bitcoin/src/wallet/test/fuzz/coinselection.cpp

326 lines
17 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <policy/feerate.h>
#include <policy/policy.h>
#include <primitives/transaction.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/util/setup_common.h>
#include <wallet/coinselection.h>
#include <numeric>
#include <vector>
namespace wallet {
static void AddCoin(const CAmount& value, int n_input, int n_input_bytes, int locktime, std::vector<COutput>& coins, CFeeRate fee_rate)
{
CMutableTransaction tx;
tx.vout.resize(n_input + 1);
tx.vout[n_input].nValue = value;
tx.nLockTime = locktime; // all transactions get different hashes
coins.emplace_back(COutPoint(tx.GetHash(), n_input), tx.vout.at(n_input), /*depth=*/0, n_input_bytes, /*spendable=*/true, /*solvable=*/true, /*safe=*/true, /*time=*/0, /*from_me=*/true, fee_rate);
}
// Randomly distribute coins to instances of OutputGroup
static void GroupCoins(FuzzedDataProvider& fuzzed_data_provider, const std::vector<COutput>& coins, const CoinSelectionParams& coin_params, bool positive_only, std::vector<OutputGroup>& output_groups)
{
auto output_group = OutputGroup(coin_params);
bool valid_outputgroup{false};
for (auto& coin : coins) {
if (!positive_only || (positive_only && coin.GetEffectiveValue() > 0)) {
output_group.Insert(std::make_shared<COutput>(coin), /*ancestors=*/0, /*descendants=*/0);
}
// If positive_only was specified, nothing was inserted, leading to an empty output group
// that would be invalid for the BnB algorithm
valid_outputgroup = !positive_only || output_group.GetSelectionAmount() > 0;
if (valid_outputgroup && fuzzed_data_provider.ConsumeBool()) {
output_groups.push_back(output_group);
output_group = OutputGroup(coin_params);
valid_outputgroup = false;
}
}
if (valid_outputgroup) output_groups.push_back(output_group);
}
static CAmount CreateCoins(FuzzedDataProvider& fuzzed_data_provider, std::vector<COutput>& utxo_pool, CoinSelectionParams& coin_params, int& next_locktime)
{
CAmount total_balance{0};
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000)
{
const int n_input{fuzzed_data_provider.ConsumeIntegralInRange<int>(0, 10)};
const int n_input_bytes{fuzzed_data_provider.ConsumeIntegralInRange<int>(41, 10000)};
const CAmount amount{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, MAX_MONEY)};
if (total_balance + amount >= MAX_MONEY) {
break;
}
AddCoin(amount, n_input, n_input_bytes, ++next_locktime, utxo_pool, coin_params.m_effective_feerate);
total_balance += amount;
}
return total_balance;
}
static SelectionResult ManualSelection(std::vector<COutput>& utxos, const CAmount& total_amount, const bool& subtract_fee_outputs)
{
SelectionResult result(total_amount, SelectionAlgorithm::MANUAL);
std::set<std::shared_ptr<COutput>> utxo_pool;
for (const auto& utxo : utxos) {
utxo_pool.insert(std::make_shared<COutput>(utxo));
}
result.AddInputs(utxo_pool, subtract_fee_outputs);
return result;
}
// Returns true if the result contains an error and the message is not empty
static bool HasErrorMsg(const util::Result<SelectionResult>& res) { return !util::ErrorString(res).empty(); }
FUZZ_TARGET(coin_grinder)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
std::vector<COutput> utxo_pool;
const CAmount target{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, MAX_MONEY)};
FastRandomContext fast_random_context{ConsumeUInt256(fuzzed_data_provider)};
CoinSelectionParams coin_params{fast_random_context};
coin_params.m_subtract_fee_outputs = fuzzed_data_provider.ConsumeBool();
coin_params.m_long_term_feerate = CFeeRate{ConsumeMoney(fuzzed_data_provider, /*max=*/COIN)};
coin_params.m_effective_feerate = CFeeRate{ConsumeMoney(fuzzed_data_provider, /*max=*/COIN)};
coin_params.change_output_size = fuzzed_data_provider.ConsumeIntegralInRange<int>(10, 1000);
coin_params.change_spend_size = fuzzed_data_provider.ConsumeIntegralInRange<int>(10, 1000);
coin_params.m_cost_of_change= coin_params.m_effective_feerate.GetFee(coin_params.change_output_size) + coin_params.m_long_term_feerate.GetFee(coin_params.change_spend_size);
coin_params.m_change_fee = coin_params.m_effective_feerate.GetFee(coin_params.change_output_size);
// For other results to be comparable to SRD, we must align the change_target with SRDs hardcoded behavior
coin_params.m_min_change_target = CHANGE_LOWER + coin_params.m_change_fee;
// Create some coins
CAmount total_balance{0};
CAmount max_spendable{0};
int next_locktime{0};
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10000)
{
const int n_input{fuzzed_data_provider.ConsumeIntegralInRange<int>(0, 10)};
const int n_input_bytes{fuzzed_data_provider.ConsumeIntegralInRange<int>(41, 10000)};
const CAmount amount{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, MAX_MONEY)};
if (total_balance + amount >= MAX_MONEY) {
break;
}
AddCoin(amount, n_input, n_input_bytes, ++next_locktime, utxo_pool, coin_params.m_effective_feerate);
total_balance += amount;
CAmount eff_value = amount - coin_params.m_effective_feerate.GetFee(n_input_bytes);
max_spendable += eff_value;
}
std::vector<OutputGroup> group_pos;
GroupCoins(fuzzed_data_provider, utxo_pool, coin_params, /*positive_only=*/true, group_pos);
// Run coinselection algorithms
auto result_cg = CoinGrinder(group_pos, target, coin_params.m_min_change_target, MAX_STANDARD_TX_WEIGHT);
if (target + coin_params.m_min_change_target > max_spendable || HasErrorMsg(result_cg)) return; // We only need to compare algorithms if CoinGrinder has a solution
assert(result_cg);
if (!result_cg->GetAlgoCompleted()) return; // Bail out if CoinGrinder solution is not optimal
auto result_srd = SelectCoinsSRD(group_pos, target, coin_params.m_change_fee, fast_random_context, MAX_STANDARD_TX_WEIGHT);
if (result_srd && result_srd->GetChange(CHANGE_LOWER, coin_params.m_change_fee) > 0) { // exclude any srd solutions that dont have change, err on excluding
assert(result_srd->GetWeight() >= result_cg->GetWeight());
}
auto result_knapsack = KnapsackSolver(group_pos, target, coin_params.m_min_change_target, fast_random_context, MAX_STANDARD_TX_WEIGHT);
if (result_knapsack && result_knapsack->GetChange(CHANGE_LOWER, coin_params.m_change_fee) > 0) { // exclude any knapsack solutions that dont have change, err on excluding
assert(result_knapsack->GetWeight() >= result_cg->GetWeight());
}
}
FUZZ_TARGET(coin_grinder_is_optimal)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
FastRandomContext fast_random_context{ConsumeUInt256(fuzzed_data_provider)};
CoinSelectionParams coin_params{fast_random_context};
coin_params.m_subtract_fee_outputs = false;
// Set effective feerate up to MAX_MONEY sats per 1'000'000 vB (2'100'000'000 sat/vB = 21'000 BTC/kvB).
coin_params.m_effective_feerate = CFeeRate{ConsumeMoney(fuzzed_data_provider, MAX_MONEY), 1'000'000};
coin_params.m_min_change_target = ConsumeMoney(fuzzed_data_provider);
// Create some coins
CAmount max_spendable{0};
int next_locktime{0};
static constexpr unsigned max_output_groups{16};
std::vector<OutputGroup> group_pos;
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), max_output_groups)
{
// With maximum m_effective_feerate and n_input_bytes = 1'000'000, input_fee <= MAX_MONEY.
const int n_input_bytes{fuzzed_data_provider.ConsumeIntegralInRange<int>(1, 1'000'000)};
// Only make UTXOs with positive effective value
const CAmount input_fee = coin_params.m_effective_feerate.GetFee(n_input_bytes);
// Ensure that each UTXO has at least an effective value of 1 sat
const CAmount eff_value{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, MAX_MONEY - max_spendable - max_output_groups + group_pos.size())};
const CAmount amount{eff_value + input_fee};
std::vector<COutput> temp_utxo_pool;
AddCoin(amount, /*n_input=*/0, n_input_bytes, ++next_locktime, temp_utxo_pool, coin_params.m_effective_feerate);
max_spendable += eff_value;
auto output_group = OutputGroup(coin_params);
output_group.Insert(std::make_shared<COutput>(temp_utxo_pool.at(0)), /*ancestors=*/0, /*descendants=*/0);
group_pos.push_back(output_group);
}
size_t num_groups = group_pos.size();
assert(num_groups <= max_output_groups);
// Only choose targets below max_spendable
const CAmount target{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, std::max(CAmount{1}, max_spendable - coin_params.m_min_change_target))};
// Brute force optimal solution
CAmount best_amount{MAX_MONEY};
int best_weight{std::numeric_limits<int>::max()};
for (uint32_t pattern = 1; (pattern >> num_groups) == 0; ++pattern) {
CAmount subset_amount{0};
int subset_weight{0};
for (unsigned i = 0; i < num_groups; ++i) {
if ((pattern >> i) & 1) {
subset_amount += group_pos[i].GetSelectionAmount();
subset_weight += group_pos[i].m_weight;
}
}
if ((subset_amount >= target + coin_params.m_min_change_target) && (subset_weight < best_weight || (subset_weight == best_weight && subset_amount < best_amount))) {
best_weight = subset_weight;
best_amount = subset_amount;
}
}
if (best_weight < std::numeric_limits<int>::max()) {
// Sufficient funds and acceptable weight: CoinGrinder should find at least one solution
int high_max_weight = fuzzed_data_provider.ConsumeIntegralInRange<int>(best_weight, std::numeric_limits<int>::max());
auto result_cg = CoinGrinder(group_pos, target, coin_params.m_min_change_target, high_max_weight);
assert(result_cg);
assert(result_cg->GetWeight() <= high_max_weight);
assert(result_cg->GetSelectedEffectiveValue() >= target + coin_params.m_min_change_target);
assert(best_weight < result_cg->GetWeight() || (best_weight == result_cg->GetWeight() && best_amount <= result_cg->GetSelectedEffectiveValue()));
if (result_cg->GetAlgoCompleted()) {
// If CoinGrinder exhausted the search space, it must return the optimal solution
assert(best_weight == result_cg->GetWeight());
assert(best_amount == result_cg->GetSelectedEffectiveValue());
}
}
// CoinGrinder cannot ever find a better solution than the brute-forced best, or there is none in the first place
int low_max_weight = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, best_weight - 1);
auto result_cg = CoinGrinder(group_pos, target, coin_params.m_min_change_target, low_max_weight);
// Max_weight should have been exceeded, or there were insufficient funds
assert(!result_cg);
}
FUZZ_TARGET(coinselection)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
std::vector<COutput> utxo_pool;
const CFeeRate long_term_fee_rate{ConsumeMoney(fuzzed_data_provider, /*max=*/COIN)};
const CFeeRate effective_fee_rate{ConsumeMoney(fuzzed_data_provider, /*max=*/COIN)};
// Discard feerate must be at least dust relay feerate
const CFeeRate discard_fee_rate{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(DUST_RELAY_TX_FEE, COIN)};
const CAmount target{fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(1, MAX_MONEY)};
const bool subtract_fee_outputs{fuzzed_data_provider.ConsumeBool()};
FastRandomContext fast_random_context{ConsumeUInt256(fuzzed_data_provider)};
CoinSelectionParams coin_params{fast_random_context};
coin_params.m_subtract_fee_outputs = subtract_fee_outputs;
coin_params.m_long_term_feerate = long_term_fee_rate;
coin_params.m_effective_feerate = effective_fee_rate;
coin_params.change_output_size = fuzzed_data_provider.ConsumeIntegralInRange(1, MAX_SCRIPT_SIZE);
coin_params.m_change_fee = effective_fee_rate.GetFee(coin_params.change_output_size);
coin_params.m_discard_feerate = discard_fee_rate;
coin_params.change_spend_size = fuzzed_data_provider.ConsumeIntegralInRange<int>(41, 1000);
const auto change_spend_fee{coin_params.m_discard_feerate.GetFee(coin_params.change_spend_size)};
coin_params.m_cost_of_change = coin_params.m_change_fee + change_spend_fee;
CScript change_out_script = CScript() << std::vector<unsigned char>(coin_params.change_output_size, OP_TRUE);
const auto dust{GetDustThreshold(CTxOut{/*nValueIn=*/0, change_out_script}, coin_params.m_discard_feerate)};
coin_params.min_viable_change = std::max(change_spend_fee + 1, dust);
int next_locktime{0};
CAmount total_balance{CreateCoins(fuzzed_data_provider, utxo_pool, coin_params, next_locktime)};
std::vector<OutputGroup> group_pos;
GroupCoins(fuzzed_data_provider, utxo_pool, coin_params, /*positive_only=*/true, group_pos);
std::vector<OutputGroup> group_all;
GroupCoins(fuzzed_data_provider, utxo_pool, coin_params, /*positive_only=*/false, group_all);
for (const OutputGroup& group : group_all) {
const CoinEligibilityFilter filter(fuzzed_data_provider.ConsumeIntegral<int>(), fuzzed_data_provider.ConsumeIntegral<int>(), fuzzed_data_provider.ConsumeIntegral<uint64_t>());
(void)group.EligibleForSpending(filter);
}
// Run coinselection algorithms
auto result_bnb = coin_params.m_subtract_fee_outputs ? util::Error{Untranslated("BnB disabled when SFFO is enabled")} :
SelectCoinsBnB(group_pos, target, coin_params.m_cost_of_change, MAX_STANDARD_TX_WEIGHT);
if (result_bnb) {
assert(result_bnb->GetChange(coin_params.min_viable_change, coin_params.m_change_fee) == 0);
assert(result_bnb->GetSelectedValue() >= target);
(void)result_bnb->GetShuffledInputVector();
(void)result_bnb->GetInputSet();
}
auto result_srd = SelectCoinsSRD(group_pos, target, coin_params.m_change_fee, fast_random_context, MAX_STANDARD_TX_WEIGHT);
if (result_srd) {
assert(result_srd->GetSelectedValue() >= target);
assert(result_srd->GetChange(CHANGE_LOWER, coin_params.m_change_fee) > 0); // Demonstrate that SRD creates change of at least CHANGE_LOWER
result_srd->ComputeAndSetWaste(coin_params.min_viable_change, coin_params.m_cost_of_change, coin_params.m_change_fee);
(void)result_srd->GetShuffledInputVector();
(void)result_srd->GetInputSet();
}
CAmount change_target{GenerateChangeTarget(target, coin_params.m_change_fee, fast_random_context)};
auto result_knapsack = KnapsackSolver(group_all, target, change_target, fast_random_context, MAX_STANDARD_TX_WEIGHT);
if (result_knapsack) {
assert(result_knapsack->GetSelectedValue() >= target);
result_knapsack->ComputeAndSetWaste(coin_params.min_viable_change, coin_params.m_cost_of_change, coin_params.m_change_fee);
(void)result_knapsack->GetShuffledInputVector();
(void)result_knapsack->GetInputSet();
}
// If the total balance is sufficient for the target and we are not using
// effective values, Knapsack should always find a solution (unless the selection exceeded the max tx weight).
if (total_balance >= target && subtract_fee_outputs && !HasErrorMsg(result_knapsack)) {
assert(result_knapsack);
}
std::vector<COutput> utxos;
std::vector<util::Result<SelectionResult>> results{result_srd, result_knapsack, result_bnb};
CAmount new_total_balance{CreateCoins(fuzzed_data_provider, utxos, coin_params, next_locktime)};
if (new_total_balance > 0) {
std::set<std::shared_ptr<COutput>> new_utxo_pool;
for (const auto& utxo : utxos) {
new_utxo_pool.insert(std::make_shared<COutput>(utxo));
}
for (auto& result : results) {
if (!result) continue;
const auto weight{result->GetWeight()};
result->AddInputs(new_utxo_pool, subtract_fee_outputs);
assert(result->GetWeight() > weight);
}
}
std::vector<COutput> manual_inputs;
CAmount manual_balance{CreateCoins(fuzzed_data_provider, manual_inputs, coin_params, next_locktime)};
if (manual_balance == 0) return;
auto manual_selection{ManualSelection(manual_inputs, manual_balance, coin_params.m_subtract_fee_outputs)};
for (auto& result : results) {
if (!result) continue;
const CAmount old_target{result->GetTarget()};
const std::set<std::shared_ptr<COutput>> input_set{result->GetInputSet()};
const int old_weight{result->GetWeight()};
result->Merge(manual_selection);
assert(result->GetInputSet().size() == input_set.size() + manual_inputs.size());
assert(result->GetTarget() == old_target + manual_selection.GetTarget());
assert(result->GetWeight() == old_weight + manual_selection.GetWeight());
}
}
} // namespace wallet