1
mirror of https://github.com/rvdbreemen/OTGW-firmware synced 2024-11-16 04:33:49 +01:00
OTGW-firmware/OTGW-Core.ino

1280 lines
56 KiB
Arduino
Raw Normal View History

/*
***************************************************************************
2021-01-30 15:24:54 +01:00
** Program : OTGW-Core.ino
** Version : v0.8.0
**
** Copyright (c) 2021 Robert van den Breemen
** Borrowed from OpenTherm library from:
** https://github.com/jpraus/arduino-opentherm
**
** TERMS OF USE: MIT License. See bottom of file.
***************************************************************************
*/
2021-01-30 15:24:54 +01:00
//define Nodoshop OTGW hardware
#define OTGW_BUTTON 0 //D3
#define OTGW_RESET 14 //D5
#define OTGW_LED1 2 //D4
#define OTGW_LED2 16 //D0
2021-01-30 15:24:54 +01:00
//external watchdog
2021-02-02 00:22:46 +01:00
#define EXT_WD_I2C_ADDRESS 0x26
#define PIN_I2C_SDA 4 //D2
#define PIN_I2C_SCL 5 //D1
2021-01-30 15:24:54 +01:00
2021-02-14 14:31:21 +01:00
//used by update firmware functions
const char *hexheaders[] = {
"Last-Modified",
"X-Version"
};
2021-01-30 15:24:54 +01:00
//Macro to Feed the Watchdog
2021-02-02 00:22:46 +01:00
#define FEEDWATCHDOGNOW Wire.beginTransmission(EXT_WD_I2C_ADDRESS); Wire.write(0xA5); Wire.endTransmission();
/* --- PRINTF_BYTE_TO_BINARY macro's --- */
#define PRINTF_BINARY_PATTERN_INT8 "%c%c%c%c%c%c%c%c"
#define PRINTF_BYTE_TO_BINARY_INT8(i) \
(((i) & 0x80ll) ? '1' : '0'), \
(((i) & 0x40ll) ? '1' : '0'), \
(((i) & 0x20ll) ? '1' : '0'), \
(((i) & 0x10ll) ? '1' : '0'), \
(((i) & 0x08ll) ? '1' : '0'), \
(((i) & 0x04ll) ? '1' : '0'), \
(((i) & 0x02ll) ? '1' : '0'), \
(((i) & 0x01ll) ? '1' : '0')
2021-01-30 15:24:54 +01:00
#define PRINTF_BINARY_PATTERN_INT16 PRINTF_BINARY_PATTERN_INT8 PRINTF_BINARY_PATTERN_INT8
#define PRINTF_BYTE_TO_BINARY_INT16(i) PRINTF_BYTE_TO_BINARY_INT8((i) >> 8), PRINTF_BYTE_TO_BINARY_INT8(i)
#define PRINTF_BINARY_PATTERN_INT32 PRINTF_BINARY_PATTERN_INT16 PRINTF_BINARY_PATTERN_INT16
#define PRINTF_BYTE_TO_BINARY_INT32(i) PRINTF_BYTE_TO_BINARY_INT16((i) >> 16), PRINTF_BYTE_TO_BINARY_INT16(i)
#define PRINTF_BINARY_PATTERN_INT64 PRINTF_BINARY_PATTERN_INT32 PRINTF_BINARY_PATTERN_INT32
#define PRINTF_BYTE_TO_BINARY_INT64(i) PRINTF_BYTE_TO_BINARY_INT32((i) >> 32), PRINTF_BYTE_TO_BINARY_INT32(i)
/* --- Endf of macro's --- */
2020-11-03 01:28:05 +01:00
//some variable's
2020-11-02 08:09:26 +01:00
OpenthermData OTdata;
2021-02-08 01:46:11 +01:00
#define OTGW_BANNER "OpenTherm Gateway"
2021-01-18 21:53:53 +01:00
//===================[ Reset OTGW ]===============================
void resetOTGW() {
2021-02-08 23:44:19 +01:00
OTGWSerial.resetPic();
2021-02-09 22:01:16 +01:00
//then read the first response of the firmware to make sure it reads it
2021-02-08 23:44:19 +01:00
String resp = OTGWSerial.readStringUntil('\n');
DebugTf("Received firmware version: [%s] [%s] (%d)\r\n", CSTR(resp), OTGWSerial.firmwareVersion(), strlen(OTGWSerial.firmwareVersion()));
bOTGWonline = (strlen(OTGWSerial.firmwareVersion())>0);
if (bOTGWonline){
2021-02-08 23:44:19 +01:00
if (resp.length()>0) {
sPICfwversion = String(OTGWSerial.firmwareVersion());
} else sPICfwversion ="No version found";
2021-02-09 23:29:39 +01:00
} else sPICfwversion = "No OTGW connected!";
DebugTf("Current firmware version: %s\r\n", CSTR(sPICfwversion));
2021-01-18 21:53:53 +01:00
}
2021-01-31 23:43:52 +01:00
//===================[ getpicfwversion ]===========================
String getpicfwversion(){
String _ret="";
2021-02-01 00:02:46 +01:00
String line = executeCommand("PR=A");
int p = line.indexOf(OTGW_BANNER);
2021-01-31 23:43:52 +01:00
if (p >= 0) {
p += sizeof(OTGW_BANNER);
2021-01-31 23:43:52 +01:00
_ret = line.substring(p);
2021-02-02 21:21:46 +01:00
} else _ret ="No version found";
DebugTf("Current firmware version: %s\r\n", CSTR(_ret));
2021-01-31 23:43:52 +01:00
_ret.trim();
return _ret;
}
//===================[ OTGW Command & Response ]===================
2021-01-31 23:44:58 +01:00
String executeCommand(const String sCmd){
2021-02-01 23:03:07 +01:00
//send command to OTGW
2021-02-02 00:56:38 +01:00
DebugTf("OTGW Send Cmd [%s]\r\n", CSTR(sCmd));
OTGWSerial.setTimeout(1000);
DECLARE_TIMER_MS(tmrWaitForIt, 1000);
while((OTGWSerial.availableForWrite() < sCmd.length()+2) && !DUE(tmrWaitForIt)){
2021-02-01 23:03:07 +01:00
feedWatchDog();
}
OTGWSerial.write(CSTR(sCmd));
OTGWSerial.write("\r\n");
OTGWSerial.flush();
2021-02-01 23:03:07 +01:00
//wait for response
2021-02-02 11:32:49 +01:00
RESTART_TIMER(tmrWaitForIt);
while(!OTGWSerial.available() && !DUE(tmrWaitForIt)) {
2021-02-01 23:03:07 +01:00
feedWatchDog();
}
2021-02-02 21:21:46 +01:00
String _cmd = sCmd.substring(0,2);
2021-02-01 23:03:07 +01:00
DebugTf("Send command: [%s]\r\n", CSTR(_cmd));
//fetch a line
String line = OTGWSerial.readStringUntil('\n');
line.trim();
2021-02-01 23:03:07 +01:00
String _ret ="";
if (line.startsWith(_cmd)){
// Responses: When a serial command is accepted by the gateway, it responds with the two letters of the command code, a colon, and the interpreted data value.
// Command: "TT=19.125"
// Response: "TT: 19.13"
// [XX:response string]
_ret = line.substring(3);
} else if (line.startsWith("NG")){
_ret = "NG - No Good. The command code is unknown.";
} else if (line.startsWith("SE")){
_ret = "SE - Syntax Error. The command contained an unexpected character or was incomplete.";
} else if (line.startsWith("BV")){
_ret = "BV - Bad Value. The command contained a data value that is not allowed.";
} else if (line.startsWith("OR")){
_ret = "OR - Out of Range. A number was specified outside of the allowed range.";
} else if (line.startsWith("NS")){
_ret = "NS - No Space. The alternative Data-ID could not be added because the table is full.";
} else if (line.startsWith("NF")){
_ret = "NF - Not Found. The specified alternative Data-ID could not be removed because it does not exist in the table.";
} else if (line.startsWith("OE")){
_ret = "OE - Overrun Error. The processor was busy and failed to process all received characters.";
2021-02-02 21:21:46 +01:00
} else if (line.length()==0) {
//just an empty line... most likely it's a timeout situation
_ret = "TO - Timeout. No response.";
2021-02-01 23:03:07 +01:00
} else {
2021-02-02 22:50:25 +01:00
_ret = line; //some commands return a string, just return that.
2021-02-01 23:03:07 +01:00
}
2021-02-02 21:21:46 +01:00
DebugTf("Command send [%s]-[%s] - Response line: [%s] - Returned value: [%s]\r\n", CSTR(sCmd), CSTR(_cmd), CSTR(line), CSTR(_ret));
2021-02-01 23:03:07 +01:00
return _ret;
}
// String executeCommandCstyle(const String sCmd){
// return executeCommandCstyle(CSTR(sCmd), sCmd.length());
// }
// String executeCommandCstyle(const char* sCmd, size_t len){
// char _cmd[2];
// char line[80];
// char _ret[80];
// //send command to OTGW
// DebugTf("OTGW Send Cmd [%s]=[%s]\r\n", sCmd);
// while(OTGWSerial.availableForWrite() < len+2){
// feedWatchDog();
// }
// OTGWSerial.write(sCmd, len);
// OTGWSerial.write("\r\n");
// OTGWSerial.flush();
// //wait for response
// OTGWSerial.setTimeout(3000);
// while(!OTGWSerial.available()) {
// feedWatchDog();
// }
// // DebugTf("Send command: [%s]\r\n", _cmd);
// //fetch a line
// size_t l = OTGWSerial.readBytesUntil('\n', line, sizeof(line)-1);
// line[l]='\0';
// _cmd[0]='\0';
// if (l > 0) {
// strcpy(_cmd,strtok(line,":"));
// }
// if (prefix(_cmd, sCmd)){
// // Responses: When a serial command is accepted by the gateway, it responds with the two letters of the command code, a colon, and the interpreted data value.
// // Command: "TT=19.125"
// // Response: "TT: 19.13"
// // [XX:response string]
// strcpy(_ret,strtok(NULL,":"));
// } else if (prefix("NG", _cmd)){
// strlcpy(_ret, "NG - No Good. The command code is unknown.", sizeof(_ret));
// } else if (prefix("SE", _cmd)){
// strlcpy(_ret, "SE - Syntax Error. The command contained an unexpected character or was incomplete.", sizeof(_ret));
// } else if (prefix("BV", _cmd)){
// strlcpy(_ret, "BV - Bad Value. The command contained a data value that is not allowed.", sizeof(_ret));
// } else if (prefix("OR", _cmd)){
// strlcpy(_ret, "OR - Out of Range. A number was specified outside of the allowed range.", sizeof(_ret));
// } else if (prefix("NS", _cmd)){
// strlcpy(_ret, "NS - No Space. The alternative Data-ID could not be added because the table is full.", sizeof(_ret));
// } else if (prefix("NF", _cmd)){
// strlcpy(_ret, "NF - Not Found. The specified alternative Data-ID could not be removed because it does not exist in the table.", sizeof(_ret));
// } else if (prefix("OE", _cmd)){
// strlcpy(_ret, "OE - Overrun Error. The processor was busy and failed to process all received characters.", sizeof(_ret));
// } else {
// strlcpy(_ret, "Error: Different command response [", sizeof(_ret));
// strlcat(_ret, _cmd, sizeof(_ret));
// strlcat(_ret, "] Cmd send [", sizeof(_ret));
// strlcat(_ret, sCmd, sizeof(_ret));
// strlcat(_ret, "]", sizeof(_ret));
// }
// DebugTf("Command send - Response returned: [%s]:[%s] - line: [%s]\r\n", _cmd, _ret, line);
// return _ret;
// }
2021-01-31 23:43:52 +01:00
//===================[ OTGW PS=1 Command ]===============================
void getOTGW_PS_1(){
DebugTln("PS=1");
OTGWSerial.write("PS=1\r\n");
OTGWSerial.flush();
2021-01-31 23:43:52 +01:00
while(!OTGWSerial.available()) {
2021-01-31 23:43:52 +01:00
feedWatchDog();
}
String line = OTGWSerial.readStringUntil('\n');
2021-01-31 23:43:52 +01:00
line.trim(); //remove LF and CR (and whitespaces)
DebugTln(line);
DebugTln("PS=0");
OTGWSerial.write("PS=0\r\n");
OTGWSerial.flush();
2021-01-31 23:43:52 +01:00
}
//===================[ OTGW PS=1 Command ]===============================
//===================[ Watchdog OTGW ]===============================
String initWatchDog() {
2021-01-30 15:24:54 +01:00
// Hardware WatchDog is based on:
// https://github.com/rvdbreemen/ESPEasySlaves/tree/master/TinyI2CWatchdog
// Code here is based on ESPEasy code, modified to work in the project.
2021-02-02 00:22:46 +01:00
2021-01-30 15:24:54 +01:00
// configure hardware pins according to eeprom settings.
2021-02-19 01:48:31 +01:00
DebugTln("Setup Watchdog");
2021-02-02 00:22:46 +01:00
DebugTln(F("INIT : I2C"));
Wire.begin(PIN_I2C_SDA, PIN_I2C_SCL); //configure the I2C bus
//=============================================
// I2C Watchdog boot status check
String ReasonReset = "";
delay(500);
2021-02-02 00:22:46 +01:00
Wire.beginTransmission(EXT_WD_I2C_ADDRESS); // OTGW WD address
Wire.write(0x83); // command to set pointer
Wire.write(17); // pointer value to status byte
Wire.endTransmission();
2021-02-02 00:22:46 +01:00
Wire.requestFrom((uint8_t)EXT_WD_I2C_ADDRESS, (uint8_t)1);
if (Wire.available())
{
byte status = Wire.read();
if (status & 0x1)
{
DebugTln(F("INIT : Reset by WD!"));
ReasonReset = "Reset by External WD";
//lastReset = BOOT_CAUSE_EXT_WD;
}
}
return ReasonReset;
2021-02-02 00:22:46 +01:00
//===========================================
}
2021-02-02 00:22:46 +01:00
//===[ Feed the WatchDog before it bites! (1x per second) ]===
void feedWatchDog() {
//make sure to do this at least once a second
//==== feed the WD over I2C ====
// Address: 0x26
// I2C Watchdog feed
2021-02-02 00:22:46 +01:00
DECLARE_TIMER_MS(timerWD, 1000, CATCH_UP_MISSED_TICKS);
2020-11-02 08:09:26 +01:00
if DUE(timerWD)
{
2021-02-02 00:22:46 +01:00
Wire.beginTransmission(EXT_WD_I2C_ADDRESS); //Nodoshop design uses the hardware WD on I2C, address 0x26
Wire.write(0xA5); //Feed the dog, before it bites.
Wire.endTransmission(); //That's all there is...
2020-11-02 08:09:26 +01:00
}
yield();
//==== feed the WD over I2C ====
}
2020-11-09 00:05:06 +01:00
//===================[ END Watchdog OTGW ]===============================
//=======================================================================
float OpenthermData::f88() {
float value = (int8_t) valueHB;
return value + (float)valueLB / 256.0;
}
void OpenthermData::f88(float value) {
if (value >= 0) {
valueHB = (byte) value;
float fraction = (value - valueHB);
valueLB = fraction * 256.0;
}
else {
valueHB = (byte)(value - 1);
float fraction = (value - valueHB - 1);
valueLB = fraction * 256.0;
}
}
uint16_t OpenthermData::u16() {
uint16_t value = valueHB;
return (value << 8) | valueLB;
}
void OpenthermData::u16(uint16_t value) {
valueLB = value & 0xFF;
valueHB = (value >> 8) & 0xFF;
}
int16_t OpenthermData::s16() {
int16_t value = valueHB;
return (value << 8) | valueLB;
}
void OpenthermData::s16(int16_t value) {
valueLB = value & 0xFF;
valueHB = (value >> 8) & 0xFF;
}
//parsing helpers
const char *statusToString(OpenThermResponseStatus status)
{
switch (status) {
case OT_NONE: return "NONE";
2020-10-26 00:00:06 +01:00
case OT_SUCCESS: return "SUCCESS";
case OT_INVALID: return "INVALID";
case OT_TIMEOUT: return "TIMEOUT";
default: return "UNKNOWN";
}
}
const char *messageTypeToString(OpenThermMessageType message_type)
{
switch (message_type) {
2020-10-26 00:00:06 +01:00
case OT_READ_DATA: return "READ_DATA";
case OT_WRITE_DATA: return "WRITE_DATA";
case OT_INVALID_DATA: return "INVALID_DATA";
case OT_RESERVED: return "RESERVED";
case OT_READ_ACK: return "READ_ACK";
case OT_WRITE_ACK: return "WRITE_ACK";
case OT_DATA_INVALID: return "DATA_INVALID";
case OT_UNKNOWN_DATA_ID: return "UNKNOWN_DATA_ID";
default: return "UNKNOWN";
}
}
const char *messageIDToString(OpenThermMessageID message_id){
if (message_id <= OT_MSGID_MAX) {
2020-12-12 00:20:31 +01:00
return OTmap[message_id].label;
} else return "Undefined";}
OpenThermMessageType getMessageType(unsigned long message)
{
OpenThermMessageType msg_type = static_cast<OpenThermMessageType>((message >> 28) & 7);
return msg_type;
}
OpenThermMessageID getDataID(unsigned long frame)
{
return (OpenThermMessageID)((frame >> 16) & 0xFF);
}
2021-01-03 23:12:19 +01:00
//parsing responses - helper functions
// 0: CH enable [ CH is disabled, CH is enabled]
// 1: DHW enable [ DHW is disabled, DHW is enabled]
// 2: Cooling enable [ Cooling is disabled, Cooling is enabled]]
// 3: OTC active [OTC not active, OTC is active]
// 4: CH2 enable [CH2 is disabled, CH2 is enabled]
// 5: reserved
// 6: reserved
// 7: reserved
bool isCentralHeatingEnabled() {
return OTdataObject.Status & 0x0100;
}
bool isDomesticHotWaterEnabled() {
return OTdataObject.Status & 0x0200;
}
bool isCoolingEnabled() {
return OTdataObject.Status & 0x0400;
}
bool isOutsideTemperatureCompensationActive() {
return OTdataObject.Status & 0x0800;
}
bool isCentralHeating2enabled() {
return OTdataObject.Status & 0x1000;
}
2021-01-03 23:12:19 +01:00
//Slave
// 0: fault indication [ no fault, fault ]
// 1: CH mode [CH not active, CH active]
// 2: DHW mode [ DHW not active, DHW active]
// 3: Flame status [ flame off, flame on ]
// 4: Cooling status [ cooling mode not active, cooling mode active ]
// 5: CH2 mode [CH2 not active, CH2 active]
// 6: diagnostic indication [no diagnostics, diagnostic event]
// 7: reserved
bool isFaultIndicator() {
return OTdataObject.Status & 0x001;
}
2021-01-03 23:12:19 +01:00
bool isCentralHeatingActive() {
return OTdataObject.Status & 0x002;
}
2021-01-03 23:12:19 +01:00
bool isDomesticHotWaterActive() {
return OTdataObject.Status & 0x004;
}
2021-01-03 23:12:19 +01:00
bool isFlameStatus() {
return OTdataObject.Status & 0x008;
}
2021-01-03 23:12:19 +01:00
bool isCoolingActive() {
return OTdataObject.Status & 0x0010;
}
2021-02-10 00:56:33 +01:00
bool isCentralHeating2Active() {
return OTdataObject.Status & 0x0020;
}
2021-01-03 23:12:19 +01:00
bool isDiagnosticIndicator() {
return OTdataObject.Status & 0x0040;
}
2021-02-10 00:56:33 +01:00
//bit: [clear/0, set/1]
//0: Service request [service not reqd, service required]
//1: Lockout-reset [ remote reset disabled, rr enabled]
//2: Low water press [ no WP fault, water pressure fault]
//3: Gas/flame fault [ no G/F fault, gas/flame fault ]
//4: Air press fault [ no AP fault, air pressure fault ]
//5: Water over-temp[ no OvT fault, over-temperat. Fault]
//6: reserved
//7: reserved
bool isServiceRequest() {
return OTdataObject.ASFflags & 0x0001;
}
bool isLockoutReset() {
return OTdataObject.ASFflags & 0x0002;
}
bool isLowWaterPressure() {
return OTdataObject.ASFflags & 0x0004;
}
bool isGasFlameFault() {
return OTdataObject.ASFflags & 0x0008;
}
bool isAirTemperature() {
return OTdataObject.ASFflags & 0x0010;
}
bool isWaterOverTemperature() {
return OTdataObject.ASFflags & 0x0020;
}
2020-11-06 21:13:09 +01:00
const char *byte_to_binary(int x)
{
static char b[9];
b[0] = '\0';
2020-11-06 21:13:09 +01:00
int z;
for (z = 128; z > 0; z >>= 1) {
strcat(b, ((x & z) == z) ? "1" : "0");
}
2020-11-06 21:13:09 +01:00
return b;
}
2020-12-12 00:20:31 +01:00
float print_f88()
{
//function to print data
2020-12-12 00:20:31 +01:00
float _value = round(OTdata.f88()*100.0) / 100.0; // round float 2 digits, like this: x.xx
// Debugf("%-37s = %3.2f %s\r\n", OTmap[OTdata.id].label, _value , OTmap[OTdata.id].unit);
2020-11-03 01:28:05 +01:00
char _msg[15] {0};
2020-12-12 00:20:31 +01:00
dtostrf(_value, 3, 2, _msg);
Debugf("%-37s = %s %s\r\n", OTmap[OTdata.id].label, _msg , OTmap[OTdata.id].unit);
//SendMQTT
2020-11-03 01:28:05 +01:00
sendMQTTData(messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), _msg);
2020-12-12 00:20:31 +01:00
return _value;
}
2020-12-12 00:20:31 +01:00
int16_t print_s16()
{
int16_t _value = OTdata.s16();
// Debugf("%-37s = %5d %s\r\n", OTmap[OTdata.id].label, _value, OTmap[OTdata.id].unit);
2020-11-03 01:28:05 +01:00
//Build string for MQTT
char _msg[15] {0};
2020-12-12 00:20:31 +01:00
itoa(_value, _msg, 10);
Debugf("%-37s = %s %s\r\n", OTmap[OTdata.id].label, _msg, OTmap[OTdata.id].unit);
//SendMQTT
2020-11-03 01:28:05 +01:00
sendMQTTData(messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), _msg);
2020-12-12 00:20:31 +01:00
return _value;
}
2020-12-12 00:20:31 +01:00
uint16_t print_s8s8()
{
2020-12-12 00:20:31 +01:00
Debugf("%-37s = %3d / %3d %s\r\n", OTmap[OTdata.id].label, (int8_t)OTdata.valueHB, (int8_t)OTdata.valueLB, OTmap[OTdata.id].unit);
2020-11-03 01:28:05 +01:00
//Build string for MQTT
char _msg[15] {0};
char _topic[50] {0};
itoa((int8_t)OTdata.valueHB, _msg, 10);
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_value_hb", sizeof(_topic));
2020-12-12 00:20:31 +01:00
Debugf("%-37s = %s %s\r\n", OTmap[OTdata.id].label, _msg, OTmap[OTdata.id].unit);
2020-11-03 01:28:05 +01:00
sendMQTTData(_topic, _msg);
//Build string for MQTT
itoa((int8_t)OTdata.valueLB, _msg, 10);
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_value_lb", sizeof(_topic));
2020-12-12 00:20:31 +01:00
Debugf("%-37s = %s %s\r\n", OTmap[OTdata.id].label, _msg, OTmap[OTdata.id].unit);
2020-11-03 01:28:05 +01:00
sendMQTTData(_topic, _msg);
2020-12-12 00:20:31 +01:00
return OTdata.u16();
}
2020-12-12 00:20:31 +01:00
uint16_t print_u16()
{
uint16_t _value = OTdata.u16();
2020-11-03 01:28:05 +01:00
//Build string for MQTT
char _msg[15] {0};
2020-12-12 00:20:31 +01:00
utoa(_value, _msg, 10);
Debugf("%-37s = %s %s\r\n", OTmap[OTdata.id].label, _msg, OTmap[OTdata.id].unit);
//SendMQTT
2020-11-03 01:28:05 +01:00
sendMQTTData(messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), _msg);
2020-12-12 00:20:31 +01:00
return _value;
}
2020-12-12 00:20:31 +01:00
uint16_t print_status()
{
2020-11-06 21:13:09 +01:00
char _flag8_master[8] {0};
char _flag8_slave[8] {0};
//bit: [clear/0, set/1]
// 0: CH enable [ CH is disabled, CH is enabled]
// 1: DHW enable [ DHW is disabled, DHW is enabled]
// 2: Cooling enable [ Cooling is disabled, Cooling is enabled]]
// 3: OTC active [OTC not active, OTC is active]
// 4: CH2 enable [CH2 is disabled, CH2 is enabled]
// 5: reserved
// 6: reserved
// 7: reserved
2020-11-03 01:28:05 +01:00
_flag8_master[0] = (((OTdata.valueHB) & 0x01) ? 'C' : '-');
_flag8_master[1] = (((OTdata.valueHB) & 0x02) ? 'D' : '-');
_flag8_master[2] = (((OTdata.valueHB) & 0x04) ? 'C' : '-');
_flag8_master[3] = (((OTdata.valueHB) & 0x08) ? 'O' : '-');
_flag8_master[4] = (((OTdata.valueHB) & 0x10) ? '2' : '-');
_flag8_master[5] = (((OTdata.valueHB) & 0x20) ? '.' : '-');
_flag8_master[6] = (((OTdata.valueHB) & 0x40) ? '.' : '-');
_flag8_master[7] = (((OTdata.valueHB) & 0x80) ? '.' : '-');
2020-11-06 21:13:09 +01:00
_flag8_master[8] = '\0';
2020-12-12 00:20:31 +01:00
Debugf("%-37s = M[%s] \r\n", OTmap[OTdata.id].label, _flag8_master);
2020-11-06 21:13:09 +01:00
//Master Status
2020-11-06 21:58:29 +01:00
sendMQTTData("status_master", _flag8_master);
2020-11-06 21:13:09 +01:00
sendMQTTData("ch_enable", (((OTdata.valueHB) & 0x01) ? "ON" : "OFF"));
sendMQTTData("dhw_enable", (((OTdata.valueHB) & 0x02) ? "ON" : "OFF"));
sendMQTTData("cooling_enable", (((OTdata.valueHB) & 0x04) ? "ON" : "OFF"));
sendMQTTData("otc_active", (((OTdata.valueHB) & 0x08) ? "ON" : "OFF"));
sendMQTTData("ch2_enable", (((OTdata.valueHB) & 0x10) ? "ON" : "OFF"));
2020-11-06 21:13:09 +01:00
//Slave
// 0: fault indication [ no fault, fault ]
// 1: CH mode [CH not active, CH active]
// 2: DHW mode [ DHW not active, DHW active]
// 3: Flame status [ flame off, flame on ]
// 4: Cooling status [ cooling mode not active, cooling mode active ]
// 5: CH2 mode [CH2 not active, CH2 active]
// 6: diagnostic indication [no diagnostics, diagnostic event]
// 7: reserved
2020-11-03 01:28:05 +01:00
_flag8_slave[0] = (((OTdata.valueLB) & 0x01) ? 'E' : '-');
_flag8_slave[1] = (((OTdata.valueLB) & 0x02) ? 'C' : '-');
_flag8_slave[2] = (((OTdata.valueLB) & 0x04) ? 'W' : '-');
_flag8_slave[3] = (((OTdata.valueLB) & 0x08) ? 'F' : '-');
_flag8_slave[4] = (((OTdata.valueLB) & 0x10) ? 'C' : '-');
_flag8_slave[5] = (((OTdata.valueLB) & 0x20) ? '2' : '-');
_flag8_slave[6] = (((OTdata.valueLB) & 0x40) ? 'D' : '-');
_flag8_slave[7] = (((OTdata.valueLB) & 0x80) ? '.' : '-');
2020-11-06 21:13:09 +01:00
_flag8_slave[8] = '\0';
2020-11-03 01:28:05 +01:00
2020-12-12 00:20:31 +01:00
DebugTf("%-37s = S[%s] \r\n", OTmap[OTdata.id].label, _flag8_slave);
2020-11-03 01:28:05 +01:00
2020-11-06 21:58:29 +01:00
//Slave Status
sendMQTTData("status_slave", _flag8_slave);
2020-11-03 01:28:05 +01:00
sendMQTTData("fault", (((OTdata.valueLB) & 0x01) ? "ON" : "OFF"));
sendMQTTData("centralheating", (((OTdata.valueLB) & 0x02) ? "ON" : "OFF"));
sendMQTTData("domestichotwater", (((OTdata.valueLB) & 0x04) ? "ON" : "OFF"));
sendMQTTData("flame", (((OTdata.valueLB) & 0x08) ? "ON" : "OFF"));
sendMQTTData("cooling", (((OTdata.valueLB) & 0x10) ? "ON" : "OFF"));
sendMQTTData("centralheating2", (((OTdata.valueLB) & 0x20) ? "ON" : "OFF"));
sendMQTTData("diagnostic_indicator", (((OTdata.valueLB) & 0x40) ? "ON" : "OFF"));
2020-12-12 00:20:31 +01:00
return OTdata.u16();
}
2020-12-12 00:20:31 +01:00
uint16_t print_ASFflags()
{
2020-12-12 00:20:31 +01:00
Debugf("%-37s = M[%s] OEM fault code [%3d]\r\n", OTmap[OTdata.id].label, byte_to_binary(OTdata.valueHB), OTdata.valueLB);
2020-11-06 21:13:09 +01:00
//Build string for MQTT
2020-11-06 21:58:29 +01:00
char _msg[15] {0};
2020-11-06 21:13:09 +01:00
//Application Specific Fault
2020-11-06 21:58:29 +01:00
sendMQTTData("ASF_flags", byte_to_binary(OTdata.valueHB));
2020-11-06 21:13:09 +01:00
//OEM fault code
2020-11-06 21:58:29 +01:00
sendMQTTData("ASF_oemfaultcode", _msg);
2020-11-06 21:13:09 +01:00
//bit: [clear/0, set/1]
2020-11-06 21:13:09 +01:00
//bit: [clear/0, set/1]
//0: Service request [service not reqd, service required]
//1: Lockout-reset [ remote reset disabled, rr enabled]
//2: Low water press [ no WP fault, water pressure fault]
//3: Gas/flame fault [ no G/F fault, gas/flame fault ]
//4: Air press fault [ no AP fault, air pressure fault ]
//5: Water over-temp[ no OvT fault, over-temperat. Fault]
//6: reserved
//7: reserved
2020-11-06 21:13:09 +01:00
sendMQTTData("service_request", (((OTdata.valueHB) & 0x01) ? "ON" : "OFF"));
sendMQTTData("lockout_reset", (((OTdata.valueHB) & 0x02) ? "ON" : "OFF"));
sendMQTTData("low_water_pressure", (((OTdata.valueHB) & 0x04) ? "ON" : "OFF"));
sendMQTTData("gas_flame_fault", (((OTdata.valueHB) & 0x08) ? "ON" : "OFF"));
sendMQTTData("air_pressure_fault", (((OTdata.valueHB) & 0x10) ? "ON" : "OFF"));
sendMQTTData("water_over-temperature",(((OTdata.valueHB) & 0x20) ? "ON" : "OFF"));
2020-12-12 00:20:31 +01:00
return OTdata.u16();
2020-11-06 21:13:09 +01:00
}
2020-12-12 00:20:31 +01:00
uint16_t print_slavememberid()
2020-11-06 21:13:09 +01:00
{
2020-12-12 00:20:31 +01:00
Debugf("%-37s = Slave Config[%s] MemberID code [%3d]\r\n", OTmap[OTdata.id].label, byte_to_binary(OTdata.valueHB), OTdata.valueLB);
2020-11-06 21:58:29 +01:00
//Build string for SendMQTT
sendMQTTData("slave_configuration", byte_to_binary(OTdata.valueHB));
2020-11-06 21:13:09 +01:00
char _msg[15] {0};
utoa(OTdata.valueLB, _msg, 10);
2020-11-06 21:58:29 +01:00
sendMQTTData("slave_memberid_code", _msg);
2020-11-06 21:13:09 +01:00
// bit: description [ clear/0, set/1]
// 0: DHW present [ dhw not present, dhw is present ]
// 1: Control type [ modulating, on/off ]
// 2: Cooling config [ cooling not supported,
// cooling supported]
// 3: DHW config [instantaneous or not-specified,
// storage tank]
// 4: Master low-off&pump control function [allowed,
// not allowed]
// 5: CH2 present [CH2 not present, CH2 present]
// 6: reserved
// 7: reserved
sendMQTTData("dhw_present", (((OTdata.valueHB) & 0x01) ? "ON" : "OFF"));
sendMQTTData("control_type", (((OTdata.valueHB) & 0x02) ? "ON" : "OFF"));
sendMQTTData("cooling_config", (((OTdata.valueHB) & 0x04) ? "ON" : "OFF"));
sendMQTTData("dhw_config", (((OTdata.valueHB) & 0x08) ? "ON" : "OFF"));
sendMQTTData("master_low_off_pomp_control_function", (((OTdata.valueHB) & 0x10) ? "ON" : "OFF"));
sendMQTTData("ch2_present", (((OTdata.valueHB) & 0x20) ? "ON" : "OFF"));
2020-12-12 00:20:31 +01:00
return OTdata.u16();
2020-11-06 21:13:09 +01:00
}
2020-12-12 00:20:31 +01:00
uint16_t print_mastermemberid()
2020-11-06 21:13:09 +01:00
{
2020-12-12 00:20:31 +01:00
Debugf("%-37s = Master Config[%s] MemberID code [%3d]\r\n", OTmap[OTdata.id].label, byte_to_binary(OTdata.valueHB), OTdata.valueLB);
2020-11-03 01:28:05 +01:00
//Build string for MQTT
char _msg[15] {0};
2020-11-06 21:58:29 +01:00
sendMQTTData("master_configuration", byte_to_binary(OTdata.valueHB));
2020-11-03 01:28:05 +01:00
utoa(OTdata.valueLB, _msg, 10);
2020-11-06 21:58:29 +01:00
sendMQTTData("master_memberid_code", _msg);
2020-12-12 00:20:31 +01:00
return OTdata.u16();
}
2020-12-12 00:20:31 +01:00
uint16_t print_flag8u8()
{
2020-12-12 00:20:31 +01:00
Debugf("%-37s = M[%s] - [%3d]\r\n", OTmap[OTdata.id].label, byte_to_binary(OTdata.valueHB), OTdata.valueLB);
2020-11-03 01:28:05 +01:00
//Build string for MQTT
char _topic[50] {0};
//flag8 value
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_flag8", sizeof(_topic));
2020-11-06 21:13:09 +01:00
sendMQTTData(_topic, byte_to_binary(OTdata.valueHB));
2020-11-03 01:28:05 +01:00
//u8 value
char _msg[15] {0};
utoa(OTdata.valueLB, _msg, 10);
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_code", sizeof(_topic));
2020-11-03 01:28:05 +01:00
sendMQTTData(_topic, _msg);
2020-12-12 00:20:31 +01:00
return OTdata.u16();
}
2020-11-06 21:13:09 +01:00
2020-12-12 00:20:31 +01:00
uint16_t print_flag8()
{
2020-12-12 00:20:31 +01:00
Debugf("%-37s = flag8 = [%s] - decimal = [%3d]\r\n", OTmap[OTdata.id].label, byte_to_binary(OTdata.valueLB), OTdata.valueLB);
2020-11-03 01:28:05 +01:00
//Build string for MQTT
char _topic[50] {0};
//flag8 value
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_flag8", sizeof(_topic));
2020-11-06 21:13:09 +01:00
sendMQTTData(_topic, byte_to_binary(OTdata.valueLB));
2020-12-12 00:20:31 +01:00
return OTdata.u16();
}
2020-12-12 00:20:31 +01:00
uint16_t print_flag8flag8()
{
2020-11-03 01:28:05 +01:00
//Build string for MQTT
char _topic[50] {0};
//flag8 valueHB
2020-12-12 00:20:31 +01:00
Debugf("%-37s = HB flag8[%s] -[%3d]\r\n", OTmap[OTdata.id].label, byte_to_binary(OTdata.valueHB), OTdata.valueHB);
2020-11-03 01:28:05 +01:00
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_hb_flag8", sizeof(_topic));
2020-11-06 21:13:09 +01:00
sendMQTTData(_topic, byte_to_binary(OTdata.valueHB));
2020-11-03 01:28:05 +01:00
//flag8 valueLB
2020-12-12 00:20:31 +01:00
Debugf("%-37s = LB flag8[%s] - [%3d]\r\n", OTmap[OTdata.id].label, byte_to_binary(OTdata.valueLB), OTdata.valueLB);
2020-11-03 01:28:05 +01:00
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_lb_flag8", sizeof(_topic));
2020-11-06 21:13:09 +01:00
sendMQTTData(_topic, byte_to_binary(OTdata.valueLB));
2020-12-12 00:20:31 +01:00
return OTdata.u16();
}
2020-12-12 00:20:31 +01:00
uint16_t print_u8u8()
{
Debugf("%-37s = %3d / %3d %s\r\n", OTmap[OTdata.id].label, (uint8_t)OTdata.valueHB, (uint8_t)OTdata.valueLB, OTmap[OTdata.id].unit);
2020-11-03 01:28:05 +01:00
//Build string for MQTT
char _topic[50] {0};
char _msg[10] {0};
//flag8 valueHB
utoa((OTdata.valueHB), _msg, 10);
2020-12-12 00:20:31 +01:00
Debugf("%-37s = HB u8[%s] [%3d]\r\n", OTmap[OTdata.id].label, _msg, OTdata.valueHB);
2020-11-03 01:28:05 +01:00
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_hb_u8", sizeof(_topic));
2020-11-03 01:28:05 +01:00
sendMQTTData(_topic, _msg);
//flag8 valueLB
utoa((OTdata.valueLB), _msg, 10);
2020-12-12 00:20:31 +01:00
Debugf("%-37s = LB u8[%s] [%3d]\r\n", OTmap[OTdata.id].label, _msg, OTdata.valueLB);
2020-11-03 01:28:05 +01:00
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_lb_u8", sizeof(_topic));
2020-11-03 01:28:05 +01:00
sendMQTTData(_topic, _msg);
2020-12-12 00:20:31 +01:00
return OTdata.u16();
}
2020-12-12 00:20:31 +01:00
uint16_t print_daytime()
{
//function to print data
const char *dayOfWeekName[] { "Unknown", "Maandag", "Dinsdag", "Woensdag", "Donderdag", "Vrijdag", "Zaterdag", "Zondag", "Unknown" };
2020-12-12 00:20:31 +01:00
uint16_t _value = OTdata.u16();
Debugf("%-37s = %s - %2d:%2d\r\n", OTmap[OTdata.id].label, dayOfWeekName[(OTdata.valueHB >> 5) & 0x7], (OTdata.valueHB & 0x1F), OTdata.valueLB);
2020-11-03 01:28:05 +01:00
//Build string for MQTT
char _topic[50] {0};
char _msg[10] {0};
//dayofweek
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_dayofweek", sizeof(_topic));
2020-11-03 01:28:05 +01:00
sendMQTTData(_topic, dayOfWeekName[(OTdata.valueHB >> 5) & 0x7]);
//dayofweek
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_hour", sizeof(_topic));
2020-11-03 01:28:05 +01:00
sendMQTTData(_topic, itoa((OTdata.valueHB & 0x1F), _msg, 10));
//dayofweek
strlcpy(_topic, messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)), sizeof(_topic));
2020-11-06 21:58:29 +01:00
strlcat(_topic, "_minutes", sizeof(_topic));
2020-11-03 01:28:05 +01:00
sendMQTTData(_topic, itoa(OTdata.valueLB, _msg, 10));
2020-12-12 00:20:31 +01:00
return _value;
}
2021-01-31 23:43:52 +01:00
2020-11-09 00:05:06 +01:00
//===================[ Send buffer to OTGW ]=============================
2020-11-09 00:05:06 +01:00
int sendOTGW(const char* buf, int len)
{
//Send the buffer to OTGW when the Serial interface is available
if (OTGWSerial.availableForWrite()>=len+2) {
2020-11-09 00:05:06 +01:00
//check the write buffer
//Debugf("Serial Write Buffer space = [%d] - needed [%d]\r\n",OTGWSerial.availableForWrite(), (len+2));
DebugT("Sending to Serial [");
for (int i = 0; i < len; i++) {
Debug((char)buf[i]);
}
Debug("] ("); Debug(len); Debug(")"); Debugln();
while (OTGWSerial.availableForWrite()==(len+2)) {
//cannot write, buffer full, wait for some space in serial out buffer
feedWatchDog(); //this yields for other processes
}
if (OTGWSerial.availableForWrite()>= (len+2)) {
2020-11-09 00:05:06 +01:00
//write buffer to serial
OTGWSerial.write(buf, len);
// OTGWSerial.write("PS=0\r\n");
OTGWSerial.write('\r');
OTGWSerial.write('\n');
OTGWSerial.flush();
2020-11-09 00:05:06 +01:00
} else Debugln("Error: Write buffer not big enough!");
} else Debugln("Error: Serial device not found!");
}
void processOTGW(const char * buf, int len)
{
2021-02-10 01:47:02 +01:00
if (strstr(buf, "Error 01")!= NULL) OTdataObject.error01++;
if (strstr(buf, "Error 02")!= NULL) OTdataObject.error02++;
if (strstr(buf, "Error 03")!= NULL) OTdataObject.error03++;
if (strstr(buf, "Error 04")!= NULL) OTdataObject.error04++;
2021-02-08 02:06:04 +01:00
if (len == 9)
2020-11-19 16:47:10 +01:00
{
//OT protocol messages are 9 chars long
2021-01-07 19:17:23 +01:00
sendMQTTData("otmessage", buf);
2021-02-08 02:06:04 +01:00
// source of otmsg
if (buf[0]=='B')
{
DebugT("Boiler ");
} else if (buf[0]=='T')
{
DebugT("Thermostat ");
} else if (buf[0]=='R')
{
DebugT("Request Boiler ");
} else if (buf[0]=='A')
{
DebugT("Answer Themostat ");
} else if (buf[0]=='E')
{
DebugT("Parity error ");
} else
{
DebugTf("Unexpected=[%c] ", buf[0]);
}
const char *bufval = buf + 1;
uint32_t value = strtoul(bufval, NULL, 16);
2021-02-08 02:06:04 +01:00
Debugf("msg=[%s] value=[%08x]", bufval, value);
//split 32bit value into the relevant OT protocol parts
OTdata.type = (value >> 28) & 0x7; // byte 1 = take 3 bits that define msg msgType
OTdata.id = (value >> 16) & 0xFF; // byte 2 = message id 8 bits
OTdata.valueHB = (value >> 8) & 0xFF; // byte 3 = high byte
OTdata.valueLB = value & 0xFF; // byte 4 = low byte
//print message frame
Debugf("\ttype[%3d] id[%3d] hb[%3d] lb[%3d]\t", OTdata.type, OTdata.id, OTdata.valueHB, OTdata.valueLB);
//print message Type and ID
Debugf("[%-16s]\t", messageTypeToString(static_cast<OpenThermMessageType>(OTdata.type)));
Debugf("[%-30s]\t", messageIDToString(static_cast<OpenThermMessageID>(OTdata.id)));
DebugFlush();
//keep track of update
msglastupdated[OTdata.id] = now();
//next step interpret the OT protocol
if (static_cast<OpenThermMessageType>(OTdata.type) == OT_READ_ACK || static_cast<OpenThermMessageType>(OTdata.type) == OT_WRITE_DATA) {
//#define OTprint(data, value, text, format) ({ data= value; Debugf("[%37s]", text); Debugf("= [format]", data)})
//interpret values f8.8
switch (static_cast<OpenThermMessageID>(OTdata.id)) {
case TSet: OTdataObject.TSet = print_f88(); break;
case CoolingControl: OTdataObject.CoolingControl = print_f88(); break;
case TsetCH2: OTdataObject.TsetCH2 = print_f88(); break;
case TrOverride: OTdataObject.TrOverride = print_f88(); break;
case MaxRelModLevelSetting: OTdataObject.MaxRelModLevelSetting = print_f88(); break;
case TrSet: OTdataObject.TrSet = print_f88(); break;
case TrSetCH2: OTdataObject.TrSetCH2 = print_f88(); break;
case RelModLevel: OTdataObject.RelModLevel = print_f88(); break;
case CHPressure: OTdataObject.CHPressure = print_f88(); break;
case DHWFlowRate: OTdataObject.DHWFlowRate = print_f88(); break;
case Tr: OTdataObject.Tr = print_f88(); break;
case Tboiler: OTdataObject.Tboiler = print_f88(); break;
case Tdhw: OTdataObject.Tdhw = print_f88(); break;
case Toutside: OTdataObject.Toutside = print_f88(); break;
case Tret: OTdataObject.Tret = print_f88(); break;
case Tstorage: OTdataObject.Tstorage = print_f88(); break;
case Tcollector: OTdataObject.Tcollector = print_f88(); break;
case TflowCH2: OTdataObject.TflowCH2 = print_f88(); break;
case Tdhw2: OTdataObject.Tdhw2 = print_f88(); break;
case Texhaust: OTdataObject.Texhaust = print_s16(); break;
case TdhwSet: OTdataObject.TdhwSet = print_f88(); break;
case MaxTSet: OTdataObject.MaxTSet = print_f88(); break;
case Hcratio: OTdataObject.Hcratio = print_f88(); break;
case OpenThermVersionMaster: OTdataObject.OpenThermVersionMaster = print_f88(); break;
case OpenThermVersionSlave: OTdataObject.OpenThermVersionSlave = print_f88(); break;
case Status: OTdataObject.Status = print_status(); break;
case ASFflags: OTdataObject.ASFflags = print_ASFflags(); break;
case MConfigMMemberIDcode: OTdataObject.MConfigMMemberIDcode = print_mastermemberid(); break;
case SConfigSMemberIDcode: OTdataObject.SConfigSMemberIDcode = print_slavememberid(); break;
case Command: OTdataObject.Command = print_u8u8(); break;
case RBPflags: OTdataObject.RBPflags = print_flag8flag8(); break;
case TSP: OTdataObject.TSP = print_u8u8(); break;
case TSPindexTSPvalue: OTdataObject.TSPindexTSPvalue = print_u8u8(); break;
case FHBsize: OTdataObject.FHBsize = print_u8u8(); break;
case FHBindexFHBvalue: OTdataObject.FHBindexFHBvalue = print_u8u8(); break;
case MaxCapacityMinModLevel: OTdataObject.MaxCapacityMinModLevel = print_u8u8(); break;
case DayTime: OTdataObject.DayTime = print_daytime(); break;
case Date: OTdataObject.Date = print_u8u8(); break;
case Year: OTdataObject.Year = print_u16(); break;
case TdhwSetUBTdhwSetLB: OTdataObject.TdhwSetUBTdhwSetLB = print_s8s8(); break;
case MaxTSetUBMaxTSetLB: OTdataObject.MaxTSetUBMaxTSetLB = print_s8s8(); break;
case HcratioUBHcratioLB: OTdataObject.HcratioUBHcratioLB = print_s8s8(); break;
case RemoteOverrideFunction: OTdataObject.RemoteOverrideFunction = print_flag8(); break;
case OEMDiagnosticCode: OTdataObject.OEMDiagnosticCode = print_u16(); break;
case BurnerStarts: OTdataObject.BurnerStarts = print_u16(); break;
case CHPumpStarts: OTdataObject.CHPumpStarts = print_u16(); break;
case DHWPumpValveStarts: OTdataObject.DHWPumpValveStarts = print_u16(); break;
case DHWBurnerStarts: OTdataObject.DHWBurnerStarts = print_u16(); break;
case BurnerOperationHours: OTdataObject.BurnerOperationHours = print_u16(); break;
case CHPumpOperationHours: OTdataObject.CHPumpOperationHours = print_u16(); break;
case DHWPumpValveOperationHours: OTdataObject.DHWPumpValveOperationHours = print_u16(); break;
case DHWBurnerOperationHours: OTdataObject.DHWBurnerOperationHours = print_u16(); break;
case MasterVersion: OTdataObject.MasterVersion = print_u8u8(); break;
case SlaveVersion: OTdataObject.SlaveVersion = print_u8u8(); break;
case StatusVH: OTdataObject.StatusVH = print_flag8flag8(); break;
case ControlSetpointVH: OTdataObject.ControlSetpointVH = print_u8u8(); break;
case FaultFlagsCodeVH: OTdataObject.FaultFlagsCodeVH = print_flag8u8(); break;
case DiagnosticCodeVH: OTdataObject.DiagnosticCodeVH = print_u16(); break;
case ConfigMemberIDVH: OTdataObject.ConfigMemberIDVH = print_flag8u8(); break;
case OpenthermVersionVH: OTdataObject.OpenthermVersionVH = print_f88(); break;
case VersionTypeVH: OTdataObject.VersionTypeVH = print_u8u8(); break;
case RelativeVentilation: OTdataObject.RelativeVentilation = print_u8u8(); break;
case RelativeHumidityVH: OTdataObject.RelativeHumidityVH = print_u8u8(); break;
case CO2LevelVH: OTdataObject.CO2LevelVH = print_u16(); break;
case SupplyInletTemperature: OTdataObject.SupplyInletTemperature = print_f88(); break;
case SupplyOutletTemperature: OTdataObject.SupplyOutletTemperature = print_f88(); break;
case ExhaustInletTemperature: OTdataObject.ExhaustInletTemperature = print_f88(); break;
case ExhaustOutletTemperature: OTdataObject.ExhaustOutletTemperature = print_f88(); break;
case ActualExhaustFanSpeed: OTdataObject.ActualExhaustFanSpeed = print_u16(); break;
case ActualInletFanSpeed: OTdataObject.ActualInletFanSpeed = print_u16(); break;
case RemoteParameterSettingVH: OTdataObject.RemoteParameterSettingVH = print_flag8flag8(); break;
case NominalVentilationValue: OTdataObject.NominalVentilationValue = print_u8u8(); break;
case TSPNumberVH: OTdataObject.TSPNumberVH = print_u8u8(); break;
case TSPEntryVH: OTdataObject.TSPEntryVH = print_u8u8(); break;
case FaultBufferSizeVH: OTdataObject.FaultBufferSizeVH = print_u8u8(); break;
case FaultBufferEntryVH: OTdataObject.FaultBufferEntryVH = print_u8u8(); break;
case FanSpeed: OTdataObject.FanSpeed = print_u16(); break;
case ElectricalCurrentBurnerFlame: OTdataObject.ElectricalCurrentBurnerFlame = print_f88(); break;
case TRoomCH2: OTdataObject.TRoomCH2 = print_f88(); break;
case RelativeHumidity: OTdataObject.RelativeHumidity = print_u8u8(); break;
case RFstrengthbatterylevel: OTdataObject.RFstrengthbatterylevel = print_u8u8(); break;
case OperatingMode_HC1_HC2_DHW: OTdataObject.OperatingMode_HC1_HC2_DHW = print_u8u8(); break;
case ElectricityProducerStarts: OTdataObject.ElectricityProducerStarts = print_u16(); break;
case ElectricityProducerHours: OTdataObject.ElectricityProducerHours = print_u16(); break;
case ElectricityProduction: OTdataObject.ElectricityProduction = print_u16(); break;
case CumulativElectricityProduction:OTdataObject.CumulativElectricityProduction = print_u16(); break;
case RemehadFdUcodes: OTdataObject.RemehadFdUcodes = print_u8u8(); break;
case RemehaServicemessage: OTdataObject.RemehaServicemessage = print_u8u8(); break;
case RemehaDetectionConnectedSCU: OTdataObject.RemehaDetectionConnectedSCU = print_u8u8(); break;
}
} else Debugln(); //next line
2021-02-08 02:06:04 +01:00
} else DebugTf("received from OTGW => [%s] [%d]\r\n", buf, len);
}
2020-12-28 21:02:37 +01:00
//====================[ HandleOTGW ]====================
/*
** This is the core of the OTGW firmware.
** This code basically reads from serial, connected to the OTGW hardware, and
** processes each OT message coming. It can also be used to send data into the
** OpenTherm Gateway.
**
** The main purpose is to read each OT Msg (9 bytes), or anything that comes
** from the OTGW hardware firmware. Default it assumes raw OT messages, however
** it can handle the other messages to, like PS=1/PS=0 etc.
**
** Also, this code bit implements the serial 2 network (port 25238). The serial port
** is forwarded to port 25238, and visavera. So you can use it with OTmonitor (the
2020-12-28 21:02:37 +01:00
** original OpenTherm program that comes with the hardware). The serial port and
** ser2net port 25238 are both "line read" into the read buffer (coming from OTGW
** thru serial) and write buffer (coming from 25238 going to serial).
2020-12-28 21:02:37 +01:00
**
** The write buffer (incoming from port 25238) is also line printed to the Debug (port 23).
2020-12-28 21:02:37 +01:00
** The read line buffer is per line parsed by the proces OT parser code (processOTGW (buf, len)).
*/
void handleOTGW()
{
//handle serial communication and line processing
2020-12-28 21:02:37 +01:00
#define MAX_BUFFER_READ 256
2021-01-24 22:10:57 +01:00
#define MAX_BUFFER_WRITE 128
2020-12-28 21:02:37 +01:00
static char sRead[MAX_BUFFER_READ];
static char sWrite[MAX_BUFFER_WRITE];
static size_t bytes_read = 0;
static size_t bytes_write = 0;
static uint8_t inByte;
static uint8_t outByte;
//handle incoming data from network (port 25238) sent to serial port OTGW (WRITE BUFFER)
while (OTGWstream.available()){
//OTGWSerial.write(OTGWstream.read()); //just forward it directly to Serial
2021-02-10 01:22:06 +01:00
blinkLEDnow(LED2);
outByte = OTGWstream.read(); // read from port 25238
while (OTGWSerial.availableForWrite()==0) {
//cannot write, buffer full, wait for some space in serial out buffer
feedWatchDog(); //this yields for other processes
}
OTGWSerial.write(outByte); // write to serial port
OTGWSerial.flush(); // wait for write to serial
if (outByte == '\n')
2021-01-24 23:47:26 +01:00
{ //on newline, do something...
sWrite[bytes_write] = 0;
DebugTf("Net2Ser: Sending to OTGW: [%s] (%d)\r\n", sWrite, bytes_write);
2021-01-31 23:43:52 +01:00
//check for reset command
if (stricmp(sWrite, "GW=R")==0){
//detect [GW=R], then reset the gateway the gpio way
DebugTln("Detected: GW=R. Reset gateway command executed.");
resetOTGW();
}
bytes_write = 0; //start next line
} else if (outByte == '\r')
{
// skip LF
}
else
{
2020-12-28 21:02:37 +01:00
if (bytes_write < (MAX_BUFFER_WRITE-1))
sWrite[bytes_write++] = outByte;
}
2020-11-19 16:47:10 +01:00
}
2020-12-28 21:02:37 +01:00
//Handle incoming data from OTGW through serial port (READ BUFFER)
while(OTGWSerial.available())
{
inByte = OTGWSerial.read(); // read from serial port
OTGWstream.write(inByte); // write to port 25238
if (inByte== '\n')
{ //line terminator, continue to process incoming message
sRead[bytes_read] = 0;
processOTGW(sRead, bytes_read);
bytes_read = 0;
break; // to continue processing incoming message
}
else if (inByte == '\r')
{ // just ignore LF...
}
else
{
2020-12-28 21:02:37 +01:00
if (bytes_read < (MAX_BUFFER_READ-1))
sRead[bytes_read++] = inByte;
}
}
}// END of handleOTGW
2020-12-28 21:02:37 +01:00
//====================[ functions for REST API ]====================
2020-12-12 00:20:31 +01:00
String getOTGWValue(int msgid)
2020-12-11 13:38:56 +01:00
{
2020-12-12 00:20:31 +01:00
switch (static_cast<OpenThermMessageID>(msgid)) {
case TSet: return String(OTdataObject.TSet); break;
case CoolingControl: return String(OTdataObject.CoolingControl); break;
case TsetCH2: return String(OTdataObject.TsetCH2); break;
case TrOverride: return String(OTdataObject.TrOverride); break;
case MaxRelModLevelSetting: return String(OTdataObject.MaxRelModLevelSetting); break;
case TrSet: return String(OTdataObject.TrSet); break;
case TrSetCH2: return String(OTdataObject.TrSetCH2); break;
case RelModLevel: return String(OTdataObject.RelModLevel); break;
case CHPressure: return String(OTdataObject.CHPressure); break;
case DHWFlowRate: return String(OTdataObject.DHWFlowRate); break;
case Tr: return String(OTdataObject.Tr); break;
case Tboiler: return String(OTdataObject.Tboiler); break;
case Tdhw: return String(OTdataObject.Tdhw); break;
case Toutside: return String(OTdataObject.Toutside); break;
case Tret: return String(OTdataObject.Tret); break;
case Tstorage: return String(OTdataObject.Tstorage); break;
case Tcollector: return String(OTdataObject.Tcollector); break;
case TflowCH2: return String(OTdataObject.TflowCH2); break;
case Tdhw2: return String(OTdataObject.Tdhw2); break;
case Texhaust: return String(OTdataObject.Texhaust); break;
case TdhwSet: return String(OTdataObject.TdhwSet); break;
case MaxTSet: return String(OTdataObject.MaxTSet); break;
case Hcratio: return String(OTdataObject.Hcratio); break;
case OpenThermVersionMaster: return String(OTdataObject.OpenThermVersionMaster); break;
case OpenThermVersionSlave: return String(OTdataObject.OpenThermVersionSlave); break;
case Status: return String(OTdataObject.Status); break;
case ASFflags: return String(OTdataObject.ASFflags); break;
case MConfigMMemberIDcode: return String(OTdataObject.MConfigMMemberIDcode); break;
case SConfigSMemberIDcode: return String(OTdataObject.SConfigSMemberIDcode); break;
case Command: return String(OTdataObject.Command); break;
case RBPflags: return String(OTdataObject.RBPflags); break;
case TSP: return String(OTdataObject.TSP); break;
case TSPindexTSPvalue: return String(OTdataObject.TSPindexTSPvalue); break;
case FHBsize: return String(OTdataObject.FHBsize); break;
case FHBindexFHBvalue: return String(OTdataObject.FHBindexFHBvalue); break;
case MaxCapacityMinModLevel: return String(OTdataObject.MaxCapacityMinModLevel); break;
case DayTime: return String(OTdataObject.DayTime); break;
case Date: return String(OTdataObject.Date); break;
case Year: return String(OTdataObject.Year); break;
case TdhwSetUBTdhwSetLB: return String(OTdataObject.TdhwSetUBTdhwSetLB); break;
case MaxTSetUBMaxTSetLB: return String(OTdataObject.MaxTSetUBMaxTSetLB); break;
case HcratioUBHcratioLB: return String(OTdataObject.HcratioUBHcratioLB); break;
case RemoteOverrideFunction: return String(OTdataObject.RemoteOverrideFunction); break;
case OEMDiagnosticCode: return String(OTdataObject.OEMDiagnosticCode); break;
case BurnerStarts: return String(OTdataObject.BurnerStarts); break;
case CHPumpStarts: return String(OTdataObject.CHPumpStarts); break;
case DHWPumpValveStarts: return String(OTdataObject.DHWPumpValveStarts); break;
case DHWBurnerStarts: return String(OTdataObject.DHWBurnerStarts); break;
case BurnerOperationHours: return String(OTdataObject.BurnerOperationHours); break;
case CHPumpOperationHours: return String(OTdataObject.CHPumpOperationHours); break;
case DHWPumpValveOperationHours: return String(OTdataObject.DHWPumpValveOperationHours); break;
case DHWBurnerOperationHours: return String(OTdataObject.DHWBurnerOperationHours); break;
case MasterVersion: return String(OTdataObject.MasterVersion); break;
case SlaveVersion: return String(OTdataObject.SlaveVersion); break;
case StatusVH: return String(OTdataObject.StatusVH); break;
case ControlSetpointVH: return String(OTdataObject.ControlSetpointVH); break;
case FaultFlagsCodeVH: return String(OTdataObject.FaultFlagsCodeVH); break;
case DiagnosticCodeVH: return String(OTdataObject.DiagnosticCodeVH); break;
case ConfigMemberIDVH: return String(OTdataObject.ConfigMemberIDVH); break;
case OpenthermVersionVH: return String(OTdataObject.OpenthermVersionVH); break;
case VersionTypeVH: return String(OTdataObject.VersionTypeVH); break;
case RelativeVentilation: return String(OTdataObject.RelativeVentilation); break;
case RelativeHumidityVH: return String(OTdataObject.RelativeHumidityVH); break;
case CO2LevelVH: return String(OTdataObject.CO2LevelVH); break;
case SupplyInletTemperature: return String(OTdataObject.SupplyInletTemperature); break;
case SupplyOutletTemperature: return String(OTdataObject.SupplyOutletTemperature); break;
case ExhaustInletTemperature: return String(OTdataObject.ExhaustInletTemperature); break;
case ExhaustOutletTemperature: return String(OTdataObject.ExhaustOutletTemperature); break;
case ActualExhaustFanSpeed: return String(OTdataObject.ActualExhaustFanSpeed); break;
case ActualInletFanSpeed: return String(OTdataObject.ActualInletFanSpeed); break;
case RemoteParameterSettingVH: return String(OTdataObject.RemoteParameterSettingVH); break;
case NominalVentilationValue: return String(OTdataObject.NominalVentilationValue); break;
case TSPNumberVH: return String(OTdataObject.TSPNumberVH); break;
case TSPEntryVH: return String(OTdataObject.TSPEntryVH); break;
case FaultBufferSizeVH: return String(OTdataObject.FaultBufferSizeVH); break;
case FaultBufferEntryVH: return String(OTdataObject.FaultBufferEntryVH); break;
case FanSpeed: return String(OTdataObject.FanSpeed); break;
case ElectricalCurrentBurnerFlame: return String(OTdataObject.ElectricalCurrentBurnerFlame); break;
case TRoomCH2: return String(OTdataObject.TRoomCH2); break;
case RelativeHumidity: return String(OTdataObject.RelativeHumidity); break;
case RFstrengthbatterylevel: return String(OTdataObject.RFstrengthbatterylevel); break;
case OperatingMode_HC1_HC2_DHW: return String(OTdataObject.OperatingMode_HC1_HC2_DHW); break;
case ElectricityProducerStarts: return String(OTdataObject.ElectricityProducerStarts); break;
case ElectricityProducerHours: return String(OTdataObject.ElectricityProducerHours); break;
case ElectricityProduction: return String(OTdataObject.ElectricityProduction); break;
case CumulativElectricityProduction: return String(OTdataObject.CumulativElectricityProduction); break;
case RemehadFdUcodes: return String(OTdataObject.RemehadFdUcodes); break;
case RemehaServicemessage: return String(OTdataObject.RemehaServicemessage); break;
case RemehaDetectionConnectedSCU: return String(OTdataObject.RemehaDetectionConnectedSCU); break;
2020-12-12 00:20:31 +01:00
default: return "not implemented yet!";
}
2020-12-11 13:38:56 +01:00
}
2020-12-10 23:55:22 +01:00
2020-11-16 23:20:30 +01:00
void startOTGWstream()
{
OTGWstream.begin();
}
void upgradepicnow(const char *filename) {
if (OTGWSerial.busy()) return; // if already in programming mode, never call it twice
DebugTln("Start PIC upgrade now.");
fwupgradestart(filename);
while (OTGWSerial.busy()){
feedWatchDog();
//blink the led during flash...
DECLARE_TIMER_MS(timerUpgrade, 500);
if (DUE(timerUpgrade)) {
blinkLEDnow(LED2);
}
}
// When you are done, then reset the PIC one more time, to capture the actual fwversion of the OTGW
resetOTGW();
}
void fwupgradedone(OTGWError result, short errors = 0, short retries = 0) {
DebugTf("Upgrade finished: Errorcode = %d - %d retries, %d errors\n", result, retries, errors);
switch (result) {
case OTGW_ERROR_NONE: errorupgrade = "PIC upgrade was succesful."; break;
case OTGW_ERROR_MEMORY: errorupgrade = "Not enough memory available."; break;
case OTGW_ERROR_INPROG: errorupgrade = "Firmware upgrade in progress."; break;
case OTGW_ERROR_HEX_ACCESS: errorupgrade = "Could not open hex file."; break;
case OTGW_ERROR_HEX_FORMAT: errorupgrade = "Invalid format of hex file."; break;
case OTGW_ERROR_HEX_DATASIZE: errorupgrade = "Wrong data size in hex file."; break;
case OTGW_ERROR_HEX_CHECKSUM: errorupgrade = "Bad checksum in hex file."; break;
case OTGW_ERROR_MAGIC: errorupgrade = "Hex file does not contain expected data."; break;
case OTGW_ERROR_RESET: errorupgrade = "PIC reset failed."; break;
case OTGW_ERROR_RETRIES: errorupgrade = "Too many retries."; break;
case OTGW_ERROR_MISMATCHES: errorupgrade = "Too many mismatches."; break;
default: errorupgrade = "Unknown state."; break;
}
}
2021-02-14 14:31:21 +01:00
// Schelte's firmware integration
void fwupgradestart(const char *hexfile) {
OTGWError result;
digitalWrite(LED1, LOW);
result = OTGWSerial.startUpgrade(hexfile);
if (result!= OTGW_ERROR_NONE) {
fwupgradedone(result);
} else {
OTGWSerial.registerFinishedCallback(fwupgradedone);
}
}
2021-02-20 17:49:56 +01:00
String checkforupdatepic(String filename){
2021-02-19 12:44:45 +01:00
WiFiClient client;
2021-02-19 01:48:31 +01:00
HTTPClient http;
2021-02-20 17:49:56 +01:00
String latest = "";
2021-02-19 01:48:31 +01:00
int code;
http.begin(client, "http://otgw.tclcode.com/download/" + filename);
http.collectHeaders(hexheaders, 2);
code = http.sendRequest("HEAD");
if (code == HTTP_CODE_OK) {
for (int i = 0; i< http.headers(); i++) {
DebugTf("%s: %s\r\n", hexheaders[i], http.header(i).c_str());
2021-02-19 01:48:31 +01:00
}
latest = http.header(1);
DebugTf("Update %s -> %s\r\n", filename.c_str(), latest.c_str());
2021-02-19 01:48:31 +01:00
http.end();
}
2021-02-20 17:49:56 +01:00
return latest;
2021-02-19 01:48:31 +01:00
}
2021-02-14 14:31:21 +01:00
void refreshpic(String filename, String version) {
2021-02-14 14:31:21 +01:00
WiFiClient client;
HTTPClient http;
String latest;
int code;
2021-02-19 12:44:45 +01:00
2021-02-20 17:49:56 +01:00
if (latest=checkforupdatepic(filename) != "") {
2021-02-14 14:31:21 +01:00
if (latest != version) {
DebugTf("Update %s: %s -> %s\r\n", filename.c_str(), version.c_str(), latest.c_str());
2021-02-14 14:31:21 +01:00
http.begin(client, "http://otgw.tclcode.com/download/" + filename);
code = http.GET();
if (code == HTTP_CODE_OK) {
File f = LittleFS.open("/" + filename, "w");
if (f) {
http.writeToStream(&f);
f.close();
String verfile = "/" + filename;
verfile.replace(".hex", ".ver");
f = LittleFS.open(verfile, "w");
if (f) {
f.print(latest + "\n");
f.close();
DebugTf("Update successful\n");
}
}
}
}
}
http.end();
}
void upgradepic() {
2021-02-14 14:31:21 +01:00
String action = httpServer.arg("action");
String filename = httpServer.arg("name");
String version = httpServer.arg("version");
DebugTf("Action: %s %s %s\r\n", action.c_str(), filename.c_str(), version.c_str());
if (action == "upgrade") {
upgradepicnow(String("/" + filename).c_str());
} else if (action == "refresh") {
refreshpic(filename, version);
2021-02-14 14:31:21 +01:00
} else if (action == "delete") {
String path = "/" + filename;
LittleFS.remove(path);
path.replace(".hex", ".ver");
LittleFS.remove(path);
}
2021-02-19 00:28:21 +01:00
httpServer.sendHeader("Location", "index.html#tabPICflash", true);
httpServer.send(303, "text/html", "<a href='index.html#tabPICflash'>Return</a>");
2021-02-14 14:31:21 +01:00
}
/***************************************************************************
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit
* persons to whom the Software is furnished to do so, subject to the
* following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
* OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
* THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
***************************************************************************/