NorthstarLauncher/NorthstarDLL/memory.cpp

349 lines
8.4 KiB
C++

#include "pch.h"
#include "memory.h"
MemoryAddress::MemoryAddress() : m_nAddress(0) {}
MemoryAddress::MemoryAddress(const uintptr_t nAddress) : m_nAddress(nAddress) {}
MemoryAddress::MemoryAddress(const void* pAddress) : m_nAddress(reinterpret_cast<uintptr_t>(pAddress)) {}
// operators
MemoryAddress::operator uintptr_t() const
{
return m_nAddress;
}
MemoryAddress::operator void*() const
{
return reinterpret_cast<void*>(m_nAddress);
}
MemoryAddress::operator bool() const
{
return m_nAddress != 0;
}
bool MemoryAddress::operator==(const MemoryAddress& other) const
{
return m_nAddress == other.m_nAddress;
}
bool MemoryAddress::operator!=(const MemoryAddress& other) const
{
return m_nAddress != other.m_nAddress;
}
bool MemoryAddress::operator==(const uintptr_t& addr) const
{
return m_nAddress == addr;
}
bool MemoryAddress::operator!=(const uintptr_t& addr) const
{
return m_nAddress != addr;
}
MemoryAddress MemoryAddress::operator+(const MemoryAddress& other) const
{
return Offset(other.m_nAddress);
}
MemoryAddress MemoryAddress::operator-(const MemoryAddress& other) const
{
return MemoryAddress(m_nAddress - other.m_nAddress);
}
MemoryAddress MemoryAddress::operator+(const uintptr_t& addr) const
{
return Offset(addr);
}
MemoryAddress MemoryAddress::operator-(const uintptr_t& addr) const
{
return MemoryAddress(m_nAddress - addr);
}
MemoryAddress MemoryAddress::operator*() const
{
return Deref();
}
// traversal
MemoryAddress MemoryAddress::Offset(const uintptr_t nOffset) const
{
return MemoryAddress(m_nAddress + nOffset);
}
MemoryAddress MemoryAddress::Deref(const int nNumDerefs) const
{
uintptr_t ret = m_nAddress;
for (int i = 0; i < nNumDerefs; i++)
ret = *reinterpret_cast<uintptr_t*>(ret);
return MemoryAddress(ret);
}
// patching
void MemoryAddress::Patch(const uint8_t* pBytes, const size_t nSize)
{
if (nSize)
WriteProcessMemory(GetCurrentProcess(), reinterpret_cast<LPVOID>(m_nAddress), pBytes, nSize, NULL);
}
void MemoryAddress::Patch(const std::initializer_list<uint8_t> bytes)
{
uint8_t* pBytes = new uint8_t[bytes.size()];
int i = 0;
for (const uint8_t& byte : bytes)
pBytes[i++] = byte;
Patch(pBytes, bytes.size());
delete[] pBytes;
}
inline std::vector<uint8_t> HexBytesToString(const char* pHexString)
{
std::vector<uint8_t> ret;
int size = strlen(pHexString);
for (int i = 0; i < size; i++)
{
// If this is a space character, ignore it
if (isspace(pHexString[i]))
continue;
if (i < size - 1)
{
BYTE result = 0;
for (int j = 0; j < 2; j++)
{
int val = 0;
char c = *(pHexString + i + j);
if (c >= 'a')
{
val = c - 'a' + 0xA;
}
else if (c >= 'A')
{
val = c - 'A' + 0xA;
}
else if (isdigit(c))
{
val = c - '0';
}
else
{
assert(false, "Failed to parse invalid hex string.");
val = -1;
}
result += (j == 0) ? val * 16 : val;
}
ret.push_back(result);
}
i++;
}
return ret;
}
void MemoryAddress::Patch(const char* pBytes)
{
std::vector<uint8_t> vBytes = HexBytesToString(pBytes);
Patch(vBytes.data(), vBytes.size());
}
void MemoryAddress::NOP(const size_t nSize)
{
uint8_t* pBytes = new uint8_t[nSize];
memset(pBytes, 0x90, nSize);
Patch(pBytes, nSize);
delete[] pBytes;
}
bool MemoryAddress::IsMemoryReadable(const size_t nSize)
{
static SYSTEM_INFO sysInfo;
if (!sysInfo.dwPageSize)
GetSystemInfo(&sysInfo);
MEMORY_BASIC_INFORMATION memInfo;
if (!VirtualQuery(reinterpret_cast<LPCVOID>(m_nAddress), &memInfo, sizeof(memInfo)))
return false;
return memInfo.RegionSize >= nSize && memInfo.State & MEM_COMMIT && !(memInfo.Protect & PAGE_NOACCESS);
}
CModule::CModule(const HMODULE pModule)
{
MODULEINFO mInfo {0};
if (pModule && pModule != INVALID_HANDLE_VALUE)
GetModuleInformation(GetCurrentProcess(), pModule, &mInfo, sizeof(MODULEINFO));
m_nModuleSize = static_cast<size_t>(mInfo.SizeOfImage);
m_pModuleBase = reinterpret_cast<uintptr_t>(mInfo.lpBaseOfDll);
m_nAddress = m_pModuleBase;
if (!m_nModuleSize || !m_pModuleBase)
return;
m_pDOSHeader = reinterpret_cast<IMAGE_DOS_HEADER*>(m_pModuleBase);
m_pNTHeaders = reinterpret_cast<IMAGE_NT_HEADERS64*>(m_pModuleBase + m_pDOSHeader->e_lfanew);
const IMAGE_SECTION_HEADER* hSection = IMAGE_FIRST_SECTION(m_pNTHeaders); // Get first image section.
for (WORD i = 0; i < m_pNTHeaders->FileHeader.NumberOfSections; i++) // Loop through the sections.
{
const IMAGE_SECTION_HEADER& hCurrentSection = hSection[i]; // Get current section.
ModuleSections_t moduleSection = ModuleSections_t(
std::string(reinterpret_cast<const char*>(hCurrentSection.Name)),
static_cast<uintptr_t>(m_pModuleBase + hCurrentSection.VirtualAddress),
hCurrentSection.SizeOfRawData);
if (!strcmp((const char*)hCurrentSection.Name, ".text"))
m_ExecutableCode = moduleSection;
else if (!strcmp((const char*)hCurrentSection.Name, ".pdata"))
m_ExceptionTable = moduleSection;
else if (!strcmp((const char*)hCurrentSection.Name, ".data"))
m_RunTimeData = moduleSection;
else if (!strcmp((const char*)hCurrentSection.Name, ".rdata"))
m_ReadOnlyData = moduleSection;
m_vModuleSections.push_back(moduleSection); // Push back a struct with the section data.
}
}
CModule::CModule(const char* pModuleName) : CModule(GetModuleHandleA(pModuleName)) {}
MemoryAddress CModule::GetExport(const char* pExportName)
{
return MemoryAddress(reinterpret_cast<uintptr_t>(GetProcAddress(reinterpret_cast<HMODULE>(m_nAddress), pExportName)));
}
MemoryAddress CModule::FindPattern(const uint8_t* pPattern, const char* pMask)
{
if (!m_ExecutableCode.IsSectionValid())
return MemoryAddress();
uint64_t nBase = static_cast<uint64_t>(m_ExecutableCode.m_pSectionBase);
uint64_t nSize = static_cast<uint64_t>(m_ExecutableCode.m_nSectionSize);
const uint8_t* pData = reinterpret_cast<uint8_t*>(nBase);
const uint8_t* pEnd = pData + static_cast<uint32_t>(nSize) - strlen(pMask);
int nMasks[64]; // 64*16 = enough masks for 1024 bytes.
int iNumMasks = static_cast<int>(ceil(static_cast<float>(strlen(pMask)) / 16.f));
memset(nMasks, '\0', iNumMasks * sizeof(int));
for (intptr_t i = 0; i < iNumMasks; ++i)
{
for (intptr_t j = strnlen(pMask + i * 16, 16) - 1; j >= 0; --j)
{
if (pMask[i * 16 + j] == 'x')
{
_bittestandset(reinterpret_cast<LONG*>(&nMasks[i]), j);
}
}
}
__m128i xmm1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pPattern));
__m128i xmm2, xmm3, msks;
for (; pData != pEnd; _mm_prefetch(reinterpret_cast<const char*>(++pData + 64), _MM_HINT_NTA))
{
if (pPattern[0] == pData[0])
{
xmm2 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pData));
msks = _mm_cmpeq_epi8(xmm1, xmm2);
if ((_mm_movemask_epi8(msks) & nMasks[0]) == nMasks[0])
{
for (uintptr_t i = 1; i < static_cast<uintptr_t>(iNumMasks); ++i)
{
xmm2 = _mm_loadu_si128(reinterpret_cast<const __m128i*>((pData + i * 16)));
xmm3 = _mm_loadu_si128(reinterpret_cast<const __m128i*>((pPattern + i * 16)));
msks = _mm_cmpeq_epi8(xmm2, xmm3);
if ((_mm_movemask_epi8(msks) & nMasks[i]) == nMasks[i])
{
if ((i + 1) == iNumMasks)
{
return MemoryAddress(const_cast<uint8_t*>(pData));
}
}
else
goto CONTINUE;
}
return MemoryAddress((&*(const_cast<uint8_t*>(pData))));
}
}
CONTINUE:;
}
return MemoryAddress();
}
inline std::pair<std::vector<uint8_t>, std::string> MaskedBytesFromPattern(const char* pPatternString)
{
std::vector<uint8_t> vRet;
std::string sMask;
int size = strlen(pPatternString);
for (int i = 0; i < size; i++)
{
// If this is a space character, ignore it
if (isspace(pPatternString[i]))
continue;
if (pPatternString[i] == '?')
{
// Add a wildcard
vRet.push_back(0);
sMask.append("?");
}
else if (i < size - 1)
{
BYTE result = 0;
for (int j = 0; j < 2; j++)
{
int val = 0;
char c = *(pPatternString + i + j);
if (c >= 'a')
{
val = c - 'a' + 0xA;
}
else if (c >= 'A')
{
val = c - 'A' + 0xA;
}
else if (isdigit(c))
{
val = c - '0';
}
else
{
assert(false, "Failed to parse invalid pattern string.");
val = -1;
}
result += (j == 0) ? val * 16 : val;
}
vRet.push_back(result);
sMask.append("x");
}
i++;
}
return std::make_pair(vRet, sMask);
}
MemoryAddress CModule::FindPattern(const char* pPattern)
{
const auto pattern = MaskedBytesFromPattern(pPattern);
return FindPattern(pattern.first.data(), pattern.second.c_str());
}