace_back(prevout, CScript());
available_coins.pop_front();
}
for (uint32_t n{0}; n < num_outputs; ++n) {
mtx.vout.emplace_back(100, P2WSH_OP_TRUE);
}
CTransactionRef tx = MakeTransactionRef(mtx);
TestMemPoolEntryHelper entry;
const CAmount fee{ConsumeMoney(fuzzed_data_provider, /*max=*/MAX_MONEY/100000)};
assert(MoneyRange(fee));
pool.addUnchecked(entry.Fee(fee).FromTx(tx));
// All outputs are available to spend
for (uint32_t n{0}; n < num_outputs; ++n) {
if (fuzzed_data_provider.ConsumeBool()) {
available_coins.emplace_back(tx->GetHash(), n);
}
}
if (fuzzed_data_provider.ConsumeBool() && !tx->vout.empty()) {
// Add outpoint from this tx (may or not be spent by a later tx)
outpoints.emplace_back(tx->GetHash(),
(uint32_t)fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, tx->vout.size()));
} else {
// Add some random outpoint (will be interpreted as confirmed or not yet submitted
// to mempool).
auto outpoint = ConsumeDeserializable<COutPoint>(fuzzed_data_provider);
if (outpoint.has_value() && std::find(outpoints.begin(), outpoints.end(), *outpoint) == outpoints.end()) {
outpoints.push_back(*outpoint);
}
}
}
const CFeeRate target_feerate{CFeeRate{ConsumeMoney(fuzzed_data_provider, /*max=*/MAX_MONEY/1000)}};
std::optional<CAmount> total_bumpfee;
CAmount sum_fees = 0;
{
node::MiniMiner mini_miner{pool, outpoints};
assert(mini_miner.IsReadyToCalculate());
const auto bump_fees = mini_miner.CalculateBumpFees(target_feerate);
for (const auto& outpoint : outpoints) {
auto it = bump_fees.find(outpoint);
assert(it != bump_fees.end());
assert(it->second >= 0);
sum_fees += it->second;
}
assert(!mini_miner.IsReadyToCalculate());
}
{
node::MiniMiner mini_miner{pool, outpoints};
assert(mini_miner.IsReadyToCalculate());
total_bumpfee = mini_miner.CalculateTotalBumpFees(target_feerate);
assert(total_bumpfee.has_value());
assert(!mini_miner.IsReadyToCalculate());
}
// Overlapping ancestry across multiple outpoints can only reduce the total bump fee.
assert (sum_fees >= *total_bumpfee);
}
// Test that MiniMiner and BlockAssembler build the same block given the same transactions and constraints.
FUZZ_TARGET(mini_miner_selection, .init = initialize_miner)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
CTxMemPool pool{CTxMemPool::Options{}};
// Make a copy to preserve determinism.
std::deque<COutPoint> available_coins = g_available_coins;
std::vector<CTransactionRef> transactions;
LOCK2(::cs_main, pool.cs);
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 100)
{
CMutableTransaction mtx = CMutableTransaction();
assert(!available_coins.empty());
const size_t num_inputs = std::min(size_t{2}, available_coins.size());
const size_t num_outputs = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(2, 5);
for (size_t n{0}; n < num_inputs; ++n) {
auto prevout = available_coins.at(0);
mtx.vin.emplace_back(prevout, CScript());
available_coins.pop_front();
}
for (uint32_t n{0}; n < num_outputs; ++n) {
mtx.vout.emplace_back(100, P2WSH_OP_TRUE);
}
CTransactionRef tx = MakeTransactionRef(mtx);
// First 2 outputs are available to spend. The rest are added to outpoints to calculate bumpfees.
// There is no overlap between spendable coins and outpoints passed to MiniMiner because the
// MiniMiner interprets spent coins as to-be-replaced and excludes them.
for (uint32_t n{0}; n < num_outputs - 1; ++n) {
if (fuzzed_data_provider.ConsumeBool()) {
available_coins.emplace_front(tx->GetHash(), n);
} else {
available_coins.emplace_back(tx->GetHash(), n);
}
}
// Stop if pool reaches DEFAULT_BLOCK_MAX_WEIGHT because BlockAssembler will stop when the
// block template reaches that, but the MiniMiner will keep going.
if (pool.GetTotalTxSize() + GetVirtualTransactionSize(*tx) >= DEFAULT_BLOCK_MAX_WEIGHT) break;
TestMemPoolEntryHelper entry;
const CAmount fee{ConsumeMoney(fuzzed_data_provider, /*max=*/MAX_MONEY/100000)};
assert(MoneyRange(fee));
pool.addUnchecked(entry.Fee(fee).FromTx(tx));
transactions.push_back(tx);
}
std::vector<COutPoint> outpoints;
for (const auto& coin : g_available_coins) {
if (!pool.GetConflictTx(coin)) outpoints.push_back(coin);
}
for (const auto& tx : transactions) {
assert(pool.exists(GenTxid::Txid(tx->GetHash())));
for (uint32_t n{0}; n < tx->vout.size(); ++n) {
COutPoint coin{tx->GetHash(), n};
if (!pool.GetConflictTx(coin)) outpoints.push_back(coin);
}
}
const CFeeRate target_feerate{ConsumeMoney(fuzzed_data_provider, /*max=*/MAX_MONEY/100000)};
node::BlockAssembler::Options miner_options;
miner_options.blockMinFeeRate = target_feerate;
miner_options.nBlockMaxWeight = DEFAULT_BLOCK_MAX_WEIGHT;
miner_options.test_block_validity = false;
node::BlockAssembler miner{g_setup->m_node.chainman->ActiveChainstate(), &pool, miner_options};
node::MiniMiner mini_miner{pool, outpoints};
assert(mini_miner.IsReadyToCalculate());
CScript spk_placeholder = CScript() << OP_0;
// Use BlockAssembler as oracle. BlockAssembler and MiniMiner should select the same
// transactions, stopping once packages do not meet target_feerate.
const auto blocktemplate{miner.CreateNewBlock(spk_placeholder)};
mini_miner.BuildMockTemplate(target_feerate);
assert(!mini_miner.IsReadyToCalculate());
auto mock_template_txids = mini_miner.GetMockTemplateTxids();
// MiniMiner doesn't add a coinbase tx.
assert(mock_template_txids.count(blocktemplate->block.vtx[0]->GetHash()) == 0);
mock_template_txids.emplace(blocktemplate->block.vtx[0]->GetHash());
assert(mock_template_txids.size() <= blocktemplate->block.vtx.size());
assert(mock_template_txids.size() >= blocktemplate->block.vtx.size());
assert(mock_template_txids.size() == blocktemplate->block.vtx.size());
for (const auto& tx : blocktemplate->block.vtx) {
assert(mock_template_txids.count(tx->GetHash()));
}
}
} // namespace