Add FeeFrac utils

Co-authored-by: Suhas Daftuar <sdaftuar@chaincode.com>
Co-authored-by: Pieter Wuille <pieter.wuille@gmail.com>
This commit is contained in:
Greg Sanders 2024-01-12 10:40:41 -05:00
parent 02c7fd8df4
commit ce8e22542e
3 changed files with 249 additions and 0 deletions

View File

@ -302,6 +302,7 @@ BITCOIN_CORE_H = \
util/error.h \
util/exception.h \
util/fastrange.h \
util/feefrac.h \
util/fees.h \
util/fs.h \
util/fs_helpers.h \
@ -741,6 +742,7 @@ libbitcoin_util_a_SOURCES = \
util/check.cpp \
util/error.cpp \
util/exception.cpp \
util/feefrac.cpp \
util/fees.cpp \
util/fs.cpp \
util/fs_helpers.cpp \
@ -983,6 +985,7 @@ libbitcoinkernel_la_SOURCES = \
util/batchpriority.cpp \
util/chaintype.cpp \
util/check.cpp \
util/feefrac.cpp \
util/fs.cpp \
util/fs_helpers.cpp \
util/hasher.cpp \

86
src/util/feefrac.cpp Normal file
View File

@ -0,0 +1,86 @@
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <util/feefrac.h>
#include <algorithm>
#include <array>
#include <vector>
std::vector<FeeFrac> BuildDiagramFromChunks(const Span<const FeeFrac> chunks)
{
std::vector<FeeFrac> diagram;
diagram.reserve(chunks.size() + 1);
diagram.emplace_back(0, 0);
for (auto& chunk : chunks) {
diagram.emplace_back(diagram.back() + chunk);
}
return diagram;
}
std::partial_ordering CompareFeerateDiagram(Span<const FeeFrac> dia0, Span<const FeeFrac> dia1)
{
/** Array to allow indexed access to input diagrams. */
const std::array<Span<const FeeFrac>, 2> dias = {dia0, dia1};
/** How many elements we have processed in each input. */
size_t next_index[2] = {1, 1};
/** Whether the corresponding input is strictly better than the other at least in one place. */
bool better_somewhere[2] = {false, false};
/** Get the first unprocessed point in diagram number dia. */
const auto next_point = [&](int dia) { return dias[dia][next_index[dia]]; };
/** Get the last processed point in diagram number dia. */
const auto prev_point = [&](int dia) { return dias[dia][next_index[dia] - 1]; };
// Diagrams should be non-empty, and first elements zero in size and fee
Assert(!dia0.empty() && !dia1.empty());
Assert(prev_point(0).IsEmpty());
Assert(prev_point(1).IsEmpty());
do {
bool done_0 = next_index[0] == dias[0].size();
bool done_1 = next_index[1] == dias[1].size();
if (done_0 && done_1) break;
// Determine which diagram has the first unprocessed point. If a single side is finished, use the
// other one. Only up to one can be done due to check above.
const int unproc_side = (done_0 || done_1) ? done_0 : next_point(0).size > next_point(1).size;
// Let `P` be the next point on diagram unproc_side, and `A` and `B` the previous and next points
// on the other diagram. We want to know if P lies above or below the line AB. To determine this, we
// compute the slopes of line AB and of line AP, and compare them. These slopes are fee per size,
// and can thus be expressed as FeeFracs.
const FeeFrac& point_p = next_point(unproc_side);
const FeeFrac& point_a = prev_point(!unproc_side);
// Slope of AP can be negative, unlike AB
const auto slope_ap = point_p - point_a;
Assume(slope_ap.size > 0);
std::weak_ordering cmp = std::weak_ordering::equivalent;
if (done_0 || done_1) {
// If a single side has no points left, act as if AB has slope tail_feerate(of 0).
Assume(!(done_0 && done_1));
cmp = FeeRateCompare(slope_ap, FeeFrac(0, 1));
} else {
// If both sides have points left, compute B, and the slope of AB explicitly.
const FeeFrac& point_b = next_point(!unproc_side);
const auto slope_ab = point_b - point_a;
Assume(slope_ab.size >= slope_ap.size);
cmp = FeeRateCompare(slope_ap, slope_ab);
// If B and P have the same size, B can be marked as processed (in addition to P, see
// below), as we've already performed a comparison at this size.
if (point_b.size == point_p.size) ++next_index[!unproc_side];
}
// If P lies above AB, unproc_side is better in P. If P lies below AB, then !unproc_side is
// better in P.
if (std::is_gt(cmp)) better_somewhere[unproc_side] = true;
if (std::is_lt(cmp)) better_somewhere[!unproc_side] = true;
++next_index[unproc_side];
} while(true);
// If both diagrams are better somewhere, they are incomparable.
if (better_somewhere[0] && better_somewhere[1]) return std::partial_ordering::unordered;
// Otherwise compare the better_somewhere values.
return better_somewhere[0] <=> better_somewhere[1];
}

160
src/util/feefrac.h Normal file
View File

@ -0,0 +1,160 @@
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UTIL_FEEFRAC_H
#define BITCOIN_UTIL_FEEFRAC_H
#include <stdint.h>
#include <compare>
#include <vector>
#include <span.h>
#include <util/check.h>
/** Data structure storing a fee and size, ordered by increasing fee/size.
*
* The size of a FeeFrac cannot be zero unless the fee is also zero.
*
* FeeFracs have a total ordering, first by increasing feerate (ratio of fee over size), and then
* by decreasing size. The empty FeeFrac (fee and size both 0) sorts last. So for example, the
* following FeeFracs are in sorted order:
*
* - fee=0 size=1 (feerate 0)
* - fee=1 size=2 (feerate 0.5)
* - fee=2 size=3 (feerate 0.667...)
* - fee=2 size=2 (feerate 1)
* - fee=1 size=1 (feerate 1)
* - fee=3 size=2 (feerate 1.5)
* - fee=2 size=1 (feerate 2)
* - fee=0 size=0 (undefined feerate)
*
* A FeeFrac is considered "better" if it sorts after another, by this ordering. All standard
* comparison operators (<=>, ==, !=, >, <, >=, <=) respect this ordering.
*
* The CompareFeeFrac, and >> and << operators only compare feerate and treat equal feerate but
* different size as equivalent. The empty FeeFrac is neither lower or higher in feerate than any
* other.
*/
struct FeeFrac
{
/** Fallback version for Mul (see below).
*
* Separate to permit testing on platforms where it isn't actually needed.
*/
static inline std::pair<int64_t, uint32_t> MulFallback(int64_t a, int32_t b) noexcept
{
// Otherwise, emulate 96-bit multiplication using two 64-bit multiplies.
int64_t low = int64_t{static_cast<uint32_t>(a)} * b;
int64_t high = (a >> 32) * b;
return {high + (low >> 32), static_cast<uint32_t>(low)};
}
// Compute a * b, returning an unspecified but totally ordered type.
#ifdef __SIZEOF_INT128__
static inline __int128 Mul(int64_t a, int32_t b) noexcept
{
// If __int128 is available, use 128-bit wide multiply.
return __int128{a} * b;
}
#else
static constexpr auto Mul = MulFallback;
#endif
int64_t fee;
int32_t size;
/** Construct an IsEmpty() FeeFrac. */
inline FeeFrac() noexcept : fee{0}, size{0} {}
/** Construct a FeeFrac with specified fee and size. */
inline FeeFrac(int64_t f, int32_t s) noexcept : fee{f}, size{s} {}
inline FeeFrac(const FeeFrac&) noexcept = default;
inline FeeFrac& operator=(const FeeFrac&) noexcept = default;
/** Check if this is empty (size and fee are 0). */
bool inline IsEmpty() const noexcept {
return size == 0;
}
/** Add fee and size of another FeeFrac to this one. */
void inline operator+=(const FeeFrac& other) noexcept
{
fee += other.fee;
size += other.size;
}
/** Subtract fee and size of another FeeFrac from this one. */
void inline operator-=(const FeeFrac& other) noexcept
{
fee -= other.fee;
size -= other.size;
}
/** Sum fee and size. */
friend inline FeeFrac operator+(const FeeFrac& a, const FeeFrac& b) noexcept
{
return {a.fee + b.fee, a.size + b.size};
}
/** Subtract both fee and size. */
friend inline FeeFrac operator-(const FeeFrac& a, const FeeFrac& b) noexcept
{
return {a.fee - b.fee, a.size - b.size};
}
/** Check if two FeeFrac objects are equal (both same fee and same size). */
friend inline bool operator==(const FeeFrac& a, const FeeFrac& b) noexcept
{
return a.fee == b.fee && a.size == b.size;
}
/** Compare two FeeFracs just by feerate. */
friend inline std::weak_ordering FeeRateCompare(const FeeFrac& a, const FeeFrac& b) noexcept
{
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
return cross_a <=> cross_b;
}
/** Check if a FeeFrac object has strictly lower feerate than another. */
friend inline bool operator<<(const FeeFrac& a, const FeeFrac& b) noexcept
{
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
return cross_a < cross_b;
}
/** Check if a FeeFrac object has strictly higher feerate than another. */
friend inline bool operator>>(const FeeFrac& a, const FeeFrac& b) noexcept
{
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
return cross_a > cross_b;
}
/** Compare two FeeFracs. <, >, <=, and >= are auto-generated from this. */
friend inline std::strong_ordering operator<=>(const FeeFrac& a, const FeeFrac& b) noexcept
{
auto cross_a = Mul(a.fee, b.size), cross_b = Mul(b.fee, a.size);
if (cross_a == cross_b) return b.size <=> a.size;
return cross_a <=> cross_b;
}
/** Swap two FeeFracs. */
friend inline void swap(FeeFrac& a, FeeFrac& b) noexcept
{
std::swap(a.fee, b.fee);
std::swap(a.size, b.size);
}
};
/** Takes the pre-computed and topologically-valid chunks and generates a fee diagram which starts at FeeFrac of (0, 0) */
std::vector<FeeFrac> BuildDiagramFromChunks(Span<const FeeFrac> chunks);
/** Compares two feerate diagrams. The shorter one is implicitly
* extended with a horizontal straight line.
*
* A feerate diagram consists of a list of (fee, size) points with the property that size
* is strictly increasing and that the first entry is (0, 0).
*/
std::partial_ordering CompareFeerateDiagram(Span<const FeeFrac> dia0, Span<const FeeFrac> dia1);
#endif // BITCOIN_UTIL_FEEFRAC_H