From 7e89b659e1ddd0c04fa2bddba9706b5d1a1daec3 Mon Sep 17 00:00:00 2001 From: Greg Sanders Date: Thu, 18 Jan 2024 12:37:56 -0500 Subject: [PATCH] Add fuzz test for FeeFrac --- src/Makefile.test.include | 1 + src/test/fuzz/feefrac.cpp | 123 ++++++++++++++++++++++++++++++++++++++ 2 files changed, 124 insertions(+) create mode 100644 src/test/fuzz/feefrac.cpp diff --git a/src/Makefile.test.include b/src/Makefile.test.include index 2e475f08039..d345b41a0a5 100644 --- a/src/Makefile.test.include +++ b/src/Makefile.test.include @@ -314,6 +314,7 @@ test_fuzz_fuzz_SOURCES = \ test/fuzz/descriptor_parse.cpp \ test/fuzz/deserialize.cpp \ test/fuzz/eval_script.cpp \ + test/fuzz/feefrac.cpp \ test/fuzz/fee_rate.cpp \ test/fuzz/feeratediagram.cpp \ test/fuzz/fees.cpp \ diff --git a/src/test/fuzz/feefrac.cpp b/src/test/fuzz/feefrac.cpp new file mode 100644 index 00000000000..2c7553360e6 --- /dev/null +++ b/src/test/fuzz/feefrac.cpp @@ -0,0 +1,123 @@ +// Copyright (c) 2024 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include +#include +#include +#include + +#include +#include +#include + +namespace { + +/** Compute a * b, represented in 4x32 bits, highest limb first. */ +std::array Mul128(uint64_t a, uint64_t b) +{ + std::array ret{0, 0, 0, 0}; + + /** Perform ret += v << (32 * pos), at 128-bit precision. */ + auto add_fn = [&](uint64_t v, int pos) { + uint64_t accum{0}; + for (int i = 0; i + pos < 4; ++i) { + // Add current value at limb pos in ret. + accum += ret[3 - pos - i]; + // Add low or high half of v. + if (i == 0) accum += v & 0xffffffff; + if (i == 1) accum += v >> 32; + // Store lower half of result in limb pos in ret. + ret[3 - pos - i] = accum & 0xffffffff; + // Leave carry in accum. + accum >>= 32; + } + // Make sure no overflow. + assert(accum == 0); + }; + + // Multiply the 4 individual limbs (schoolbook multiply, with base 2^32). + add_fn((a & 0xffffffff) * (b & 0xffffffff), 0); + add_fn((a >> 32) * (b & 0xffffffff), 1); + add_fn((a & 0xffffffff) * (b >> 32), 1); + add_fn((a >> 32) * (b >> 32), 2); + return ret; +} + +/* comparison helper for std::array */ +std::strong_ordering compare_arrays(const std::array& a, const std::array& b) { + for (size_t i = 0; i < a.size(); ++i) { + if (a[i] != b[i]) return a[i] <=> b[i]; + } + return std::strong_ordering::equal; +} + +std::strong_ordering MulCompare(int64_t a1, int64_t a2, int64_t b1, int64_t b2) +{ + // Compute and compare signs. + int sign_a = (a1 == 0 ? 0 : a1 < 0 ? -1 : 1) * (a2 == 0 ? 0 : a2 < 0 ? -1 : 1); + int sign_b = (b1 == 0 ? 0 : b1 < 0 ? -1 : 1) * (b2 == 0 ? 0 : b2 < 0 ? -1 : 1); + if (sign_a != sign_b) return sign_a <=> sign_b; + + // Compute absolute values. + uint64_t abs_a1 = static_cast(a1), abs_a2 = static_cast(a2); + uint64_t abs_b1 = static_cast(b1), abs_b2 = static_cast(b2); + // Use (~x + 1) instead of the equivalent (-x) to silence the linter; mod 2^64 behavior is + // intentional here. + if (a1 < 0) abs_a1 = ~abs_a1 + 1; + if (a2 < 0) abs_a2 = ~abs_a2 + 1; + if (b1 < 0) abs_b1 = ~abs_b1 + 1; + if (b2 < 0) abs_b2 = ~abs_b2 + 1; + + // Compute products of absolute values. + auto mul_abs_a = Mul128(abs_a1, abs_a2); + auto mul_abs_b = Mul128(abs_b1, abs_b2); + if (sign_a < 0) { + return compare_arrays(mul_abs_b, mul_abs_a); + } else { + return compare_arrays(mul_abs_a, mul_abs_b); + } +} + +} // namespace + +FUZZ_TARGET(feefrac) +{ + FuzzedDataProvider provider(buffer.data(), buffer.size()); + + int64_t f1 = provider.ConsumeIntegral(); + int32_t s1 = provider.ConsumeIntegral(); + if (s1 == 0) f1 = 0; + FeeFrac fr1(f1, s1); + assert(fr1.IsEmpty() == (s1 == 0)); + + int64_t f2 = provider.ConsumeIntegral(); + int32_t s2 = provider.ConsumeIntegral(); + if (s2 == 0) f2 = 0; + FeeFrac fr2(f2, s2); + assert(fr2.IsEmpty() == (s2 == 0)); + + // Feerate comparisons + auto cmp_feerate = MulCompare(f1, s2, f2, s1); + assert(FeeRateCompare(fr1, fr2) == cmp_feerate); + assert((fr1 << fr2) == std::is_lt(cmp_feerate)); + assert((fr1 >> fr2) == std::is_gt(cmp_feerate)); + + // Compare with manual invocation of FeeFrac::Mul. + auto cmp_mul = FeeFrac::Mul(f1, s2) <=> FeeFrac::Mul(f2, s1); + assert(cmp_mul == cmp_feerate); + + // Same, but using FeeFrac::MulFallback. + auto cmp_fallback = FeeFrac::MulFallback(f1, s2) <=> FeeFrac::MulFallback(f2, s1); + assert(cmp_fallback == cmp_feerate); + + // Total order comparisons + auto cmp_total = std::is_eq(cmp_feerate) ? (s2 <=> s1) : cmp_feerate; + assert((fr1 <=> fr2) == cmp_total); + assert((fr1 < fr2) == std::is_lt(cmp_total)); + assert((fr1 > fr2) == std::is_gt(cmp_total)); + assert((fr1 <= fr2) == std::is_lteq(cmp_total)); + assert((fr1 >= fr2) == std::is_gteq(cmp_total)); + assert((fr1 == fr2) == std::is_eq(cmp_total)); + assert((fr1 != fr2) == std::is_neq(cmp_total)); +}