This commit is contained in:
stratospher 2024-04-29 04:30:15 +02:00 committed by GitHub
commit d9eca9665a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 205 additions and 0 deletions

View File

@ -306,6 +306,7 @@ test_fuzz_fuzz_SOURCES = \
test/fuzz/crypto_aes256.cpp \
test/fuzz/crypto_aes256cbc.cpp \
test/fuzz/crypto_chacha20.cpp \
test/fuzz/crypto_chacha20poly1305.cpp \
test/fuzz/crypto_common.cpp \
test/fuzz/crypto_diff_fuzz_chacha20.cpp \
test/fuzz/crypto_hkdf_hmac_sha256_l32.cpp \

View File

@ -0,0 +1,204 @@
// Copyright (c) 2020-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <crypto/chacha20poly1305.h>
#include <span.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/util/xoroshiro128plusplus.h>
#include <cstddef>
#include <cstdint>
#include <vector>
constexpr static inline void crypt_till_rekey(FSChaCha20Poly1305& aead, int rekey_interval, bool encrypt)
{
for (int i = 0; i < rekey_interval; ++i) {
std::byte dummy_tag[FSChaCha20Poly1305::EXPANSION] = {{}};
if (encrypt) {
aead.Encrypt(Span{dummy_tag}.first(0), Span{dummy_tag}.first(0), dummy_tag);
} else {
aead.Decrypt(dummy_tag, Span{dummy_tag}.first(0), Span{dummy_tag}.first(0));
}
}
}
FUZZ_TARGET(crypto_aeadchacha20poly1305)
{
FuzzedDataProvider provider{buffer.data(), buffer.size()};
auto key = provider.ConsumeBytes<std::byte>(32);
key.resize(32);
AEADChaCha20Poly1305 aead(key);
// Initialize RNG deterministically, to generate contents and AAD. We assume that there are no
// (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid
// reading the actual data for those from the fuzzer input (which would need large amounts of
// data).
XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
LIMITED_WHILE(provider.ConsumeBool(), 10000)
{
// Mode:
// - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix.
// - Bit 2: whether this ciphertext will be corrupted (making it the last sent one)
// - Bit 3-4: controls the maximum aad length (max 511 bytes)
// - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons)
unsigned mode = provider.ConsumeIntegral<uint8_t>();
bool use_splits = mode & 1;
bool damage = mode & 4;
unsigned aad_length_bits = 3 * ((mode >> 3) & 3);
unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1);
unsigned length_bits = 2 * ((mode >> 5) & 7);
unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1);
// Generate aad and content.
std::vector<std::byte> aad(aad_length);
for (auto& val : aad) val = std::byte{(uint8_t)rng()};
std::vector<std::byte> plain(length);
for (auto& val : plain) val = std::byte{(uint8_t)rng()};
std::vector<std::byte> cipher(length + AEADChaCha20Poly1305::EXPANSION);
// Generate nonce
AEADChaCha20Poly1305::Nonce96 nonce = {(uint32_t)rng(), rng()};
if (use_splits && length > 0) {
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, nonce, cipher);
} else {
aead.Encrypt(plain, aad, nonce, cipher);
}
// Test Keystream output
std::vector<std::byte> keystream(length);
aead.Keystream(nonce, keystream);
for (size_t i = 0; i < length; ++i) {
assert((plain[i] ^ keystream[i]) == cipher[i]);
}
std::vector<std::byte> decrypted_contents(length);
bool ok{false};
// damage the key
unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31);
std::byte damage_val{(uint8_t)(1U << (key_position & 7))};
std::vector<std::byte> bad_key = key;
bad_key[key_position] ^= damage_val;
AEADChaCha20Poly1305 bad_aead(bad_key);
ok = bad_aead.Decrypt(cipher, aad, nonce, decrypted_contents);
assert(!ok);
// Optionally damage 1 bit in either the cipher (corresponding to a change in transit)
// or the aad (to make sure that decryption will fail if the AAD mismatches).
if (damage) {
unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U);
unsigned damage_pos = damage_bit >> 3;
std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))};
if (damage_pos >= cipher.size()) {
aad[damage_pos - cipher.size()] ^= damage_val;
} else {
cipher[damage_pos] ^= damage_val;
}
}
if (use_splits && length > 0) {
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
ok = aead.Decrypt(cipher, aad, nonce, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index));
} else {
ok = aead.Decrypt(cipher, aad, nonce, decrypted_contents);
}
// Decryption *must* fail if the packet was damaged, and succeed if it wasn't.
assert(!ok == damage);
if (!ok) break;
assert(decrypted_contents == plain);
}
}
FUZZ_TARGET(crypto_fschacha20poly1305)
{
FuzzedDataProvider provider{buffer.data(), buffer.size()};
uint32_t rekey_interval = provider.ConsumeIntegralInRange<size_t>(32, 512);
auto key = provider.ConsumeBytes<std::byte>(32);
key.resize(32);
FSChaCha20Poly1305 enc_aead(key, rekey_interval);
FSChaCha20Poly1305 dec_aead(key, rekey_interval);
// Initialize RNG deterministically, to generate contents and AAD. We assume that there are no
// (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid
// reading the actual data for those from the fuzzer input (which would need large amounts of
// data).
XoRoShiRo128PlusPlus rng(provider.ConsumeIntegral<uint64_t>());
LIMITED_WHILE(provider.ConsumeBool(), 10000)
{
// Mode:
// - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix.
// - Bit 2: whether this ciphertext will be corrupted (making it the last sent one)
// - Bit 3-4: controls the maximum aad length (max 511 bytes)
// - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons)
unsigned mode = provider.ConsumeIntegral<uint8_t>();
bool use_splits = mode & 1;
bool damage = mode & 4;
unsigned aad_length_bits = 3 * ((mode >> 3) & 3);
unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1);
unsigned length_bits = 2 * ((mode >> 5) & 7);
unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1);
// Generate aad and content.
std::vector<std::byte> aad(aad_length);
for (auto& val : aad) val = std::byte{(uint8_t)rng()};
std::vector<std::byte> plain(length);
for (auto& val : plain) val = std::byte{(uint8_t)rng()};
std::vector<std::byte> cipher(length + FSChaCha20Poly1305::EXPANSION);
crypt_till_rekey(enc_aead, rekey_interval, true);
if (use_splits && length > 0) {
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
enc_aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, cipher);
} else {
enc_aead.Encrypt(plain, aad, cipher);
}
std::vector<std::byte> decrypted_contents(length);
bool ok{false};
// damage the key
unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31);
std::byte damage_val{(uint8_t)(1U << (key_position & 7))};
std::vector<std::byte> bad_key = key;
bad_key[key_position] ^= damage_val;
FSChaCha20Poly1305 bad_fs_aead(bad_key, rekey_interval);
crypt_till_rekey(bad_fs_aead, rekey_interval, false);
ok = bad_fs_aead.Decrypt(cipher, aad, decrypted_contents);
assert(!ok);
// Optionally damage 1 bit in either the cipher (corresponding to a change in transit)
// or the aad (to make sure that decryption will fail if the AAD mismatches).
if (damage) {
unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U);
unsigned damage_pos = damage_bit >> 3;
std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))};
if (damage_pos >= cipher.size()) {
aad[damage_pos - cipher.size()] ^= damage_val;
} else {
cipher[damage_pos] ^= damage_val;
}
}
crypt_till_rekey(dec_aead, rekey_interval, false);
if (use_splits && length > 0) {
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length);
ok = dec_aead.Decrypt(cipher, aad, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index));
} else {
ok = dec_aead.Decrypt(cipher, aad, decrypted_contents);
}
// Decryption *must* fail if the packet was damaged, and succeed if it wasn't.
assert(!ok == damage);
if (!ok) break;
assert(decrypted_contents == plain);
}
}