bitcoin/test/functional/test_framework/p2p.py

947 lines
39 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2010 ArtForz -- public domain half-a-node
# Copyright (c) 2012 Jeff Garzik
# Copyright (c) 2010-2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test objects for interacting with a bitcoind node over the p2p protocol.
The P2PInterface objects interact with the bitcoind nodes under test using the
node's p2p interface. They can be used to send messages to the node, and
callbacks can be registered that execute when messages are received from the
node. Messages are sent to/received from the node on an asyncio event loop.
State held inside the objects must be guarded by the p2p_lock to avoid data
races between the main testing thread and the event loop.
P2PConnection: A low-level connection object to a node's P2P interface
P2PInterface: A high-level interface object for communicating to a node over P2P
P2PDataStore: A p2p interface class that keeps a store of transactions and blocks
and can respond correctly to getdata and getheaders messages
P2PTxInvStore: A p2p interface class that inherits from P2PDataStore, and keeps
a count of how many times each txid has been announced."""
import asyncio
from collections import defaultdict
from io import BytesIO
import logging
import platform
import struct
import sys
import threading
from test_framework.messages import (
CBlockHeader,
MAX_HEADERS_RESULTS,
msg_addr,
msg_addrv2,
msg_block,
MSG_BLOCK,
msg_blocktxn,
msg_cfcheckpt,
msg_cfheaders,
msg_cfilter,
msg_cmpctblock,
msg_feefilter,
msg_filteradd,
msg_filterclear,
msg_filterload,
msg_getaddr,
msg_getblocks,
msg_getblocktxn,
msg_getcfcheckpt,
msg_getcfheaders,
msg_getcfilters,
msg_getdata,
msg_getheaders,
msg_headers,
msg_inv,
msg_mempool,
msg_merkleblock,
msg_notfound,
msg_ping,
msg_pong,
msg_sendaddrv2,
msg_sendcmpct,
msg_sendheaders,
msg_sendtxrcncl,
msg_tx,
MSG_TX,
MSG_TYPE_MASK,
msg_verack,
msg_version,
MSG_WTX,
msg_wtxidrelay,
NODE_NETWORK,
NODE_WITNESS,
MAGIC_BYTES,
sha256,
)
from test_framework.util import (
MAX_NODES,
p2p_port,
wait_until_helper_internal,
)
from test_framework.v2_p2p import (
EncryptedP2PState,
MSGTYPE_TO_SHORTID,
SHORTID,
)
logger = logging.getLogger("TestFramework.p2p")
# The minimum P2P version that this test framework supports
MIN_P2P_VERSION_SUPPORTED = 60001
# The P2P version that this test framework implements and sends in its `version` message
# Version 70016 supports wtxid relay
P2P_VERSION = 70016
# The services that this test framework offers in its `version` message
P2P_SERVICES = NODE_NETWORK | NODE_WITNESS
# The P2P user agent string that this test framework sends in its `version` message
P2P_SUBVERSION = "/python-p2p-tester:0.0.3/"
# Value for relay that this test framework sends in its `version` message
P2P_VERSION_RELAY = 1
# Delay after receiving a tx inv before requesting transactions from non-preferred peers, in seconds
NONPREF_PEER_TX_DELAY = 2
# Delay for requesting transactions via txids if we have wtxid-relaying peers, in seconds
TXID_RELAY_DELAY = 2
# Delay for requesting transactions if the peer has MAX_PEER_TX_REQUEST_IN_FLIGHT or more requests
OVERLOADED_PEER_TX_DELAY = 2
# How long to wait before downloading a transaction from an additional peer
GETDATA_TX_INTERVAL = 60
MESSAGEMAP = {
b"addr": msg_addr,
b"addrv2": msg_addrv2,
b"block": msg_block,
b"blocktxn": msg_blocktxn,
b"cfcheckpt": msg_cfcheckpt,
b"cfheaders": msg_cfheaders,
b"cfilter": msg_cfilter,
b"cmpctblock": msg_cmpctblock,
b"feefilter": msg_feefilter,
b"filteradd": msg_filteradd,
b"filterclear": msg_filterclear,
b"filterload": msg_filterload,
b"getaddr": msg_getaddr,
b"getblocks": msg_getblocks,
b"getblocktxn": msg_getblocktxn,
b"getcfcheckpt": msg_getcfcheckpt,
b"getcfheaders": msg_getcfheaders,
b"getcfilters": msg_getcfilters,
b"getdata": msg_getdata,
b"getheaders": msg_getheaders,
b"headers": msg_headers,
b"inv": msg_inv,
b"mempool": msg_mempool,
b"merkleblock": msg_merkleblock,
b"notfound": msg_notfound,
b"ping": msg_ping,
b"pong": msg_pong,
b"sendaddrv2": msg_sendaddrv2,
b"sendcmpct": msg_sendcmpct,
b"sendheaders": msg_sendheaders,
b"sendtxrcncl": msg_sendtxrcncl,
b"tx": msg_tx,
b"verack": msg_verack,
b"version": msg_version,
b"wtxidrelay": msg_wtxidrelay,
}
class P2PConnection(asyncio.Protocol):
"""A low-level connection object to a node's P2P interface.
This class is responsible for:
- opening and closing the TCP connection to the node
- reading bytes from and writing bytes to the socket
- deserializing and serializing the P2P message header
- logging messages as they are sent and received
This class contains no logic for handing the P2P message payloads. It must be
sub-classed and the on_message() callback overridden."""
def __init__(self):
# The underlying transport of the connection.
# Should only call methods on this from the NetworkThread, c.f. call_soon_threadsafe
self._transport = None
# This lock is acquired before sending messages over the socket. There's an implied lock order and
# p2p_lock must not be acquired after _send_lock as it could result in deadlocks.
self._send_lock = threading.Lock()
self.v2_state = None # EncryptedP2PState object needed for v2 p2p connections
self.reconnect = False # set if reconnection needs to happen
@property
def is_connected(self):
return self._transport is not None
@property
def supports_v2_p2p(self):
return self.v2_state is not None
def peer_connect_helper(self, dstaddr, dstport, net, timeout_factor):
assert not self.is_connected
self.timeout_factor = timeout_factor
self.dstaddr = dstaddr
self.dstport = dstport
# The initial message to send after the connection was made:
self.on_connection_send_msg = None
self.recvbuf = b""
self.magic_bytes = MAGIC_BYTES[net]
def peer_connect(self, dstaddr, dstport, *, net, timeout_factor, supports_v2_p2p):
self.peer_connect_helper(dstaddr, dstport, net, timeout_factor)
if supports_v2_p2p:
self.v2_state = EncryptedP2PState(initiating=True, net=net)
loop = NetworkThread.network_event_loop
logger.debug('Connecting to Bitcoin Node: %s:%d' % (self.dstaddr, self.dstport))
coroutine = loop.create_connection(lambda: self, host=self.dstaddr, port=self.dstport)
return lambda: loop.call_soon_threadsafe(loop.create_task, coroutine)
def peer_accept_connection(self, connect_id, connect_cb=lambda: None, *, net, timeout_factor, supports_v2_p2p, reconnect):
self.peer_connect_helper('0', 0, net, timeout_factor)
self.reconnect = reconnect
if supports_v2_p2p:
self.v2_state = EncryptedP2PState(initiating=False, net=net)
logger.debug('Listening for Bitcoin Node with id: {}'.format(connect_id))
return lambda: NetworkThread.listen(self, connect_cb, idx=connect_id)
def peer_disconnect(self):
# Connection could have already been closed by other end.
NetworkThread.network_event_loop.call_soon_threadsafe(lambda: self._transport and self._transport.abort())
# Connection and disconnection methods
def connection_made(self, transport):
"""asyncio callback when a connection is opened."""
assert not self._transport
logger.debug("Connected & Listening: %s:%d" % (self.dstaddr, self.dstport))
self._transport = transport
# in an inbound connection to the TestNode with P2PConnection as the initiator, [TestNode <---- P2PConnection]
# send the initial handshake immediately
if self.supports_v2_p2p and self.v2_state.initiating and not self.v2_state.tried_v2_handshake:
send_handshake_bytes = self.v2_state.initiate_v2_handshake()
self.send_raw_message(send_handshake_bytes)
# for v1 outbound connections, send version message immediately after opening
# (for v2 outbound connections, send it after the initial v2 handshake)
if self.p2p_connected_to_node and not self.supports_v2_p2p:
self.send_version()
self.on_open()
def connection_lost(self, exc):
"""asyncio callback when a connection is closed."""
# don't display warning if reconnection needs to be attempted using v1 P2P
if exc and not self.reconnect:
logger.warning("Connection lost to {}:{} due to {}".format(self.dstaddr, self.dstport, exc))
else:
logger.debug("Closed connection to: %s:%d" % (self.dstaddr, self.dstport))
self._transport = None
self.recvbuf = b""
self.on_close()
# v2 handshake method
def _on_data_v2_handshake(self):
"""v2 handshake performed before P2P messages are exchanged (see BIP324). P2PConnection is the initiator
(in inbound connections to TestNode) and the responder (in outbound connections from TestNode).
Performed by:
* initiator using `initiate_v2_handshake()`, `complete_handshake()` and `authenticate_handshake()`
* responder using `respond_v2_handshake()`, `complete_handshake()` and `authenticate_handshake()`
`initiate_v2_handshake()` is immediately done by the initiator when the connection is established in
`connection_made()`. The rest of the initial v2 handshake functions are handled here.
"""
if not self.v2_state.peer:
if not self.v2_state.initiating and not self.v2_state.sent_garbage:
# if the responder hasn't sent garbage yet, the responder is still reading ellswift bytes
# reads ellswift bytes till the first mismatch from 12 bytes V1_PREFIX
length, send_handshake_bytes = self.v2_state.respond_v2_handshake(BytesIO(self.recvbuf))
self.recvbuf = self.recvbuf[length:]
if send_handshake_bytes == -1:
self.v2_state = None
return
elif send_handshake_bytes:
self.send_raw_message(send_handshake_bytes)
elif send_handshake_bytes == b"":
return # only after send_handshake_bytes are sent can `complete_handshake()` be done
# `complete_handshake()` reads the remaining ellswift bytes from recvbuf
# and sends response after deriving shared ECDH secret using received ellswift bytes
length, response = self.v2_state.complete_handshake(BytesIO(self.recvbuf))
self.recvbuf = self.recvbuf[length:]
if response:
self.send_raw_message(response)
else:
return # only after response is sent can `authenticate_handshake()` be done
# `self.v2_state.peer` is instantiated only after shared ECDH secret/BIP324 derived keys and ciphers
# is derived in `complete_handshake()`.
# so `authenticate_handshake()` which uses the BIP324 derived ciphers gets called after `complete_handshake()`.
assert self.v2_state.peer
length, is_mac_auth = self.v2_state.authenticate_handshake(self.recvbuf)
if not is_mac_auth:
raise ValueError("invalid v2 mac tag in handshake authentication")
self.recvbuf = self.recvbuf[length:]
if self.v2_state.tried_v2_handshake:
# for v2 outbound connections, send version message immediately after v2 handshake
if self.p2p_connected_to_node:
self.send_version()
# process post-v2-handshake data immediately, if available
if len(self.recvbuf) > 0:
self._on_data()
# Socket read methods
def data_received(self, t):
"""asyncio callback when data is read from the socket."""
if len(t) > 0:
self.recvbuf += t
if self.supports_v2_p2p and not self.v2_state.tried_v2_handshake:
self._on_data_v2_handshake()
else:
self._on_data()
def _on_data(self):
"""Try to read P2P messages from the recv buffer.
This method reads data from the buffer in a loop. It deserializes,
parses and verifies the P2P header, then passes the P2P payload to
the on_message callback for processing."""
try:
while True:
if self.supports_v2_p2p:
# v2 P2P messages are read
msglen, msg = self.v2_state.v2_receive_packet(self.recvbuf)
if msglen == -1:
raise ValueError("invalid v2 mac tag " + repr(self.recvbuf))
elif msglen == 0: # need to receive more bytes in recvbuf
return
self.recvbuf = self.recvbuf[msglen:]
if msg is None: # ignore decoy messages
return
assert msg # application layer messages (which aren't decoy messages) are non-empty
shortid = msg[0] # 1-byte short message type ID
if shortid == 0:
# next 12 bytes are interpreted as ASCII message type if shortid is b'\x00'
if len(msg) < 13:
raise IndexError("msg needs minimum required length of 13 bytes")
msgtype = msg[1:13].rstrip(b'\x00')
msg = msg[13:] # msg is set to be payload
else:
# a 1-byte short message type ID
msgtype = SHORTID.get(shortid, f"unknown-{shortid}")
msg = msg[1:]
else:
# v1 P2P messages are read
if len(self.recvbuf) < 4:
return
if self.recvbuf[:4] != self.magic_bytes:
raise ValueError("magic bytes mismatch: {} != {}".format(repr(self.magic_bytes), repr(self.recvbuf)))
if len(self.recvbuf) < 4 + 12 + 4 + 4:
return
msgtype = self.recvbuf[4:4+12].split(b"\x00", 1)[0]
msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0]
checksum = self.recvbuf[4+12+4:4+12+4+4]
if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen:
return
msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen]
th = sha256(msg)
h = sha256(th)
if checksum != h[:4]:
raise ValueError("got bad checksum " + repr(self.recvbuf))
self.recvbuf = self.recvbuf[4+12+4+4+msglen:]
if msgtype not in MESSAGEMAP:
raise ValueError("Received unknown msgtype from %s:%d: '%s' %s" % (self.dstaddr, self.dstport, msgtype, repr(msg)))
f = BytesIO(msg)
t = MESSAGEMAP[msgtype]()
t.deserialize(f)
self._log_message("receive", t)
self.on_message(t)
except Exception as e:
if not self.reconnect:
logger.exception('Error reading message:', repr(e))
raise
def on_message(self, message):
"""Callback for processing a P2P payload. Must be overridden by derived class."""
raise NotImplementedError
# Socket write methods
def send_message(self, message, is_decoy=False):
"""Send a P2P message over the socket.
This method takes a P2P payload, builds the P2P header and adds
the message to the send buffer to be sent over the socket."""
with self._send_lock:
tmsg = self.build_message(message, is_decoy)
self._log_message("send", message)
return self.send_raw_message(tmsg)
def send_raw_message(self, raw_message_bytes):
if not self.is_connected:
raise IOError('Not connected')
def maybe_write():
if not self._transport:
return
if self._transport.is_closing():
return
self._transport.write(raw_message_bytes)
NetworkThread.network_event_loop.call_soon_threadsafe(maybe_write)
# Class utility methods
def build_message(self, message, is_decoy=False):
"""Build a serialized P2P message"""
msgtype = message.msgtype
data = message.serialize()
if self.supports_v2_p2p:
if msgtype in SHORTID.values():
tmsg = MSGTYPE_TO_SHORTID.get(msgtype).to_bytes(1, 'big')
else:
tmsg = b"\x00"
tmsg += msgtype
tmsg += b"\x00" * (12 - len(msgtype))
tmsg += data
return self.v2_state.v2_enc_packet(tmsg, ignore=is_decoy)
else:
tmsg = self.magic_bytes
tmsg += msgtype
tmsg += b"\x00" * (12 - len(msgtype))
tmsg += struct.pack("<I", len(data))
th = sha256(data)
h = sha256(th)
tmsg += h[:4]
tmsg += data
return tmsg
def _log_message(self, direction, msg):
"""Logs a message being sent or received over the connection."""
if direction == "send":
log_message = "Send message to "
elif direction == "receive":
log_message = "Received message from "
log_message += "%s:%d: %s" % (self.dstaddr, self.dstport, repr(msg)[:500])
if len(log_message) > 500:
log_message += "... (msg truncated)"
logger.debug(log_message)
class P2PInterface(P2PConnection):
"""A high-level P2P interface class for communicating with a Bitcoin node.
This class provides high-level callbacks for processing P2P message
payloads, as well as convenience methods for interacting with the
node over P2P.
Individual testcases should subclass this and override the on_* methods
if they want to alter message handling behaviour."""
def __init__(self, support_addrv2=False, wtxidrelay=True):
super().__init__()
# Track number of messages of each type received.
# Should be read-only in a test.
self.message_count = defaultdict(int)
# Track the most recent message of each type.
# To wait for a message to be received, pop that message from
# this and use self.wait_until.
self.last_message = {}
# A count of the number of ping messages we've sent to the node
self.ping_counter = 1
# The network services received from the peer
self.nServices = 0
self.support_addrv2 = support_addrv2
# If the peer supports wtxid-relay
self.wtxidrelay = wtxidrelay
def peer_connect_send_version(self, services, txrelay):
# Send a version msg
vt = msg_version()
vt.nVersion = P2P_VERSION
vt.strSubVer = P2P_SUBVERSION
vt.relay = P2P_VERSION_RELAY if txrelay else 0
vt.nServices = services
vt.addrTo.ip = self.dstaddr
vt.addrTo.port = self.dstport
vt.addrFrom.ip = "0.0.0.0"
vt.addrFrom.port = 0
self.on_connection_send_msg = vt # Will be sent in connection_made callback
def peer_connect(self, *, services=P2P_SERVICES, send_version, **kwargs):
create_conn = super().peer_connect(**kwargs)
if send_version:
self.peer_connect_send_version(services, txrelay=True)
return create_conn
def peer_accept_connection(self, *args, services=P2P_SERVICES, **kwargs):
txrelay = kwargs.pop('txrelay', True)
create_conn = super().peer_accept_connection(*args, **kwargs)
self.peer_connect_send_version(services, txrelay)
return create_conn
# Message receiving methods
def on_message(self, message):
"""Receive message and dispatch message to appropriate callback.
We keep a count of how many of each message type has been received
and the most recent message of each type."""
with p2p_lock:
try:
msgtype = message.msgtype.decode('ascii')
self.message_count[msgtype] += 1
self.last_message[msgtype] = message
getattr(self, 'on_' + msgtype)(message)
except Exception:
print("ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0]))
raise
# Callback methods. Can be overridden by subclasses in individual test
# cases to provide custom message handling behaviour.
def on_open(self):
pass
def on_close(self):
pass
def on_addr(self, message): pass
def on_addrv2(self, message): pass
def on_block(self, message): pass
def on_blocktxn(self, message): pass
def on_cfcheckpt(self, message): pass
def on_cfheaders(self, message): pass
def on_cfilter(self, message): pass
def on_cmpctblock(self, message): pass
def on_feefilter(self, message): pass
def on_filteradd(self, message): pass
def on_filterclear(self, message): pass
def on_filterload(self, message): pass
def on_getaddr(self, message): pass
def on_getblocks(self, message): pass
def on_getblocktxn(self, message): pass
def on_getdata(self, message): pass
def on_getheaders(self, message): pass
def on_headers(self, message): pass
def on_mempool(self, message): pass
def on_merkleblock(self, message): pass
def on_notfound(self, message): pass
def on_pong(self, message): pass
def on_sendaddrv2(self, message): pass
def on_sendcmpct(self, message): pass
def on_sendheaders(self, message): pass
def on_sendtxrcncl(self, message): pass
def on_tx(self, message): pass
def on_wtxidrelay(self, message): pass
def on_inv(self, message):
want = msg_getdata()
for i in message.inv:
if i.type != 0:
want.inv.append(i)
if len(want.inv):
self.send_message(want)
def on_ping(self, message):
self.send_message(msg_pong(message.nonce))
def on_verack(self, message):
pass
def on_version(self, message):
assert message.nVersion >= MIN_P2P_VERSION_SUPPORTED, "Version {} received. Test framework only supports versions greater than {}".format(message.nVersion, MIN_P2P_VERSION_SUPPORTED)
# for inbound connections, reply to version with own version message
# (could be due to v1 reconnect after a failed v2 handshake)
if not self.p2p_connected_to_node:
self.send_version()
self.reconnect = False
if message.nVersion >= 70016 and self.wtxidrelay:
self.send_message(msg_wtxidrelay())
if self.support_addrv2:
self.send_message(msg_sendaddrv2())
self.send_message(msg_verack())
self.nServices = message.nServices
self.relay = message.relay
if self.p2p_connected_to_node:
self.send_message(msg_getaddr())
# Connection helper methods
def wait_until(self, test_function_in, *, timeout=60, check_connected=True):
def test_function():
if check_connected:
assert self.is_connected
return test_function_in()
wait_until_helper_internal(test_function, timeout=timeout, lock=p2p_lock, timeout_factor=self.timeout_factor)
def wait_for_connect(self, *, timeout=60):
test_function = lambda: self.is_connected
self.wait_until(test_function, timeout=timeout, check_connected=False)
def wait_for_disconnect(self, *, timeout=60):
test_function = lambda: not self.is_connected
self.wait_until(test_function, timeout=timeout, check_connected=False)
def wait_for_reconnect(self, *, timeout=60):
def test_function():
return self.is_connected and self.last_message.get('version') and not self.supports_v2_p2p
self.wait_until(test_function, timeout=timeout, check_connected=False)
# Message receiving helper methods
def wait_for_tx(self, txid, *, timeout=60):
def test_function():
if not self.last_message.get('tx'):
return False
return self.last_message['tx'].tx.rehash() == txid
self.wait_until(test_function, timeout=timeout)
def wait_for_block(self, blockhash, *, timeout=60):
def test_function():
return self.last_message.get("block") and self.last_message["block"].block.rehash() == blockhash
self.wait_until(test_function, timeout=timeout)
def wait_for_header(self, blockhash, *, timeout=60):
def test_function():
last_headers = self.last_message.get('headers')
if not last_headers:
return False
return last_headers.headers[0].rehash() == int(blockhash, 16)
self.wait_until(test_function, timeout=timeout)
def wait_for_merkleblock(self, blockhash, *, timeout=60):
def test_function():
last_filtered_block = self.last_message.get('merkleblock')
if not last_filtered_block:
return False
return last_filtered_block.merkleblock.header.rehash() == int(blockhash, 16)
self.wait_until(test_function, timeout=timeout)
def wait_for_getdata(self, hash_list, *, timeout=60):
"""Waits for a getdata message.
The object hashes in the inventory vector must match the provided hash_list."""
def test_function():
last_data = self.last_message.get("getdata")
if not last_data:
return False
return [x.hash for x in last_data.inv] == hash_list
self.wait_until(test_function, timeout=timeout)
def wait_for_getheaders(self, block_hash=None, *, timeout=60):
"""Waits for a getheaders message containing a specific block hash.
If no block hash is provided, checks whether any getheaders message has been received by the node."""
def test_function():
last_getheaders = self.last_message.pop("getheaders", None)
if block_hash is None:
return last_getheaders
if last_getheaders is None:
return False
return block_hash == last_getheaders.locator.vHave[0]
self.wait_until(test_function, timeout=timeout)
def wait_for_inv(self, expected_inv, *, timeout=60):
"""Waits for an INV message and checks that the first inv object in the message was as expected."""
if len(expected_inv) > 1:
raise NotImplementedError("wait_for_inv() will only verify the first inv object")
def test_function():
return self.last_message.get("inv") and \
self.last_message["inv"].inv[0].type == expected_inv[0].type and \
self.last_message["inv"].inv[0].hash == expected_inv[0].hash
self.wait_until(test_function, timeout=timeout)
def wait_for_verack(self, *, timeout=60):
def test_function():
return "verack" in self.last_message
self.wait_until(test_function, timeout=timeout)
# Message sending helper functions
def send_version(self):
if self.on_connection_send_msg:
self.send_message(self.on_connection_send_msg)
self.on_connection_send_msg = None # Never used again
def send_and_ping(self, message, *, timeout=60):
self.send_message(message)
self.sync_with_ping(timeout=timeout)
def sync_with_ping(self, *, timeout=60):
"""Ensure ProcessMessages and SendMessages is called on this connection"""
# Sending two pings back-to-back, requires that the node calls
# `ProcessMessage` twice, and thus ensures `SendMessages` must have
# been called at least once
self.send_message(msg_ping(nonce=0))
self.send_message(msg_ping(nonce=self.ping_counter))
def test_function():
return self.last_message.get("pong") and self.last_message["pong"].nonce == self.ping_counter
self.wait_until(test_function, timeout=timeout)
self.ping_counter += 1
# One lock for synchronizing all data access between the network event loop (see
# NetworkThread below) and the thread running the test logic. For simplicity,
# P2PConnection acquires this lock whenever delivering a message to a P2PInterface.
# This lock should be acquired in the thread running the test logic to synchronize
# access to any data shared with the P2PInterface or P2PConnection.
p2p_lock = threading.Lock()
class NetworkThread(threading.Thread):
network_event_loop = None
def __init__(self):
super().__init__(name="NetworkThread")
# There is only one event loop and no more than one thread must be created
assert not self.network_event_loop
NetworkThread.listeners = {}
NetworkThread.protos = {}
if platform.system() == 'Windows':
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
NetworkThread.network_event_loop = asyncio.new_event_loop()
def run(self):
"""Start the network thread."""
self.network_event_loop.run_forever()
def close(self, *, timeout=10):
"""Close the connections and network event loop."""
self.network_event_loop.call_soon_threadsafe(self.network_event_loop.stop)
wait_until_helper_internal(lambda: not self.network_event_loop.is_running(), timeout=timeout)
self.network_event_loop.close()
self.join(timeout)
# Safe to remove event loop.
NetworkThread.network_event_loop = None
@classmethod
def listen(cls, p2p, callback, port=None, addr=None, idx=1):
""" Ensure a listening server is running on the given port, and run the
protocol specified by `p2p` on the next connection to it. Once ready
for connections, call `callback`."""
if port is None:
assert 0 < idx <= MAX_NODES
port = p2p_port(MAX_NODES - idx)
if addr is None:
addr = '127.0.0.1'
def exception_handler(loop, context):
if not p2p.reconnect:
loop.default_exception_handler(context)
cls.network_event_loop.set_exception_handler(exception_handler)
coroutine = cls.create_listen_server(addr, port, callback, p2p)
cls.network_event_loop.call_soon_threadsafe(cls.network_event_loop.create_task, coroutine)
@classmethod
async def create_listen_server(cls, addr, port, callback, proto):
def peer_protocol():
"""Returns a function that does the protocol handling for a new
connection. To allow different connections to have different
behaviors, the protocol function is first put in the cls.protos
dict. When the connection is made, the function removes the
protocol function from that dict, and returns it so the event loop
can start executing it."""
response = cls.protos.get((addr, port))
# remove protocol function from dict only when reconnection doesn't need to happen/already happened
if not proto.reconnect:
cls.protos[(addr, port)] = None
return response
if (addr, port) not in cls.listeners:
# When creating a listener on a given (addr, port) we only need to
# do it once. If we want different behaviors for different
# connections, we can accomplish this by providing different
# `proto` functions
listener = await cls.network_event_loop.create_server(peer_protocol, addr, port)
logger.debug("Listening server on %s:%d should be started" % (addr, port))
cls.listeners[(addr, port)] = listener
cls.protos[(addr, port)] = proto
callback(addr, port)
class P2PDataStore(P2PInterface):
"""A P2P data store class.
Keeps a block and transaction store and responds correctly to getdata and getheaders requests."""
def __init__(self):
super().__init__()
# store of blocks. key is block hash, value is a CBlock object
self.block_store = {}
self.last_block_hash = ''
# store of txs. key is txid, value is a CTransaction object
self.tx_store = {}
self.getdata_requests = []
def on_getdata(self, message):
"""Check for the tx/block in our stores and if found, reply with an inv message."""
for inv in message.inv:
self.getdata_requests.append(inv.hash)
if (inv.type & MSG_TYPE_MASK) == MSG_TX and inv.hash in self.tx_store.keys():
self.send_message(msg_tx(self.tx_store[inv.hash]))
elif (inv.type & MSG_TYPE_MASK) == MSG_BLOCK and inv.hash in self.block_store.keys():
self.send_message(msg_block(self.block_store[inv.hash]))
else:
logger.debug('getdata message type {} received.'.format(hex(inv.type)))
def on_getheaders(self, message):
"""Search back through our block store for the locator, and reply with a headers message if found."""
locator, hash_stop = message.locator, message.hashstop
# Assume that the most recent block added is the tip
if not self.block_store:
return
headers_list = [self.block_store[self.last_block_hash]]
while headers_list[-1].sha256 not in locator.vHave:
# Walk back through the block store, adding headers to headers_list
# as we go.
prev_block_hash = headers_list[-1].hashPrevBlock
if prev_block_hash in self.block_store:
prev_block_header = CBlockHeader(self.block_store[prev_block_hash])
headers_list.append(prev_block_header)
if prev_block_header.sha256 == hash_stop:
# if this is the hashstop header, stop here
break
else:
logger.debug('block hash {} not found in block store'.format(hex(prev_block_hash)))
break
# Truncate the list if there are too many headers
headers_list = headers_list[:-MAX_HEADERS_RESULTS - 1:-1]
response = msg_headers(headers_list)
if response is not None:
self.send_message(response)
def send_blocks_and_test(self, blocks, node, *, success=True, force_send=False, reject_reason=None, expect_disconnect=False, timeout=60, is_decoy=False):
"""Send blocks to test node and test whether the tip advances.
- add all blocks to our block_store
- send a headers message for the final block
- the on_getheaders handler will ensure that any getheaders are responded to
- if force_send is False: wait for getdata for each of the blocks. The on_getdata handler will
ensure that any getdata messages are responded to. Otherwise send the full block unsolicited.
- if success is True: assert that the node's tip advances to the most recent block
- if success is False: assert that the node's tip doesn't advance
- if reject_reason is set: assert that the correct reject message is logged"""
with p2p_lock:
for block in blocks:
self.block_store[block.sha256] = block
self.last_block_hash = block.sha256
reject_reason = [reject_reason] if reject_reason else []
with node.assert_debug_log(expected_msgs=reject_reason):
if is_decoy: # since decoy messages are ignored by the recipient - no need to wait for response
force_send = True
if force_send:
for b in blocks:
self.send_message(msg_block(block=b), is_decoy)
else:
self.send_message(msg_headers([CBlockHeader(block) for block in blocks]))
self.wait_until(
lambda: blocks[-1].sha256 in self.getdata_requests,
timeout=timeout,
check_connected=success,
)
if expect_disconnect:
self.wait_for_disconnect(timeout=timeout)
else:
self.sync_with_ping(timeout=timeout)
if success:
self.wait_until(lambda: node.getbestblockhash() == blocks[-1].hash, timeout=timeout)
else:
assert node.getbestblockhash() != blocks[-1].hash
def send_txs_and_test(self, txs, node, *, success=True, expect_disconnect=False, reject_reason=None):
"""Send txs to test node and test whether they're accepted to the mempool.
- add all txs to our tx_store
- send tx messages for all txs
- if success is True/False: assert that the txs are/are not accepted to the mempool
- if expect_disconnect is True: Skip the sync with ping
- if reject_reason is set: assert that the correct reject message is logged."""
with p2p_lock:
for tx in txs:
self.tx_store[tx.sha256] = tx
reject_reason = [reject_reason] if reject_reason else []
with node.assert_debug_log(expected_msgs=reject_reason):
for tx in txs:
self.send_message(msg_tx(tx))
if expect_disconnect:
self.wait_for_disconnect()
else:
self.sync_with_ping()
raw_mempool = node.getrawmempool()
if success:
# Check that all txs are now in the mempool
for tx in txs:
assert tx.hash in raw_mempool, "{} not found in mempool".format(tx.hash)
else:
# Check that none of the txs are now in the mempool
for tx in txs:
assert tx.hash not in raw_mempool, "{} tx found in mempool".format(tx.hash)
class P2PTxInvStore(P2PInterface):
"""A P2PInterface which stores a count of how many times each txid has been announced."""
def __init__(self):
super().__init__()
self.tx_invs_received = defaultdict(int)
def on_inv(self, message):
super().on_inv(message) # Send getdata in response.
# Store how many times invs have been received for each tx.
for i in message.inv:
if (i.type == MSG_TX) or (i.type == MSG_WTX):
# save txid
self.tx_invs_received[i.hash] += 1
def get_invs(self):
with p2p_lock:
return list(self.tx_invs_received.keys())
def wait_for_broadcast(self, txns, *, timeout=60):
"""Waits for the txns (list of txids) to complete initial broadcast.
The mempool should mark unbroadcast=False for these transactions.
"""
# Wait until invs have been received (and getdatas sent) for each txid.
self.wait_until(lambda: set(self.tx_invs_received.keys()) == set([int(tx, 16) for tx in txns]), timeout=timeout)
# Flush messages and wait for the getdatas to be processed
self.sync_with_ping()